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Abstract: This study aimed to improve the performance of the activated carbon-based cathode by
increasing the Li content and to analyze the effect of the combination of carbon and oxidizing agent.
The crystal structure and chemical structure phase of Li-high surface area activated carbon material
(Li-HSAC) was analyzed by X-ray diffraction (XRD) and Raman spectroscopy, the surface state and
quantitative element by scanning electron microscopy with energy dispersive X-ray spectroscopy
(SEM-EDX) and the surface properties with pore-size distribution by Brunauer–Emmett–Teller (BET),
Barrett–Joyner–Halenda (BJH) and t-plot methods. The specific surface area of the Li-YP80F is
1063.2 m2/g, micropore volume value is 0.511 cm3/g and mesopore volume is 0.143 cm3/g, and
these all values are higher than other LiOH-treated carbon. The surface functional group was
analyzed by a Boehm titration, and the higher number of acidic groups compared to the target
facilitated the improved electrolyte permeability, reduced the interface resistance and increased the
electrochemical properties of the cathode. The oxidizing agent of LiOH treated high surface area
of activated carbon was used for the cathode material for EDLC (electric double layer capacitor) to
determine its electrochemical properties and the as-prepared electrode retained excellent performance
after 10 cycles and 100 cycles. The anodic and cathodic peak current value and peak segregation of
Li-YP80F were better than those of the other two samples, due to the micropore-size and physical
properties of the sample. The oxidation peak current value appeared at 0.0055 mA/cm2 current
density and the reduction peak value at –0.0014 mA/cm2, when the Li-YP80F sample used to the
Cu-foil surface. The redox peaks appeared at 0.0025 mA/cm2 and –0.0009 mA/cm2, in the case
of using a Nickel foil, after 10 cycling test. The electrochemical stability of cathode materials was
tested by 100 recycling tests. After 100 recycling tests, peak current drop decreased the peak profile
became stable. The LiOH-treated high surface area of activated carbon had synergistically upgraded
electrochemical activity and superior cycling stability that were demonstrated in EDLC.

Keywords: LiOH-treatment; high surface area of activated carbon; cathode material; electrochemi-
cal performance

1. Introduction

Activated carbon (AC) has specific properties, such as high specific area, balanced con-
ductivity, high volume of porous structure and high stability in acidic condition (pH ≤ 7),
that potentially make it an ideal material for the half-cell electrode [1–5]. Graphitic mate-
rial is mostly used as a high-efficient electrode-material. The properties of high surface
area activated carbon (HSAC) can be further re-shaped to instigate specific advantageous
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activation properties [6–8]. However, the elasticity of the carbon surface hinders absorp-
tion of the electrolyte into the electrode and weakens the output properties of the hybrid
electrode due to the poor wettability on the carbon surface. Therefore, it is important to
improve the hydrophilicity and output properties of the hybrid electrode through surface
modification containing acidic functional-groups to meliorate the wetting properties of the
water [9]. The surface is generally modified using chemical reagents such as KMnO4, H2O2,
NaOH and LiOH [10–12] due to the various specifications for the activity of AC [13–15].
Alkaline hydroxide can be used as an activating agent to create a porous structure at high
temperature [16].

The creation of the porous structure and surface modification is the most widely
used method of improving the electrochemical properties of the activated carbon (AC). If
an AC with an enormous surface area is used as a substrate and is reacted with lithium
hydroxide (LiOH) or potassium hydroxide (KOH) under high-temperature conditions, an
HSAC with a large micropore structure may be obtained. In order to increase the number
of hydrophilic groups or change the activated carbon surface to hydrophilicity, acidic
treatment and oxidizing agents capable of reducing the number of basic functional groups
are used. In addition, a hydrophilic metal oxide (transition metal-based semiconducting
oxide) is introduced to increase the wettability, electron transfer, and ion transfer effects of
the hybrid electrode. Surface hydrophilicity control technology requires advanced carbon
technology and evaluation technology. Developing these technologies quickly will require
a batch-type hydrothermal synthesis method and a raw material control technology by
microwave method that can support fast mass production [17,18]. The improvement of
the output and long-term reliability of the hybrid capacitor depends on the surface control
technology of AC and the conductive material.

The following sub-groups are important goals of this research: (a) surface hydrophilic-
ity control technology improves the output characteristics by improving the electrolyte
impregnation at the interface of the electrode and activated carbon and reducing the inter-
face resistance, (b) improves the long-term reliability of the cell by inhibiting the corrosion
of the hydrogen storage material of the cathode through the hydrophilicity control technol-
ogy and catalytic function technology of the activated carbon surface, and (c) batch-type
hydrothermal synthesis and microwave control technology for mass production.

In this study, LiOH- treated HSACs were successfully synthesized with surface modi-
fication that can activate the ion transfer and electrolyte impregnation. The phase structure,
surface morphology, element analysis, functional groups, and electro-chemical properties
of the modified (including surface coating and surface structure modification) activated
carbon were analysed using XRD, SEM, EDX, FTIR, BET and a Potentiastat apparatus.
LiOH-treated carbon material used for the working electrode. As-prepared Li-YP80F
sample proved to have exceptional electrochemical performance, with high pore distri-
bution and specific surface area. A LiOH-treated HSAC had good stability under a 10
and 100-cycling test. The peak current density and peak separation profile was good in
Li-YP80F sample. A Li-YP80F electrode had good stability under a 100-cycle test. By
comparing these three cycling performance curves, it can be seen that there is a process of
activating capacity that happens during the first cycles. This approach presented herein
offers a promising route for the rational design of a new class of supercapacitors.

2. Results
2.1. Crystallography and Morphology Analysis

The XRD pattern of LiOH-treated high surface area of activated carbon after heat
treatment at 600 ◦C is shown in Figure 1. Figure 1a shows the XRD-pattern of Li-graphite,
Li-YP50F and Li-YP80F. In all three samples, the clearest peak corresponded to the XRD
pattern of Li2CO3. The diffraction peaks at 20 degrees of 21.46◦, 29.52◦, 30.63◦, 32.0◦, 34.22◦,
36.95◦, and 59.91◦ equated to the (110) (111) (202) (002) (112) (311) and (204) crystal planes
of Li2CO3 (JCPDS. 22-1141). XRD peaks associated with Li2O, LiC and Li-composite were
also observed, possibly due to the side reaction between the oxidizing agent and carbon
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material. These side peaks belonged to the XRD pattern of Li2O (JCPDS. 09-0355), LiC
(JCPDS. 14-0649) and Li (JCPDS.15-1401).
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Figure 1. XRD result of (a) LiOH-treated YP80F, YP50F and graphite, (b) bare YP80F and YP50F. 
Figure 1. XRD result of (a) LiOH-treated YP80F, YP50F and graphite, (b) bare YP80F and YP50F.

The XRD pattern of Li-Graphite exhibited one sharp peak at 26.78◦, which is a member
of graphite and lithium carbide. XRD graphs of the pure YP50F and YP80F are displayed in
Figure 1b. Comparison of these results revealed the lithium-carbon nature of the Li-HSAC
samples, which confirmed the successful synthesis of the final sample.

The surface state and morphology analysis of the samples are displayed in Figure 2.
The LiOH treatment with high-temperature calcination completely changed the surface
structure of the samples. The oxidizing agent was irregularly agglomerated and success-
fully up-loaded on the surface of the carbon materials due to the surface functional group.
The quantitative analysis of the main element was analyzed by an EDX measurement
incorporated by SEM.
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Figure 2. SEM images of bare graphite (pristine), YP50F, YP80F, graphite–LiOH, YP50F-LiOH and
YP80F-LiOH.

Figure 3 shows the presence of the main elements of the samples. The C element
is the principal element of the carbon and the O is the main element of the oxidizing
agent. The main element of the oxidizing agent was obtained. This result confirmed
the atomic weight of the main elements in the final samples. The crystallinity and SEM
analyses of the agent’s distribution confirmed that it was successfully up-loaded. The
results indicated that the re-structuring may modify the performance of the bare high
surface area of activated carbon.

2.2. The Functional Group and Surface Area Analysis

The study of how the surface and functional group of a carbon material changes after
LiOH treatment and calcification will determine how the material interacts with alkaline
electrolyte ions. The surface functional group and surface area with pore distribution of
the samples were analyzed by a Boehm titration and N2-adsorption-desoprtion isotherm.
Boehm titration is an acid-base titration method that is used to determine the number of
surface oxygen groups (acidic or basic) present on LiOH-treated carbon surfaces. This
method is usually used complementary with other methods such as Fourier Transform
Infrared Spectroscopy (FTIR).

In the titration, three different sodium-based solutions were used to neutralize the
functional groups. Specifically, NaOH neutralizes the Bronsted acid group, NaHCO3 and
Na2CO3 neutralize the carboxylic acid and lactonic groups, and this neutralization activity
depends on the pKa of each solution [19]. To analyze the quantitative of functional group,
Equations (8) and (9) were used and the data are summarized in Table 1. According to
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the titration results, the values of the surface functional groups were greater than the
purpose of this study, which demonstrated that our LiOH-treatment experiments provided
a proportionate number of acidic functional groups on the carbon surface and reduced
the radical functional-groups, as shown in Figure 4. Depending on the ratio of acidic and
basic-groups, the electrolyte impregnation at the interface of the working electrode can be
improved, and the interface resistance can be reduced. The surface chemistry of the high
surface area of AC strongly affects the electrochemical measurement. According to previous
research, the surface functional group on porous-structured carbon material can achieve a
high charge-storage and electrochemical performance [20–23]. In addition, the number of
functional groups was increased by nitric acid treatment, which enhanced the wettability
and increased the capacitance in acid and base-electrolyte solutions [24]. Furthermore, our
analysis results confirmed that Li-HSAC had numerous acidic functional groups which
can favorably act-on the diffusion and transport of the alkaline electrolyte ions.
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Figure 3. EDAX analysis of LiOH-treated YP50F, YP80F and graphite.

Table 1. Surface functional group analysis of the LiOH-treated carbon materials.

Surface Functional Group (mg/g) Surface Functional Group (mmol/g)

Carboxylic Lactonic Phenolic Total
acidic Carboxylic Lactonic Phenolic Total

Acidic

1 LiOH-treated YP80F 27.58 8.33 11.44 47.35 0.123 0.033 0.121 0.278

2 LiOH-treated
Graphite 28.48 7.82 11.48 47.78 0.127 0.030 0.122 0.279

3 LiOH-treated YP50F 28.21 8.13 11.86 48.20 0.126 0.032 0.123 0.281
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Figure 4. Boehm titration result of LiOH-treated YP80F, YP50F and graphite. (a) mmol/g unit, and
(b) mg/g unit.

The chemical bond vibration and the functional group were analyzed by FTIR, which
is based on an attenuated total-reflection (ATR) method. Figure 5 shows the FTIR spectrum
of the samples, which consisted of three main peaks. The main peaks of the carbon material
were observed at around 1400 and 3000 cm−1 wavenumber regions. The presence of the
lithium peak was observed at around 850 cm−1 region. The peak face of Li-graphite was
different because the lithium peak was not observed. The pore-size, volume and specific
surface area were analyzed by an N2-adsorption-desorption isotherm.

Figure 6 shows the nitrogen adsorption–desorption isotherms of Li-YP50F, Li-YP80F
and graphite. The electrochemical properties of nanocomposites were correlated with the
BJH and BET analysis results. The relative pressure of the analysis was 0.4–1.0 P/P0, and
the relevance between pore-division and isotherm classified to the H1-type. The H1-type
identifies the narrow pore-size state of the material. HSAC with large micropore structure
may be obtained due to the LiOH agent and high temperature calcination. From BET
analysis, the total pore volume and mean pore diameter of raw carbon material is reduced
due to the oxidizing agent treatment. LiOH-oxidizing agent gathered in the disordered
pore structure of the YP50F and YP80F. In the case of the graphite, the LiOH located on the
surface. The pore distribution of the LiOH-treated samples was analyzed by BJH and T-plot
method. According from the result, mesopore and micropore volumes and pore surface
area were decreased. The micropore volume and surface area of the YP80F was high, the
high amount of LiOH-oxidizing agent can inter-collected in the pore. The inter-collected
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amount of the LiOH can positively improve the Li+ ion transition between cathode and
anode of EDLC, then it can upgrade the performance of the EDLC material.
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The results of Li-HSAC pore-volume and specific surface area are summarized in
Table 2. According to the summary results of BET and BJH, the surface area and total pore
mass (mesopore and micropore) of the graphite was increased after the LiOH treatment,
whereas the values were decreased for the bare-YP50F and YP80F. In the calculation of the t-
plot, the total surface area of Li-YP50F was 43.5 m2/g and of Li-YP80F was 1063.2 m2/g. The
micropore volume of Li-YP80F decreased from 1.084 to 0.511 cm3/g, while the mesopore
volume increased from 0.100 to 0.143 cm3/g. The BET and BJH analysis results showed
a similar decrease in the two main samples. The mesopore size and specific surface area
were noticeably reduced after LiOH-treatment and calcination process. The micro-sized
pore state and high surface area are the main parameters that are valuable for framing
ion-transport tunnels in electro chemical reactions.

Furthermore, the surface acidic group can improve the utilization rate of the electrode
by facilitating the passage of ions into the micro-pores and improving the surface utilization
rate of the pores. Based on these analysis results, the volume of the pore-distribution (micro,
meso) reduced, which negatively affect the ion transport of the KOH electrolyte. However,
the presence of the surface acidic group can enhance the ion-transport through the enhanced
micropore structure of the Li-HSAC material, because the acidic group can improve the
wettability and electronegativity, which in turn affect the electrolyte impregnation. In
addition, the Li-YP80F sample had high surface area, which demonstrated the more active
interfacial site between the alkaline electrolyte and the cathode. Previous studies have
shown that the surface area and pore size are the main factors influencing the performance
of the electrode material [25,26]. The micropore-structured carbon material showed a
high capacitance with continuous charge and discharge due to the oxygen-containing
functional group. The specific capacitance of the LiOH-treated graphite, YP50F and YP80F
carbon were calculated, and all analysis results are summarized in Table 3. According
to the analysis result, the Li-YP80F sample had a high value of specific capacitance and
integration area. This sample had high number of micropore distribution and high surface
area with hydrophilicity, and the porous (micro) structure with a high surface of carbon
material is an ideal material for the electrode on the EDLC. All of the above factors are
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present in the Li-YP80F material, which confirmed that the Li-YP80F sample had high
electrochemical properties.
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BET Analysis 
Samples Surface Area (m2/g) Total Pore Volume (cm3/g) Mean Pore Diameter (nm) 
Graphite 6.29 0.042 26.6 

YP50F 1676.1 0.776 1.9 

Figure 6. (a) Nitrogen adsorption–desorption isotherms, (b) NLDFT/GCMC Pore size distribution
analysis, (c) BJH plot and (d) T-curve of graphite, YP50F, YP80F and LiOH-treated carbon materials.



Molecules 2021, 26, 2187 10 of 29

Table 2. Nitrogen adsorption–desorption isotherms of bare graphite, YP50F, YP80F and LiOH-treated samples.

BET Analysis

Samples Surface Area (m2/g) Total Pore Volume (cm3/g) Mean Pore Diameter (nm)

Graphite 6.29 0.042 26.6

YP50F 1676.1 0.776 1.9

YP80F 2374.8 1.227 2.1

Graphite-LiOH 15.2 0.094 24.6

YP50F-LiOH 11.7 0.074 25.3

YP80F-LiOH 2155.7 1.104 2.0

BJH Analysis

Samples Mesopore Pore
Diameter (nm)

Micropore
Surface Area

(m2/g)

Mesopore
Surface Area

(m2/g)

Micropore
Volume
(cm3/g)

Mesopore
Volume
(cm3/g)

Micropore Vol.
Percent (%)

Graphite 140.0 −0.38 6.7 0.002 0.040 4

YP50F 1.7 1471.35 204.8 0.586 0.191 75

YP80F 1.7 1345.30 1029.5 0.571 0.656 47

Graphite-LiOH 76.49 0.11 15.11 0.004 0.090 4

YP50F-LiOH 76.5 −3.28 15.0 0.003 0.072 3

YP80F-LiOH 1.7 1238.64 917.1 0.526 0.578 48

T-Plot

Samples Total Surface
Area (m2/g)

Micropore
Surface Area

(m2/g)

External
Surface (m2/g)

Micropore
Volume
(cm3/g)

Mesopore
Volume
(cm3/g)

Micropore Vol.
Percent (%)

Graphite 7.40 2.44 23.96 −0.021 -

YP50F 1898.4 1639.4 36.7 0.693 0.084 89

YP80F 2226.9 2304.4 70.4 1.084 0.100 88

Graphite-LiOH 1.665 2.30 21.283 0.023 -

YP50F-LiOH 43.5 11.59 11.61 0.037 0.111 50

YP80F-LiOH 1063.2 1094.1 46.0 0.511 0.143 84

Table 3. The area, specific capacitance, energy density and power density calculation of each electrode from CV test.

№ Sample Current
Collector

Area of
Integration

Specific Capacitance
(Cp) (F/g)

Energy Density
(Wh/kg)

Power Density
(kW/kg)

1 Li-YP80F
Cu foil 9.828 × 10−4 1.196 × 10−4 14.95 66.44

Ni foil 3.918 × 10−4 2.118 × 10−5 2.65 13.81

2 Li-YP50F
Cu foil 7.601 × 10−4 1.169 × 10−4 14.61 59.77

Ni foil 2.21 × 10−4 1.21 × 10−5 1.51 7.26

3 Li-Graphite Cu foil 6.559 × 10−4 1.17 × 10−4 14.62 57.83

Ni foil 2.158 × 10−4 1.192 × 10−5 1.49 6.79

The wettability of the LiOH-treated carbon materials was tested by gravimetric meth-
ods using water and 5% KOH (Figure 7). The measurement-based of determining how
much amount of solvent (water, 5% KOH) absorbed in the working electrode which using
a LiOH-treated carbon material and pure carbon material. The results of the wettability
properties of all samples are summarized in Bit-graph. According from the summarized
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result, LiOH-treated sample has high wettability properties, due to the acidic groups of
the surface which can affect the impregnation of the electrolyte. The main purpose of the
study was to change the surface of the carbon material by the method of functional groups
with hydrophilic and hydrophobic properties, depending on the type of electrolyte applied.
The results of the experiments confirm that the surface of the carbon material has been
successfully modified to a hydrophilic quality using LiOH-oxidizing agents.
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Figure 8 expresses the Raman spectra of the LiOH-treated graphite, YP50F and YP80F
samples. Raman spectroscopy is the chemical-analysis method which can analyze the
chemical structure phase and molecular interaction of matter. The principle of Raman
spectroscopy is a light-scattering technique, where the light interact to the molecule bond
and the result provides the information of carbon material (D and G-band). The assignment
of the D and G peaks is straightforward in the “molecular” picture of carbon materials.
The Raman spectrum of LiOH-YP50F and LiOH-YP80F is dominated by two prominent
features. The G band near 1597 and 1591 cm–1 is due to the degenerate zone-center (G)
optical phonon mode with E2g symmetry, which is found in most graphitic materials. The
most important is the D band near 1332 and 1338 cm–1 due to a one-phonon scattering
involving a phonon near the K point and scattering due to defects [27].

Two broad peaks at 2657, 2662, 2914 and 2904 cm–1 observed in the spectrum of LiOH
was also detected in the Raman spectrum of LiOH-treated YP50F and YP80F. These two
peaks are assigned to the asymmetric (Bg) and symmetric (Ag) stretches [28]. The five
peaks are dominated in LiOH-Graphite sample. The strong band at 2693 cm–1 is due to a
two-phonon scattering involving A′1 phonons near the K point and is called the 2D band.
The 2D band is usually stronger than the G* and G’ band although it is due to a two-phonon
scattering process. The triple resonance process, where the electron and the hole scatter
simultaneously, can also explain the two-phonon scattering. The characteristic peak of
LiOH not obtained in LiOH-Graphite sample, due to the peak intensity of each components.

2.3. Electrochemical Test

The high surface area of YP50F, YP80F activated carbon and graphite was modified
with LiOH-oxidizing agent and heat treatment (600 ◦C). HSAC materials with a micro-
porous structure can be synthesized by (LiOH) oxidizing agent treatment for the high
surface area of activated carbon under the high temperature. In addition, after the activated
carbon reacting with oxidizing agents, the number of basic functional groups decreases,
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the number of hydrophilic groups increases, or the hydrophilicity of the activated carbon
surface improves, which can improve the long-term reliability of the cell.
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Figure 8. Raman spectra of the LiOH-Graphite, LiOH-YP50F and LiOH-YP80F sample (G*-two-
phonon processes).

The Li-HSAC samples were used for the working electrode by following a Doctor
blade” method. The electrochemical performance and work-function of the electrode were
analyzed by a cyclic voltammetry (CV) and chronoamperometry (CA) technique. The
CA technique is useful that Potentiastat transient measurement is a favorable method to
analyze the capacity-rate curve of the working electrode [29]. The CV tests were carried
out in a three-electrode system. In this performance, Cu-foil and Ni-foil was used as a
current-collector and the high ionic conductivity of the KOH basic solutions was used
for the electrolyte [30]. KOH is a basic electrolytes and it has been the most extensively
used because of its high ionic conductivity and it can support the cyclic stability of the
working electrode.

The CV test was run for 10 and 100-cycles with 100 mV/s scan rate. The CV graph
and current value were different in each sample according to the working electrode. The
CV result of Li-YP80F is shown in Figure 9a,b. The anodic and cathodic peak current
value and peak segregation of Li-YP80F were better than those of the other two samples,
due to the micropore-size and physical properties of the sample. The oxidation peak
current value appeared at 0.0055 mA/cm2 current density and the reduction peak value at
−0.0014 mA/cm2, when the Li-YP80F sample used to the Cu-foil surface. The redox peaks
appeared at 0.0025 mA/cm2 and −0.0009 mA/cm2, in the case of using a Nickel foil, as
shown in Figure 9b.

As shown in Figure 9c, the CV curve had one sharp peak in the oxidation state. The
oxidation peak appeared at 0.0035 mA/cm2 and the reduction-peak at the 0.00042 mA/cm2

regions. When the Li-YP50F covered on the nickel foil, the redox peaks appeared at
0.00231 mA/cm2 and −0.00051 mA/cm2 current density regions, as shown in Figure 9d.
For the Li-graphite, the current density of the oxidation peak appeared at 0.0053 mA/cm2

and the reduction peak at (−0.00045 mA/cm2), as shown in Figure 9e. In the case of Li-
graphite coated on the nickel foil surface, the oxidation peak appeared at 0.0013 mA/cm2

and reduction peak appeared at −0.00083 mA/cm2 region, as shown in Figure 9f.
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with Cu-foil; (d) LiOH-YP80F with Ni-foil; (e) LiOH-Graphite with Cu-foil; (f) LiOH-Graphite with 
Ni-foil. 
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pore size were higher for Li-YP80F than for the other two samples, which strongly im-
proved the electrochemical performance.  

The use of Li-YP80F, a material with a high surface area, as a working electrode al-
lows for more charge exchange and, on the other hand, allows more electrons to accu-
mulate over a given period of time and conduct more current. The charge exchange 
happens at a fixed rate per unit area at the surface of the electrode. Also, the numerous 
acidic functional groups of Li-YP80F enabled it to maintain the permeability of the elec-
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tion, the CV graph profile was changed due to the carbon material of the base substrate, 
for example, the oxidation peak-current state changed from 0.0055 mA/cm2 to the cur-
rent density state to 0.0035 mA/cm2. In addition, the Cu plate collector has a conductivity 
of 0.6 S/cm and it can support the activity of the base sample. The specific capacitance, 
area of the integration, energy density (Wh/kg) at given powder density (kW/kg) are 
important factors which define the performance of the working electrode. Aforemen-
tioned mentioned all factors were calculated by following the below Equations (1–7). All 
calculated results are summarized in Table 3. The calculation of specific capacitance 
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electrolyte) under 10 cycles (a) LiOH-YP80F with Cu-foil; (b) LiOH-YP80F with Ni-foil; (c) LiOH-
YP50F with Cu-foil; (d) LiOH-YP80F with Ni-foil; (e) LiOH-Graphite with Cu-foil; (f) LiOH-Graphite
with Ni-foil.

The electrochemical properties of the Li-HSAC sample depend on three main factors:
the functional group, surface area, and pore size distribution. The interfacial area, the
ion-transfer between the electrode surface and the electrolyte depend on the pore size and
the surface area. The analysis results revealed that the specific surface area and pore size
were higher for Li-YP80F than for the other two samples, which strongly improved the
electrochemical performance.

The use of Li-YP80F, a material with a high surface area, as a working electrode allows
for more charge exchange and, on the other hand, allows more electrons to accumulate
over a given period of time and conduct more current. The charge exchange happens
at a fixed rate per unit area at the surface of the electrode. Also, the numerous acidic
functional groups of Li-YP80F enabled it to maintain the permeability of the electrolyte and
reduce the resistivity between the electrolyte and working electrode. In the CV graph, the
peak separation is dependent on the electron transfer kinetics and conductivity of the base
aqueous electrolyte. In addition, the high conductivity of the as-prepared KOH electrolyte
influenced the performance of the working electrode [31]. Specifically, the electron transfer
of the working electrode was high when the working electrode was dipped in electrolyte.
The conductivity of the base-electrolyte is conditional-on the smaller ionic hydrated-radius
and rapid-motility of OH− [32–34]. In addition, the CV graph profile was changed due
to the carbon material of the base substrate, for example, the oxidation peak-current state
changed from 0.0055 mA/cm2 to the current density state to 0.0035 mA/cm2. In addition,
the Cu plate collector has a conductivity of 0.6 S/cm and it can support the activity of the
base sample. The specific capacitance, area of the integration, energy density (Wh/kg) at
given powder density (kW/kg) are important factors which define the performance of the
working electrode. Aforementioned mentioned all factors were calculated by following the
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below Equations (1)–(7). All calculated results are summarized in Table 3. The calculation
of specific capacitance needs to summarize some units, such as charge, capacitance.

charge =
integrated area o f CV

2xScan rate
(1)

capacitance =
charge

potential window
(2)

speci f ic capacitance =
capacitance

mass o f active material
(3)

Combined equation was the Cp =
A

2mk (V2 −V1)
(4)

where Cp is the specific capacitance in F/g. A is the area inside the CV curve having
units AV, m is the mass of active material, k is the scan rate of CV in volts per second and
(V2 − V1) is the potential window of CV.

The calculation of energy density (Wh/kg) and powder density (W/g).

C =
i × t

m× ∆U
(5)

dE
(

Wh
kg

)
= 0.5× C× (∆U)2 (6)

dP
(

kW
kg

)
=

(
dE

1000

)
÷

(
t

3600

)
= 3.6× dE

t
(7)

where C is the capacitance, ∆U is potential window, t is discharge time, the factor 3.6 is
used as correcting the unit form gram and second into kilogram and hour.

The electrochemical stability of cathode materials was tested by 100 recycling tests. The
peak-to-peak separation and high redox peaks appeared in the Cu-foil used three electrode
system. After 100 recycling tests, peak current drop decreased the peak profile became
stable. The electrochemical stability of cathode materials was tested by 100 recycling tests,
as shown in Figure 10. The Cu-current collector of the working electrode was corroded,
and the surface of the electrode did not change after the electrochemical test. In the case of
nickel foil, there is no corrosion process appeared and the current peak did not significantly
change. The corrosion process can be happened due to the electrolyte and concentration.

Figure 11 shows the current value of the working electrode (vs. Ag/AgCl) according
to time-condition in 5% KOH electrolyte. The current of the working electrode was high
in the first cycle and decreased to a certain extent after 10 cycles. The profile of Li-YP80F
had a uniform structure and this result confirmed that Li-YP80F sample had more stable
structure and the working performance.

Figure 12 shows the CA analysis result of the bare-carbon material and modified
Li-HSAC. The fundamental technique of the CA is to analyze the potential and capacity
of the working electrode according to time, as is done in the GCD method. The analysis
revealed a high current on Li-YP80F, which confirmed that the material had a high work
capacity and was suitable for the cathode electrode in a half-cell. The flat band potential of
Li-YP50F, Li-YP80F and graphite was analyzed by the Mott–Schottky method. Depending
on the potential of the flat strip, the material type can be defined as n or p-type. As shown in
Figure 13, the flat band potentials of the nanocomposite were 0.009 V, 0.074 V and −0.095 V,
respectively. The Mott–Schottky slope graph shows that the Li-YP50F and Li-graphite are
p-materials and the Li-YP80F is an n-type material.

Figure 14 shows a schematic illustration of the Li-HSAC surface state and electro-
chemical analysis. The graphite had a layered-like structure with a hexagonal arrangement
of carbon atoms, which provides sufficient area for locating the oxidizing agents. The
Li-YP50F and Li-YP80F materials have different porous structures, and oxidizing agents
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can accumulate in the pores. The pore structure of Li-YP80F and Li-YP50F was sufficient
for electrolyte-ion conduction and distribution, due to the hydrophilic properties and the
high area of material interaction. These results confirmed that the Li-YP80F electrode had
high capability and electrochemical property. The structure of the oxidizing agent can
improve the interfacial area of the electrolyte and working electrode surface. Furthermore,
the high pore size distribution of Li-YP80F afforded it with high ion-transfer performance.
These electrochemical results confirmed that oxidizing agent treatment with calcination
can enhance the performance of the high surface area of carbon materials. In addition, the
values of the surface functional groups were higher than the purpose of this study, which
demonstrated that our LiOH treatment experiments provided a sufficient number of acidic
functional groups on the surface of carbon materials and reduced the basic-functional
groups. Depending on the ratio of the acidic and basic groups, the electrolyte impregnation
on the electrode surface and interface resistance can be reduced. Furthermore, our men-
tioned method and characterization proved that oxidizing agent (LiOH) treatment with a
heating process can ameliorated the cathode electrode performance.
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OH-YP50F with Cu-foil; (d) LiOH-YP80F with Ni-foil; (e) LiOH-Graphite with Cu-foil; (f) Li-
OH-Graphite with Ni-foil. 
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Figure 10. Cyclic voltammetry (CV) test (current collector—Cu foil and Ni foil and 5% KOH elec-
trolyte) under 100 cycles. (a) LiOH-YP80F with Cu-foil; (b) LiOH-YP80F with Ni-foil; (c) LiOH-YP50F
with Cu-foil; (d) LiOH-YP80F with Ni-foil; (e) LiOH-Graphite with Cu-foil; (f) LiOH-Graphite
with Ni-foil.

Recently, various activated carbon-based electrode materials have been used for
electrochemical analysis, and the research has suggested the properties of surface area,
pore size, and surface chemistry. These properties strongly influence the electrode capacity
and charging/discharging performance used in the long-term cycle analysis [35–37]. The
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micro-sized pore and low specific surface area strongly affect the interaction site and block
the ion-transmittance. In conclusion, the pore volume and surface area were significantly
reduced on the HSAC after the LiOH treatment with the thermal process. However, the
high total surface area of Li-YP80F enhanced the inter-facial site and reaction field between
the electrolyte and electrode. The number of the acidic functional groups is greater than the
target value, which supports the process of electrolyte ion transfer and diffusion through
the micro-sized pores. The wettability condition of the electrode surface and low resistance
with high charge transfer depend on the acidic functional group of the high surface area of
activated carbon. These aforementioned factors combined to synergistically upgrade the
electrochemical activity of the Li-HSAC nanomaterial.
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Figure 11. Stability test of LiOH-treated YP80F, YP50F and graphite (Cu-foil and Ni-foil current 
collector and 5% KOH electrolyte). (a) LiOH-YP80F with Cu-foil; (b) LiOH-YP80F with Ni-foil; (c) 
LiOH-YP50F with Cu-foil; (d) LiOH-YP50F with Ni-foil; (e) LiOH-Graphite with Cu-foil; (f) Li-
OH-Graphite with Ni-foil. 

Figure 12 shows the CA analysis result of the bare-carbon material and modified 
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of the working electrode according to time, as is done in the GCD method. The analysis 
revealed a high current on Li-YP80F, which confirmed that the material had a high work 

Figure 11. Stability test of LiOH-treated YP80F, YP50F and graphite (Cu-foil and Ni-foil current
collector and 5% KOH electrolyte). (a) LiOH-YP80F with Cu-foil; (b) LiOH-YP80F with Ni-foil;
(c) LiOH-YP50F with Cu-foil; (d) LiOH-YP50F with Ni-foil; (e) LiOH-Graphite with Cu-foil; (f) LiOH-
Graphite with Ni-foil.
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3. Materials and Methods
3.1. Chemical Reagents

The YP50F and YP80F activated carbons were purchased from Kuraray (Tokyo, Japan).
And the natural graphite was used in this experiment. The HSAC material was prepared by
ball-milling at 350 rpm for 10 h. Lithium hydroxide (LiOH, 98%), sodium hydroxide (NaOH,
97%), sodium carbonate (Na2CO3, 99.9%), sodium bicarbonate (NaHCO3, 99.7%) and
hydrochloric acid (HCl, 36 wt%) were purchased from Sigma Aldrich (Munich, Germany).
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Potassium hydroxide (KOH, 98%) were purchased from Samchun Pure Chemical Co., LTD
(Gyeonggi-do, Korea).

3.2. Preparation of Hydrophilic Carbon

Into a prepared LiOH solution (250 mL) was added 20 g of raw HSAC material. The
mix was stirred continuously for 5 h in room condition and then dried at 100 ◦C in an oven
to form a powder. The LiOH-treated carbon samples were calcined at 600 ◦C for 2 h in
the furnace to purify them and revamp their surface-state. All prepared high-surface-area
carbon was grouped into one group, Li-HSAC.

3.3. Characterization

The crystal phases of the samples samples were examined between 20 = 10 to 70
at a scan rate of 1 min−1 using an X-ray diffraction instrument (SHIMADZU XRD-6000,
Nakagyo, Kyoto, Japan) equipped with a Cu Ka X-ray source (1.5406 Å). The surface mor-
phology state of the sample was analyzed by scanning electron microscopy with energy
dispersive X-ray spectroscopy (SEM-EDX; JSM-5600 JEOL, Akishima, Tokyo, Japan). The
pore volume and surface area were evaluated by the Barrett–Joyner–Halenda (BJH) and
Brunauer–Emmett–Teller (BET) methods, respectively, and the whole experiment was
conducted on a Micro Active for ASAP 2460 (Norcross, GA 30093, USA). The functional
group and chemical bonds were analyzed by using a Fourier-transform infrared spec-
trometer (FTIR iS5, Thermoscience, Waltham, MA, USA), and the spectral resolution was
3.8 cm–1 background scanning speed and sample scanning speed are 20 scans, respectively.
A Raman spectroscopy was performed using a Confocal-Raman imaging system with a
532.13 nm excitation laser (Renishaw in Via Reflex, NRS-5100, Easton, MD 21601, USA).

3.4. Boehm Titration

The surface functional groups of the Li-HSAC nanocomposites were analyzed by a
Boehm titration method. A certain mass of sample was added to 0.05M of three different
sodium-based solutions (NaOH, NaHCO3, Na2CO3). The mixture was shaken for 24 h at
room temperature. The aliquot was withdrawn by a syringe centrifuge tube and rapidly
rotated the sample (10,000 ppm/15 min), and 10 mL solution was taken by pipette and
acidified by adding 0.05 M of HCl solution. In detail, 0.05M of 20 mL HCl was added
into 10 mL of NaOH solution, 30 mL 0.05M of HCl was mixed with Na2CO3 aliquot and
20 mL HCl solution was added to the NaHCO3 aliquot solution. A 2/3 drop of 0.5%
phenolphthalein indicator solution was added into each solutions and centrifuged for 1

4 h.
In the following back-titration process, 0.05 M NaOH solution was put-in slowly into the
acid-treated mix until the color of the solution turned pink. The titration processes were
carried out under ambient temperature conditions. The acidic groups were quantified by
Equations (8) and (9) [18]:

[HCl]VHCl = [NaOH]VNaOH +

(
ηHCl
ηB

[B]VB − ηCSF

)
Va

VB
(8)

ηCSF =
ηHCl
ηB

[B]VB − ([HCl]VHCl − [NaOH]VNaOH)
Vb
Va

(9)

where [B] and VB are the concentration and volume of the reaction base mixed with the
carbon, providing the number of moles of reaction base that was available to the carbon
surface for reaction with the surface functionalities. ηCSF denotes the moles of carbon
surface functionalities on the surface of the carbon that reacted with the base during the
mixing step. Va is the volume of the aliquot taken from the VB, and [HCl] and VHCl are the
concentration and volume of the acid added to the aliquot taken from the original sample.
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3.5. Cyclic Voltammetry (CV) Test

The electro-chemical properties of the sample were examined by a cyclic voltammetry
(CV) test. The analysis was conducted on a PGP201 Potentiastat (A41A009) by using a
three-electrode system. The CV test was recorded with a 100 mV·s−1 scan rate for 10 cycles.
The applied potential range was from (−300 mV) to (200 mV) and the current value range
was (1 A) to (−1 A). A platinum wire and Ag/AgCl were used as a counter and reference
electrode. Li-HSAC material as the working electrode. The working electrode was prepared
by following a “Doctor blade” method. Ethyl cellulose was used as a binding material and
mixed with Li-HSAC in a 1:3 ratio. Then, a few drops of pure ethanol were added, and the
resulting mixture was ground and used to veneer the copper foil-top. The size of the copper
foil and nickel foil is 2 × 2 cm2. The Cu-foil current collector enhanced the capacity of the
sample; this is due to the conductivity of copper being about 0.6 S/cm. The uniformity and
thickness were metered by adjusting gap between the blade and the substrate. The main
principal process of doctor-blading uses a frame with a reservoir coating liquid which is
moving relatively to the substrate. When a constant movement between the blade and
substrate, the semiliquid mixture spread onto the substrate to make a thin thin-sheet and
after drying process it can turn into a gel-layer.

The typical three-electrode assembly was immersed in 5% KOH supporting electrolyte
solutions. KOH is a basic electrolytes and it has been the most extensively used because of
its high ionic conductivity and it can support the cyclic stability of the working electrode.

4. Conclusions

In summary, the working electrode was prepared by a doctor blade method using a
LiOH-treated activated carbon with high surface area. The effect of this modification was
analyzed by XRD, Raman, SEM-EDX, BET and BJH methods. From the results of material
structure analysis, we attributed the unique structure of this material to the connection
between an alkali metal and the high surface area of the activated carbon. The surface
functional group was analyzed by a Boehm titration-method, which confirmed that the
alkali metal-treated carbon material had numerous acidic groups above the target value.
The acidic functional group of Li-HSAC enhanced the electrolyte ion-migration through the
micro-sized pore structure. The evaluation of the electrochemical properties of Li-HSAC
demonstrated that the high electrochemical properties were attributable to the total specific
surface area, pore-size distribution, wettability condition and surface modification with an
oxidizing agent (LiOH).
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