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ABSTRACT: In the next half-century, physical chemistry will
likely undergo a profound transformation, driven predominantly by
the combination of recent advances in quantum chemistry and
machine learning (ML). Specifically, equivariant neural network
potentials (NNPs) are a breakthrough new tool that are already
enabling us to simulate systems at the molecular scale with
unprecedented accuracy and speed, relying on nothing but
fundamental physical laws. The continued development of this
approach will realize Paul Dirac’s 80-year-old vision of using
quantum mechanics to unify physics with chemistry and providing
invaluable tools for understanding materials science, biology, earth
sciences, and beyond. The era of highly accurate and efficient first-
principles molecular simulations will provide a wealth of training
data that can be used to build automated computational methodologies, using tools such as diffusion models, for the design and
optimization of systems at the molecular scale. Large language models (LLMs) will also evolve into increasingly indispensable tools
for literature review, coding, idea generation, and scientific writing.
KEYWORDS: Molecular simulation, molecular dynamics, machine learning, artificial intelligence, coarse-graining, large language models,
diffusion models

■ INTRODUCTION
Over the last year, a surge of excitement has arisen around the
potentially transformative role of machine learning (ML) or
artificial intelligence in many areas of technology, science, and
society. This has been driven by the remarkable performance of
large language models (LLMs)1 and image generation diffusion
models.2

Given the excitement around these technologies, there is a
natural tendency to either assume they will profoundly
transform every field or dismiss them as “overhyped”.

A better approach is to be excited about the potential of these
technologies while also thinking through as carefully as possible
the potential obstructions that may arise to limit their potential,
with the goal of identifying the most promising approaches and
applications where they are likely to be most useful.

While the recent excitement around LLMs and diffusion
models is justified, the potential for ML in science has long been
recognized. A pioneering example is the demonstration in 2007
by Behler and Parrinello3 that neural network potentials
(NNPs), originally developed in the 1990s,4,5 could be used
to massively accelerate the simulation of liquids by learning the
underlying potential energy surface from quantum chemistry
calculations.

More recently, AlphaFold2 (AF2)6,7 has dramatically
demonstrated the ability of ML to predict the structure of
folded proteins with remarkable accuracy.

In this article, I argue that neural network potentials, AF2,
diffusion models, and even LLMs to some extent can all be
understood as examples of one fundamental idea: learning and
sampling from an underlying energy surface. The recursive
application of this fundamental idea will have profound
implications for physical chemistry and beyond over the next
half-century.

■ DIRAC’S DREAM
Using quantum mechanics to predictively understand biology
and chemistry has been a dream of physicists for nearly a century
since Paul Dirac’s famous statement:
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The underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations that are
much too complicated to be soluble. It therefore becomes
desirable that approximate practical methods of applying
quantum mechanics should be developed, which can lead to
an explanation of the main features of complex atomic
systems without too much computation.8

Physical chemistry is the natural discipline to home this
dream, and much progress has been made on making it a reality.
For example, accurate quantum chemistry algorithms, such as
density functional theory (DFT)9 and coupled-cluster (CC)
with single, double, and perturbative triple excitations (CCSD-
(T)),10 and advanced simulation techniques have made it
possible to build highly accurate models of water11 and resolve
challenging scientific questions12 starting from nothing but
Schrödinger’s equation. This pioneering work convincingly
demonstrates the feasibility of achieving Dirac’s dream. Now the
key scientific challenge becomes making this procedure efficient,
automated, generalizable, and scalable. This is a task perfectly
suited to ML. Achieving this dream, depicted in Figure 1, would

be truly transformative, enabling the predictive understanding of
the properties of a vast range of critically important systems
throughout materials science, chemistry, biology, and beyond.

■ NEURAL NETWORK POTENTIALS
The most promising tool for doing this is neural network
potentials (NNPs), which are a class of machine learning
interatomic potentials (MLIPs). These tools are rapidly gaining
importance and recognition due to their flexibility and
efficacy.13−18

The concept of NNPs is straightforward yet innovative.
Instead of relying on traditional methods, such as specifying
Lennard-Jones potentials and bonded terms, to define the
potential energy surface (PES) as a function of atomic type and
coordinates, NNPs employ more adaptable functions with a

larger set of parameters. These parameters are optimized using
machine learning algorithms facilitated by automatic differ-
entiation. To avoid the need for large experimental data sets,
these models are trained on data from quantum chemistry,
predominantly at the DFT level, though increasingly higher
levels of theory are being utilized.19 Traditional molecular
dynamics (MD) algorithms can then be used to simulate the
direct physical behaviors of gases, liquids, and solids using the
trained NNPs.

While NNPs have been under development for some time,14

recent advancements in ML have significantly enhanced their
practical utility. One such critical advancement is the
incorporation of equivariance, which encodes the spatial
symmetries of 3D space into the neural network.20−23 This
feature, also pivotal in the success of AlphaFold2,24 ensures that
the neural network’s features rotate in accordance with the
rotations of the input coordinates, significantly enhancing model
accuracy and reliability. A recent review provides a compre-
hensive and clear explanation.25

The success of equivariant models is very intuitive, as they use
a natural extension of the traditional concepts of intermolecular
modeling. More specifically, they use tensors to describe the
atomic properties and tensor products for modeling the
interactions. This approach mirrors the long-standing practice
in physics, where molecular interactions have been described
using the multipole expansion, i.e., using monopoles, dipoles,
and quadrupoles, which are tensors, interacting via tensor
products.

Additional exciting tools such as active and delta learning as
well as improved quantum chemistry algorithms have also
significantly improved the generalizability and usefulness of
NNPs.26 An additional avenue is the development of foundation
models, where increasingly larger and more diverse/general
training data sets are used to improve a model’s general-
izability.27−30

These more recent improvements have stepped up NNPs
from being an occasionally useful tool to a potentially
transformative one. As some recent perspective articles state,
this field is undergoing “remarkable/breathtaking progress,”
achieving results that would be “unimaginable with conventional
methods.”31,32

The potential of neural network potentials is that they are a
tool that provides access to a new spatial and temporal scale that
has not yet been observed accurately. Such tool-driven
revolutions are a recurring process in the history of science
and are inevitably followed by a string of rapid and surprising
discoveries. The telescope, the microscope, and the particle
collider are famous examples. I believe that NNPs have the
potential to approach a comparable level of significance. Initial
examples of this are already beginning to emerge. For instance,
important new insights into catalysis at high temperatures have
already been discovered using NNP-MD simulations.33 Addi-
tionally, NNP-MD is apparently now the state of the art for
protein−ligand binding affinity predictions.34

■ BREAKING THE ACCURACY−EFFICIENCY
TRADE-OFF

The promise of NNPs lies in their potential to transcend the
long-standing trade-off between accuracy and efficiency in
simulations. Specifically, they offer the possibility of achieving
quantum mechanics (QM)-level accuracy at the computational
cost of classical MD. This breakthrough implies that this
technique will become increasingly prevalent.

Figure 1. DALL-E’s depiction of the potential of neural network
potentials.
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An important recent advance on this front has been the
development of density corrected DFT methods,9,35 where the
computation of the energy and electron density are separated to
achieve a better balance of accuracy. These methods have been
demonstrated to provide an improved description of aqueous
solutions35−39 while maintaining affordable computational
requirements. They are therefore well-suited to providing
training data for NNPs. We have recently shown that accurate
and efficient prediction of key electrolyte solution properties is
possible by combining this method with an equivariant
NNP.40,41

■ REMAINING CHALLENGES
Although rapid progress is being made, several challenges
remain toward fully realizing the potential of NNPs. One
example accounts for long-range interactions. These are known
to play an important role in many liquid phase phenomena.42,43

Multiple promising solutions are being explored.44−52 Another
is the generation of sufficiently diverse training data sets, where
active learning plays a crucial role. In active learning, the
uncertainty within the model’s predictions is monitored, and
data points with higher uncertainty are added to the training set
to enhance its accuracy.53−55 The use of structural databases
generated at lower levels of theory is another promising
option.17,56

The accuracy of the underlying quantum chemical method
used to generate the training data is also an issue, but there is
significant exciting progress on this front too, as discussed below.

Speed and scalability also present significant hurdles.
Equivariant NNPs, while powerful, tend to be slower than
classical MD and standard MLIPs. Although they can handle
large systems,57,58 this requires substantial computational
resources. One solution is using equivariant NNPs to generate
data for training faster non-equivariant architectures. There are
many promising architectures from the more general family of
MLIPs such as permutation invariant polynomials (PIPs) and
Gaussian approximation potentials (GAPs), which generally
appear to have similar performance to standard Behler−
Parrinello-type NNPs and may be able to provide speed
advantages.59,60 Data augmentation may be able to avoid the
need for equivariant models as well.61 Another possibility is
optimizing classical MD potentials against quantum data using
automatic differentiation62 or algorithmic improvements.63,64

■ RECURSIVE COARSE-GRAINING
Despite the promise of current approaches to improving speed,
there are inherent limitations to any simulation that attempts to
keep track of the position and motion of every single atom in a
system. A more transformative solution lies in coarse-graining,
which involves focusing on only the essential degrees of freedom
of a system while neglecting the others. This is the essence of
physical modeling at all scales. For example, in modeling a
macroscopic object, only the center of mass of each atom is
considered. The core motivation is that most of the system’s
information is often irrelevant for predicting its properties.

In physical chemistry, details such as the exact positions of
every solvent molecule are usually not critical for understanding
the properties of interest. Thus, continuum or implicit solvent
models are used, which are a form of coarse-graining. Currently,
these models are developed in a somewhat empirical manner,
and a systematic and rigorous approach is needed. ML, with its
fundamental focus on finding lower-dimensional representa-

tions of high-dimensional data sets, offers an excellent set of
tools to address this challenge.65−68

Remarkably, it is precisely the same technique that provides
one possible solution: equivariant neural network potentials, as
has recently been demonstrated.41,69−71 It is not surprising in
retrospect that these tools are suitable for this task. The goal of
coarse-graining is to find the potential of mean force (PMF) for a
reduced set of degrees of freedom. This is just an energy surface,
technically a free energy, and so this is a task well-suited for
NNPs. Here NNPs have the key advantage over fitting a classical
force field, as the free energy surfaces modeled by NNPs can
capture a more complex-shaped landscape than the typical
bonded or Lennard-Jones interactions used in a classical force
field. In fact, fitting an NNP to the full PES is a form of coarse-
graining itself. It is just the electronic positions that are the
degrees of freedom that are being coarse-grained out. Protein
folding models such as AF2 and RFdiffusion can actually be
interpreted as an NNP that learns a coarse-grained free energy,
as discussed below.

So the promising conclusion of this is that all atom equivariant
NNPs trained on QM data can be used to recursively train
coarse-grained NNPs.41 This could enable large-scale biological
simulations starting solely from first principles. This process,
illustrated in Figure 2, may have a transformative impact on

biology and materials science if the remaining challenges can be
overcome and may eventually supplant tools like AlphaFold2.
We have demonstrated the feasibility of this process of
recursively training a coarse-grained equivariant NNP on its
own output in a recent preprint for simple electrolyte
solutions.41

Currently, coarse-graining with an NNP is applied to
relatively small-scale classical systems, such as simplifying
water to a single site72 or for proteins.67,69,70,73 However, they
could potentially be iteratively applied to increasingly larger
scales, perhaps one day encompassing complexes of multiple
proteins, cell membranes, etc.

While the core principle of automatically creating reduced-
dimensional representations will likely remain constant,
advancements may be required in determining which features
to retain at a higher resolution, like binding sites, and which to
coarse-grain; here again, ML will be a critical tool.74

This methodology may even be a general solution to the long-
standing and central challenge of molecular simulation, which is
how to connect scales, i.e., how to use information from the
molecular scale to inform and understand meso- and macro-
scopic-scale phenomena. It is also possible to reproduce fine-
grained representation from the coarse-grained one.75

One importance caveat is that coarse-graining does distort the
underlying dynamics, but solutions to this problem are being
developed.76,77

Figure 2. Depiction of a method of connecting the microscopic scale to
the macroscopic scale via the recursive application of equivariant neural
network potentials.
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■ SIMULATING LARGE-SCALE FROM THE
MOLECULAR SCALE

The goal of this methodology is both ambitious and thrilling. It
opens the possibility of simulating large-scale complex systems
starting solely from Schrödinger’s equation. We can envisage a
future where, through a simple web interface, we input a system
of atoms and obtain a highly accurate depiction of their behavior
at any desired scale. This would be a more general version of the
way AF2 now enables the rapid prediction of the folded
structure of a protein with a simple web interface.

Such a tool would be transformative for many areas of science.
For a great many scientific problems, the scales at which the
most critical and interesting processes occur are too small to
observe experimentally either with direct microscopy or with
more indirect methods, such as spectroscopy or X-ray
diffraction. As a result, we are often left to rely on guess work,
intuition, and indirect evidence to infer what is actually
happening on the molecular scale. In other words, when it
comes to the molecular scale, we are essentially operating in the
dark. Accurate and efficient molecular-scale simulations could
act as a computational microscope, shedding light on this
critically important scale and opening a wealth of new otherwise
hidden information by enabling us to simply directly observe the
key phenomena that occur at this scale. The application areas
span most of biology and much of chemical engineering, such as
catalysis and electrochemical energy storage.

Additionally, we can use these simulations in combination
with statistical mechanics to calculate key experimental
properties. For example, free energies or activities can be
directly estimated from molecular-scale simulations using tools
such as the Kirkwood−Buff theory. Additionally, diffusivities
and other kinetic properties can also be determined. These
values can then be fed as parameters into simulations of larger-
scale systems, where these parameters are a key source of
uncertainty. For example, the activity of ions in solution is a key
challenge for predicting solubilities and chemical equilibria.
Similarly, climate simulations are currently limited by the lack of
information about molecular-scale processes, such as the
stability and formation of aerosols. Molecular simulation models
that can quickly predict the distribution of aerosol particles
could be connected to larger-scale climate simulation models to
improve their reliability. These tools therefore have the potential
to have an impact on many different areas of science across many
different scales of phenomena wherever physical-based model-
ing is important. Additionally, in combination with automated
coarse-grained systems, these can potentially be scaled to
simulate systems of ever-increasing size by selectively ignoring
aspects of the system that are not considered practically
important.

■ QUANTUM CHEMISTRY ACCURACY
A critical limitation of NNPs is the current accuracy of methods
for solving Schrödinger’s equation to generate data for training
NNPs. However, the field of quantum chemistry is witnessing
substantial progress with exciting developments like density
corrected DFT,35 ensemble DFT,78 DLPNO−CCSD(T),79

large-scale random phase approximation (RPA),80 and the
density matrix renormalization group.81 These innovations
promise more precise descriptions of molecular-scale systems.
Additionally, ML algorithms could also have potentially
important applications here by using neural network ansatzes

for wave function representation, for example,82 or for reducing
the cost of traditional methods.83,84

While DFT functional accuracy is still an issue, a key
advantage is that for a great many systems of practical interest,
methods such as CCSD(T) can generate very high-quality data
on small systems. This means that DFT functionals can be
carefully validated and fine-tuned for specific tasks. This means
that the problem of DFT functional accuracy is for many cases
mainly a practical problem rather than a fundamental scientific
challenge. Exciting new tools for automated development of new
DFT functionals trained on data from higher-quality quantum
chemistry methods is another promising recent development.85

However, for some materials, we still lack good benchmark
methods. For example, highly multireference states, where
fundamental new tools are required. Multireference methods
such as complete active space self-consistent field (CASSCF)
can be used, but they come with their own set of challenges and
limitations, particularly in terms of computational cost and
complexity.

■ COMPUTATIONAL HARDWARE
Another potential avenue for advancement lies in the develop-
ment of new, powerful hardware specifically designed for
molecular simulation and quantum chemistry calculations.
While quantum computers are often cited in this context, it is
debatable whether using qubits will provide a practically relevant
quantum chemistry acceleration.86,87 Other burgeoning tech-
nologies, such as thermodynamic computing, may prove useful
instead. Additionally, the ongoing rapid development of new
computational hardware for general computing and ML, such as
large-memory graphics processing units (GPUs), should be
sufficient to provide significant improvements in quantum
chemistry and molecular simulation using existing algorithms.

The development of new computing architectures relies on
components that are becoming increasingly small and will
continue to approach the molecular scale. The design of these
components could potentially be significantly advanced through
highly accurate molecular simulations, which could be used to
predict and optimize important properties such as heat
generation, etc. Improvements in molecular simulation enabled
by NNPs could therefore lead to a feedback process in which
they enable improvements in computing.

■ DIFFUSION MODELS
Accurate molecular simulation is a powerful tool for under-
standing and predicting the properties of various systems.
However, when it comes to generating and designing new
systems, an additional new tool from ML is increasingly coming
into play: diffusion models. These models, though initially
complex to grasp, especially as often presented, are fundamen-
tally about learning a generalized version of a potential energy
surface.

To conceptualize diffusion models from a physical point of
view, consider the pixel values to represent atomic coordinates.
Then, just as certain coordinates have a high probability of being
observed in an equilibrium simulation, certain pixel values have a
high probability of having certain properties, i.e., being a face.

To generate these high-probability coordinates/pixel values,
we evolve the coordinates/pixel values according to equations of
motion with a force field, which is learned from the data via a
denoising process. In fact, a diffusion model can be trained on
molecular coordinates from an equilibrium distribution, which,
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in turn, reproduces the true underlying force field responsible for
that distribution.88 Diffusion models then can be considered
again as a special case of an NNP, where they are learning a
coarse-grained free energy surface. An intriguing aspect of these
models is that they can include “forces” for properties other than
positions, such as atomic numbers, allowing them to sample
from a variety of atomic types. This flexibility enables targeted
sampling from specific regions of the probability distribution,
akin to biasing MD simulations toward areas of the phase space
of particular interest.89,90 Technically a time-dependent force is
used to improve the convergence of the sampling, but this is a
technicality.

This methodology is increasingly promising for the
generation and design of new materials and molecules. It is
already proving capable of protein design, leveraging databases
like the Protein Data Bank (PDB) to identify new specific folded
protein structures.89

■ ALPHAFOLD2
One potential challenge to the importance of NNPs is AF2. AF2
represents a significant breakthrough in protein structure
prediction. Its capability allows anyone to predict the atomically
resolved structure of a protein, with accuracy now comparable to
that obtained from nuclear magnetic resonance (NMR)
techniques,91 marking a paradigm shift in structural biology.
While this is not traditionally considered a core problem of
physical chemistry, there are many closely related problems, i.e.,
predicting the atomic structure of a chemical system in
thermodynamic equilibrium. Most significantly, AF2 does not
explicitly rely on physical notions of energy and MD. An
intriguing question then arises as to whether this approach could
be used to revolutionize biology and chemistry without the need
for physics-based modeling.

This is highly unlikely, in my opinion. The key to AF2’s
success is the extensive, high-quality Protein Data Bank
(PDB).92 This immediately highlights a challenge to generaliz-
ing this approach. The PDB contains high-quality atomic
structures of over 100 000 proteins with each one taking
significant investment to obtain. This took many decades to
build. There are vanishingly few problems of practical scientific
interest, especially in physical chemistry, where these kinds of
extremely large, high-quality databases exist. This becomes
evident as soon as we leave the region of AF2’s success.

For instance, AF2 cannot predict the folding pathway or
kinetics of a protein due to its reliance on the static folded
structures found in the database.93 Furthermore, the database
lacks information on the distributions of many ions near the
protein surfaces, limiting AF2’s ability to predict properties
influenced by electrolyte concentrations, such as protein
agglomeration, ion conductivities, etc.

Additionally, AF2 has a deep conceptual relationship to
NNPs. It has been demonstrated that AF2 can be interpreted as
using a learned energy landscape to optimize the protein
structure;94 the main difference is that AF2 is trained on
experimental obtained structures rather than quantum chemical
data, but experimental structures still contain important
information about the energy landscape: they must lie on its
minima. As AF2 uses gradient descent to optimize the protein
structures, it must have learned an energy landscape with the
same energy minima as the true protein energy landscape. The
true protein energy landscape can be rigorously described as the
coarse-grained free energy surface where the solvent degrees of
freedom have been integrated (or marginalized) out. This

energy surface may look quite different from the true free energy
surface far from a minimum, but this is not an issue for obtaining
minimum energy structures, although it is for dynamic
information.

For diffusion models trained on the PDB, the connection is
even clearer. The score learned by the model is equivalent to the
gradient of a coarse-grained free energy. If one could train the
diffusion model on the true equilibrium distribution of states
occupied by the protein, then one would learn the true coarse-
grained free energy. The use of PDB training data means that
one is effectively training on coordinates extracted at 0 K; so the
off-equilibrium distribution will be wrong, but it will still have
the correct minima. In fact, Langevin dynamics are used in
diffusion models, which is a common algorithm to perform
molecular simulations. Thus, something like RFdiffusion89 is
actually a coarse-grained MD simulation just on an approx-
imation of the true coarse-grained free energy surface.

■ THE ONLY ALTERNATIVE?
The dependence of AF2 on extensive high-quality experimental
data sets indicates that the same strategy will not work for
predicting a broader range of important phenomena. This
situation has a parallel to the development of AlphaGo, an ML
algorithm that can play the board game Go, which was trained
on data from human games accumulated over many decades. To
improve the performance beyond what was learnable from
human games, AlphaZero was developed, which does not
require any human-generated training data and learns through
self-play based only on the rules of the game.95 Similar recent
breakthroughs in mathematical problem solving use a similar
strategy.96

A natural question then arises: can we use this same strategy
for solving scientific problems to avoid the need for large, hand-
curated experimental databases? Doing so would require one to
know the fundamental rules of the game that nature obeys. Of
course, this is exactly what quantum mechanics is. It can in
principle predict the behavior of all biological and chemical
systems as captured by Dirac’s dream. NNPs are therefore the
best option for using ML to have a broad and significant impact
on physical chemistry and beyond.

■ ROBOTICS AND SELF-DRIVING LABORATORIES
Laboratories will also become increasingly automated as
robotics continues to improve, reducing the need for humans
in the loop experimentation and enabling automated active
learning feedback where errors in computational methods are
identified and rectified through iterative exploration of regions
of high uncertainty.

■ END-TO-END DIFFERENTIABILITY
Another critical advancement, which was also key to the success
of AF2, is the concept of end-to-end differentiability. Essentially,
this means that it should be possible to take derivatives of any
parameter used in modeling a system with respect to the final
loss function. This approach is exemplified by graph neural
networks, which many modern NNP architectures successfully
use. The idea is that rather than imposing arbitrary descriptors of
the atomic structure, a flexible and general function can be used
with many adjustable parameters that are then optimized using
stochastic gradient descent just as the other parameters in a
neural network are fitted.97
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End-to-end differentiability is also showing promise in
applications to simulations themselves where gradients can be
taken through simulations, allowing the automatic optimization
of parameters with respect to output properties of molecular
simulations. For example, this can be used to fit interatomic
potentials to experimentally obtainable structural data.98 It is
also an important component of modern generative models for
drug discovery.99 Finally, this idea is also being applied to DFT
functional development, where all of the key parameters used to
define a DFT functional are treated as differentiable parameters
that can be optimized with respect to some loss.85

■ LARGE LANGUAGE MODELS
An obvious impact of ML in physical chemistry is through large
language models (LLMs), e.g., ChatGPT, which have
dramatically expanded their capabilities recently. These models
can assist in various academic activities, including writing,
brainstorming, literature searches, education, and even language
translation for non-native English speakers. Their utility is
expected to increase as they become more accurate and less
prone to producing erroneous outputs (“hallucinations”).
Recent articles provide a detailed demonstration of the potential
of LLMs in chemistry more generally.1,100

LLMs will become increasingly integral to scientific meetings
and conferences, offering real-time notes, suggestions, and
relevant literature based on the extensive training data encoded
in their weights. They will play a crucial role in reviewing and
improving the scientific literature, making research more
accessible and efficient. Moreover, their capability in condensing
vast amounts of data will likely foster novel connections and
insights in research.

Furthermore, LLMs will be instrumental in programming,
aiding researchers with limited coding proficiency in translating
their ideas into executable code or converting code across
different programming languages. This will significantly enhance
scientific productivity and democratize computational tools,
making cutting-edge research accessible to a broader spectrum
of scientists.

LLMs will help automate the generation of MD trajectories
and the building and curation of large databases. LLMs will not
only suggest improvements for optimizing system performance
but may also autonomously manage simulations, drawing from
vast data sets to propose novel research directions.

There is also an intriguing connection between NNPs and
LLMs. LLMs use a Boltzmann distribution, via the softmax
activation function, to compute probabilities from the output of
the transformer during next word prediction. They can therefore
be interpreted as predicting an energy for each token in the
vocabulary as a function of the previous words in the sentence,
i.e., as a series of NNPs. While this is a more tenuous connection
than for diffusion models, it hints at the deep connections
between statistical mechanics and deep learning, which remain
to be fully uncovered.

■ LONGER TERM
As we look beyond the next decade, two potential trajectories
emerge. One radical possibility is that LLMs continue to
improve at the current exponential pace, potentially surpassing
human capabilities in 50 years, leading to a future dominated by
ML-driven science. Alternatively, these tools might reach a
plateau, maintaining their status as invaluable aids but still

leaving room for significant human contribution. This latter
scenario presents an intriguing landscape for future speculation.

The likelihood of LLMs reaching a developmental plateau
arises from three considerations. First, they are trained on
Internet text, which, while extensive, inherently limits their
capacity to generate novel knowledge. Second, the issue of
“hallucinations” or generating false information remains a
challenge. While scaling up models and refined training methods
(such as reinforcement learning from human feedback) may
mitigate this, this may be a more fundamental and challenging
problem to resolve. The third reason that LLMs might plateau in
performance may be the excessive energy demands of training
ever larger models. Here again, advances in materials science to
design new, more efficient forms of computing will be key, and
improved molecular simulation enabled by NNPs will be a
critically useful tool for this.

■ A MORE RADICAL FUTURE
One potential avenue to address the issues of hallucination and
generalizing beyond the training data is to enable LLMs to verify
or validate their generated knowledge. For example, in the area
of physical chemistry, this could be enabled by augmenting an
LLM by providing it access to molecular simulation tools such as
NNP-MD and quantum chemistry. It could then automatically
go about generating the necessary data and validating
hypotheses it has generated autonomously. The likelihood of
such a transformative leap in ML capabilities is extremely hard to
ascertain, but if it does happen and continues to grow
exponentially, it will be such a significant shift across all spheres
of human society that speculation is only of limited use. In my
personal view, while a temporary plateau in ML development
might persist for decades, it seems improbable that it will extend
for the next 50 years, and so I would expect at some point to
witness profound changes in the way science and society
operate.

This evolution raises profound and challenging questions
both scientifically and ethically. A particularly sobering prospect
is the potential redundancy of human involvement in scientific
discovery courtesy of highly efficient LLMs or their successors.
In such a scenario, the human role might be relegated to
determining the tasks we would like ML to solve rather than
engaging in direct scientific inquiry.

In the field of physical chemistry, many fundamental
questions bear immense practical significance. It might be
necessary to leverage ML’s capabilities to address these.
However, we could also consider one day preserving certain
areas within science as “ML-free zones”, allowing human
scientists to explore them independently. Alternatively, we
might use ML to develop technologies to enhance our quality of
life while deliberately avoiding full comprehension of their
workings to preserve a sense of purpose and discovery for
ourselves.

While the prospect of ML solving complex scientific problems
might initially seem disheartening, especially considering the
potential obsolescence of human-led research, it is important to
recognize the brighter side. In a world where ML resolves most
material challenges, we could exist in a state of near-universal
abundance. This shift might mitigate any disappointment
stemming from the reduced role of human discovery. Moreover,
even in such a world, humans could still find purpose in
understanding and replicating ML-derived solutions, thus
continuing the quest for knowledge and innovation.
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■ CONCLUSIONS
ML is poised to revolutionize physical chemistry, reshaping our
approach to solving many long-standing problems. A pivotal
advancement facilitated by ML combined with state-of-the-art
quantum chemistry is the ability to conduct molecular-scale
simulations with unprecedented accuracy and speed. While
there are still challenges to be overcome, this is already
beginning with equivariant neural network potentials (NNPs)
trained on extensive data sets derived from solutions of
Schrödinger’s equation. To access increasingly larger scales,
these models will be recursively trained to automatically
generate good coarse-grained descriptions, i.e., reduced
dimension representations, thereby solving the long-standing
challenge of connecting the microscopic and macroscopic scales
and dramatically widening the scope of applications where first-
principles physical simulation plays a critical role.

LLMs will improve efficiency and knowledge discovery. End-
to-end differentiable simulations will efficiently compute the
thermodynamic and kinetic properties of diverse systems.
Diffusion models will be used to automate the generation of
new potential candidate molecules and materials with particular
properties.

Eventually, upon finalizing a design, it will be synthesized in
automated laboratories, robotically produced, and dispatched
for testing and further optimization based on experimental data.
This vision heralds a new era in our understanding and
manipulation of chemical systems, offering boundless oppor-
tunities for discovery and innovation.

Finally, it is worth considering the possibility of continued
exponential advancements in ML. The implications of such a
development are challenging to predict, but they could
potentially reduce the field of physical chemistry to a discipline
where our primary role is to ask LLMs to teach us complex
concepts. The timeline for such a shift, whether it spans decades
or centuries, remains an intriguing and open question.
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