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ABSTRACT Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom
designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and,
given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry
Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for. 70 years in the United States and Canada, consisting
of 20–50 entries each year at 10–20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations
that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association
studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data
(1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and
genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power
to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects
on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop
ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover
significant genetic effects and to define genomic regions associated with crop improvement.
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Almost every crop improvement program assesses the
performance of promising germplasm and breeding

material via multienvironment trials (METs). The pheno-
typic data produced by these trials are extremely important

guides to growers, private seed companies, and public insti-
tutions involved in crop improvement, because combining
trial data from multiple years and locations increases the
probability of identifying genotypes that perform well, or
show especially desirable traits (Bowman 1998). Many co-
operative testing networks conduct METs to enable cooper-
ators and other interested parties to observe performance
over a wider range of environments than if they were only
tested locally (Annicchiarico 2002). This supports the iden-
tification of advanced lines with stable, high performance in
multiple production environments. Among many others,
crop testing networks that conduct METs include the U.S.
cooperative regional performance testing program, the Uni-
versity Crop Testing Alliance, and the Cooperative Dry Bean
Nursery (CDBN) (Singh 2000).
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Longstanding METs such as the CDBN have often focused
on breeding for crop ideotypes, in addition to breeding to
eliminate defects and to select for yield. Donald (1968) de-
fined a crop ideotype as an idealized plant with trait combi-
nations expected to produce a greater yield quantity or
quality. In contrast, approaches that eliminate defects or se-
lect for yield do not consider desirable combinations of traits;
thus, these approaches only produce desirable combinations
by chance. Selection for an ideotype involves selection for
correlated traits, and could lead to substantial pleiotropy,
where a single gene affects multiple traits. METs like the
CDBN, which were used to select for specific crop ideotypes,
could provide insight into the genetics of trait correlations in
crop genomes.

Though METs are often used to measure genetic gain over
time (Graybosch and Peterson 2010; Vandemark et al. 2014),
the vast majority of METs are designed to measure pheno-
typic responses to a broad set of targeted growing envi-
ronments. The experimental designs of METs can pose
substantial analytical challenges to additional, unplanned ge-
netic analyses. METs typically produce sparse data matrices
of phenotypes across germplasm entries, locations, and years
(Figure 1). The frequency of different germplasm entries may
vary as part of the normal selection process. Thus, entries
with good performance are often tested in more locations
and years than those with poor performance. With the excep-
tion of few standard checks, the set of genotypes tested each
year typically varies, with most genotypes tested in only 1 or
2 years. In addition, the total number of genotypes tested
each year can vary substantially, and this number is typically
too small for genome-wide association on any 1 year’s data
alone. Over the years, MET cooperators can also join or leave
the network, and add or drop MET sites or phenotypes due to
changes in research focus, personnel, or funding. All of these
variations make METs into large unbalanced data sets that
need to be handled properly for genetic work. Genetic anal-
yses of MET germplasm can also be hampered by the diffi-
culty of obtaining and genotyping previously evaluated
entries, particularly entries with poor trial performance that
were not tested further. This difficulty may bias or prevent
studies that require genetic diversity to explain phenotypic
variation, such as genome-wide association studies (GWAS).
In contrast, field experiments designed for genetic studies
assess complete, balanced designs, and produce data matri-
ces of phenotypes across genotypes and environments with
few or no missing cells. Ideally, the number of genotypes is
identical across all environments, and a minimum of a few hun-
dred genotypes are tested in each environment. Each geno-
type is also tested an equivalent number of times across sites
and years.

Despite these analytical issues, METs often produce de-
cades of phenotypic data,which gives them substantial appeal
for use in genetic analyses of phenotypic variation. Genetic
analyses of MET data sets have recently been implemented in
several crop species (Hamblin et al. 2010; Rife et al. 2018;
Sukumaran et al. 2018). Common bean has nutritional and

agronomic importance, a long history of METs, and many
emerging genomic tools, making it an outstanding species
in which to assess METs that might support the genetic anal-
ysis of phenotypic variation. Common bean is the most con-
sumed plant protein source worldwide and is a particularly
important source of protein in the developing world (Jones
1999). In North America, common bean improvement ef-
forts remain mostly in the public sector, and over the past
70 years, the CDBN has been a major testing platform for
these improvement efforts. The CDBN is the largest MET for
common bean in the United States and Canada (Myers
1988; Singh 2000), and CDBN cooperators have collected
phenotypic data on . 150 traits for hundreds of advanced
breeding lines and released cultivars (hereafter entries) of
common bean at. 70 locations (Figure 1), which produced
up to 18,000 recorded data points per trait (Figure 2A). The
traits are of economic and/or agronomic importance to bean
producers, and include seed yield, growth habit, seed size,
phenology, and disease responses, among others (Figure 2A,
Supplemental Material, Figure S1).

More than 500 CDBN entries have been grown since the
1980s (Figure 1). These entries include released cultivars
and unreleased advanced breeding lines, which represent
most bean types grown in North America. Entries include
. 13 market classes of common bean that group into three
major races from two independent domestication events
(Mamidi et al. 2011) (Figure 1). Therefore, the CDBN can
be used as a representative sample of the genetic diversity
being used by North American bean breeders in their pro-
grams throughout the last 70 years. However, phenotypic
data from the CDBN are sparse and unevenly distributed:
the average CDBN entry was grown at only 19 of the 70 lo-
cations and in 2 of the 34 years, with substantial variation in
these numbers. CDBN cooperators grew between 16 and
61 of the . 500 entries each year, and used 10–28 of the
. 70 locations per year (Figure 1). Individual CDBN locations
grew between 8 and 514 entries, with a median of 74 entries.
Locations were used in the CDBN for as few as 1 to as many as
34 years, with a median of 5 years of participation. Though
genotypes are present only intermittently over CDBN loca-
tions and years, the vast phenotyping effort on this interre-
lated set of bean germplasm, when combined with genomic
data, offers an excellent opportunity to identify genomic
regions affecting phenotypic variation in this species.GWAS
have elucidated candidate genes and genomic regions that
affect trait variation in many other crop species (Atwell et al.
2010; Kirby et al. 2010; Mackay et al. 2012; Lin et al. 2014;
McCouch et al. 2016; MacArthur et al. 2017; Xiao et al. 2017;
Togninalli et al. 2018), and have recently been implemented in
common bean (Cichy et al. 2015; Kamfwa et al. 2015a,b;
Moghaddam et al. 2016; Soltani et al. 2017, 2018; Tock
et al. 2017; Nascimento et al. 2018; Oladzad et al. 2019a,b;
Raggi et al. 2019). Combining sparse phenotypic data in agri-
cultural data sets to look for pleiotropic or linked effects across
conditions has parallels in human biomedical GWAS. In these
trials, individual clinics can assess only a subset of human
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genotypes, and patients are evaluated using institution-
specific criteria (Lotta et al. 2017; Visscher et al. 2017). Human
GWAS often look for common variants for common diseases
and correct phenotypes for effects of age, sex, and location
(Schork et al. 2009; Mefford and Witte 2012; Zaitlen et al.
2012). Analogously, we seek common, genetically stable var-
iants for important phenotypes evaluated in a MET, corrected
for effects of location, year, kinship, and assessment criteria. In
human biomedical GWAS, pleiotropic effects of SNPs on mul-
tiple diseases have frequently been observed (Sivakumaran
et al. 2011). Selection for a common bean crop ideotype—with
a long hypocotyl, many nodes carrying long pods, and without
side branches, small leaves, and determinate growth (Adams
1982; Kelly 2001)—is known to have led to pleiotropic or
linked effects on multiple traits, such as seed yield, biomass,
lodging, and plant height (Soltani et al. 2016). To study the
genetic effects of this aspect of the CDBN selection framework,
we used multivariate adaptive shrinkage (mash) to find geno-
mic associations with significant effects on one or more CDBN
phenotype (Urbut et al. 2019). Mash is a flexible, data-driven
method that shares information on patterns of effect size and
sign in any data set where effects can be estimated on a con-
dition-by-condition basis for many conditions (here, pheno-
types) across many units (here, SNPs). It first learns patterns
of covariance between SNPs and phenotypes from SNPs with-
out strong effects, then combines these data-driven covari-
ances with the original condition-by-condition results to
produce improved effect estimates. In this way, mash shares
information between conditions to increase the power to de-
tect shared patterns of effects. Mash was originally used for
analyses of human biomedical data (Urbut et al. 2019) and has
yet to be used in an agricultural setting. This analysis method
could be usedwith the rich phenotypic resources of cropMETs
to understand genetic effects across multiple phenotypes or
across multiple locations and years.

Here, we demonstrate that the CDBNMET data set can be
used tomake genetic discoveries, despite the sparse nature of
thedata, byusing best linear unbiasedpredictions (BLUPs) for
entries phenotyped in the CDBN. We explore whether this
approach can find genomic regions significantly associated
with phenotypic variation, and compare associations found
with this approach to published GWAS results obtained from
more balanced trials. We also explore patterns of genomic
associations with significant effects on more than one CDBN
phenotype using mash. Our results demonstrate the value of
adding agenetic component todata sets suchas theCDBNand
provide a starting point for future work that explores the
genetics of phenotypes evaluated in METs.

Materials and Methods

Background principles: processing, digitization, and
genetic analysis of phenotypic data

METdata sets represent substantial phenotypic resources that
can aid in the genetic study of important agronomic pheno-
types. Several important steps in preparing the CDBN data for

analysis fall under the remit of data science, and specifically
involve the data processing steps outlined here. First, when
available only from printed reports, the data were rendered
machine-readable. Processing of the digitized data next in-
volved cleaning the data to remove inconsistencies and spu-
rious data, then filtering to retain only the relevant data. The
data were stored in a consistent form where the semantics of
the data setmatched theway itwas stored. Then, various data
scales for individual traits such as growth habit were stan-
dardized to create phenotypes that were more consistent
across locations and years. The phenotypic data were next
enriched with additional attributes that made subsequent
analyses more meaningful, such as germplasm, environment,
and crop management information. Then, the data were
aggregated to create summary data by estimating BLUPs for
each phenotype.We next used aGWASmodeling approach to
determine the genomic regions associated with these data
summaries. Finally, we used mash to examine the patterns of
overlap between genomic associations with significant effects
on one or more phenotype (Urbut et al. 2019).

Phenotypic data processing

Phenotypic data for entries grown in the CDBNwere available
mainly as hard-copy reports providing plot averages at named
locations. Some reports were available in the National Agri-
cultural Library from the 1950s onward; however, reports
from 1981 onward had substantial additional available ge-
netic material and were the focus for this analysis (Table S1).
Reports from 1981 to 2015 were scanned if not in digital
format, digitized using optical image recognition as required,
and then reformatted using customSAS (SAS System, version
9.4, SAS Institute, Cary, NC) scripts that also standardized
nomenclature and units of measurement.

Much of the phenotypic data required additional processing
to allow comparisons across locations and years. The long time
span and large number of testing locations led to the scoring of
152 traits.Manyof these traits representeddistinctmethods for
scoring similarphenotypes; for example, lodgingwas scoredon
a percent scale, a 1–5 scale, a 0–9 scale, and a 1–9 scale at
different locations and in different years; for this analysis,
these lodging traits were standardized to one lodging pheno-
type on a 1–5 scale. From 152 traits reported, 22 phenotypes
were standardized for use in GWAS, including 8 quantitative
phenotypes and 14 qualitative phenotypes created from visual
scores and/or specific measurements (Figure 2A). The output
from the R script used to standardize the phenotypes across
locations and years can be found online at http://rpubs.com/
alice_macqueen/CDBN_Phenotype_Standardization.

We generated phenotypes associated with location code,
year, and genotype information. A total of 70 location codes
were created as four-letter abbreviationswith theU.S. state or
Canadian province abbreviation as the first two letters, and
the specific site abbreviation as the second two letters. Five
location codes ending in “2” corresponded to a second trial
grown at that location and year, usually with a treatment
such as drought or disease applied. Location codes were

Breeding Led to Pleiotropy in the CDBN 269

http://rpubs.com/alice_macqueen/CDBN_Phenotype_Standardization
http://rpubs.com/alice_macqueen/CDBN_Phenotype_Standardization


associated with latitude, longitude, elevation, and other lo-
cation-specific metadata (Table S2), while genotypes were
associated with market class and race, as well as the avail-
ability of seed from the holdings of CDBN cooperators and
SNP data, where available (Table S2).

In general, location by year (L*Y) combinations with out-
lier phenotypic values [values above the third quartile or
below the first quartile by 1.5 times the interquartile range
(IQR)] were removed for every entry in that L*Y combina-
tion. Removing outlier L*Y combinations prevented possible
bias from linear models using a biased sample of data points
for a L*Y, while still removing points that, by IQR measures
and by knowledge of reasonable ranges for common bean
quantitative phenotypes, were likely due to mismeasurement
or data entry errors. The specifics of phenotype standardiza-
tion for all 22 phenotypes are given in the Supplementary
Note and the code is available on GitHub at https://github.
com/Alice-MacQueen/CDBNgenomics/tree/master/analysis-
paper.

Germplasm: CDBN breeding strategies, diversity panel,
and SNP data set

CDBN selection framework: Selectionandbreedingstrategies
to generate new bean entries for the CDBN varied across years
and among breeding programs. However, in general, new
advanced lineswereselected fromeither single, triple,ordouble
crosses among advanced breeding material and released culti-
vars, which in most cases were already tested within the CDBN
in previous years. These lines were bulked to increase seed
supply, then field tested to ensure consistency of phenotypic
responses in the advanced lines. Entries with favorable charac-
teristics were often entered into the CDBN to be phenotyped in
multiple environments. Consequently, most CDBN entries were
members of a complex pedigree that has had novel, favorable
alleles recombined or introgressed into it over time.

It is clear that the CDBN is not a randomly mating, homo-
geneous population, and the breeding and selection strategy in
the CDBN likely impacts GWAS on thismaterial in a number of
ways. Presumably, breeders have increased the frequency of
alleles that favorablyaffectphenotypesover time,whichshould
aid in the detection of these genomic regions via GWAS. The
multiple generations of inbreeding should reduce allelic het-
erogeneity, which should also aid GWAS. Indeed, we find few
heterozygous regions in our SNP data set and few examples of
multiallelic loci. By the same token, the frequent inbreeding
may also increase the size of linkage disequilibrium(LD)blocks
or cause spurious patterns of LD,whichmay cause nonsyntenic
associations and make candidate gene identification more
difficult. In addition, the infrequent crosses between the gene
pools from the two independent domestication events, and the
assortative mating practiced as part of the breeding strategy,
could lead to an inflated false-positive rate and create correla-
tions between previously uncorrelated traits (Li et al. 2017).

Germplasm recovery and sequencing: To detect genomic
regions associated with phenotypic variation in a GWAS

framework, it is particularly valuable to have a large amount
of heritable phenotypic variation. Thus, it was equally impor-
tant to include entries from the CDBN with poor seed yields or
nonideal phenotypic traits as high-yielding, commercially re-
leased varieties. Thus, wewent to considerable effort to obtain
seed of unreleased, unarchived materials from the holdings of
CDBN cooperators. Germplasm from the entries grown in the
CDBN was obtained from multiple sources, including the In-
ternational Center for Tropical Agriculture, the National Plant
Germplasm System, and three common bean diversity panels:
the Mesoamerican Diversity Panel (MDP) (Moghaddam et al.
2016), the Durango Diversity Panel (DDP) (Soltani et al.
2016), and the Andean Diversity Panel (ADP) (Cichy et al.
2015). Seed was also obtained from holdings of CDBN coop-
erators, including Mark Brick (Colorado State University), Jim
Kelly (Michigan State University), Phil McClean (North Da-
kota State University), Phil Miklas (U.S. Department of Agri-
culture–Agricultural Research Service), James Myers (Oregon
State University), Juan Osorno (North Dakota State Univer-
sity), and Tom Smith (University of Guelph).

The SNP data set was created from this germplasm in two
ways. First, raw sequence data were obtained from the ADP,
DDP, and MDP (Cichy et al. 2015; Moghaddam et al. 2016) for
CDBN entries and all parents of CDBN entries that had been
sequenced as part of these panels. The remainder of the CDBN
was genotyped using identical methodology to these previous
diversity panels, dual-enzyme genotyping-by-sequencing
(Schröder et al. 2016). Unfortunately, 39 of the older, unre-
leased varieties would no longer germinate. For these varieties,
we obtained DNA for sequencing by rehydrating sterilized
seeds on wetted Whatman paper in petri plates for 2–3 days,
then dissecting the embryo from the seed and extracting DNA
from the embryo. The DNA from the remaining entries was
extracted from young trifoliates. The enzymes MseI and TaqI
were used for digestion following the protocol from Schröder
et al. (2016). SNPswere called from this raw sequence data using
the pipeline found at https://github.com/Alice-MacQueen/SNP-
calling-pipeline-GBS-ApeKI. Briefly, cutadapt was used to trim
adapters and barcodes (Martin 2011), sickle adaptive trimming
was used to remove ends of readswith quality scores, 20 (Joshi
and Fass 2011), bwamemwas used to align reads to V2.0 of the
G19833 reference genome found at https://phytozome.jgi.doe.-
gov/pz/portal.html#!info?alias=Org_Pvulgaris (Li andDurbin
2010; Schmutz et al. 2014), and NGSEP (Next Generation Se-
quencing Experience Platform) was used to call SNPs for the
entire set of CDBN entries and all parents in the CDBN ped-
igrees (Duitama et al. 2014). SNPs were imputed using FIL-
LIN in TASSEL. This resulted in the creation of a diversity
panel of 327 entries with MET data in the CDBN (Table
S2), with aligned SNP data available on the University of
Texas Libraries data repository at DOI: https://doi.org/
10.18738/T8/RTBTIR for use in the CDBNgenomics R pack-
age at https://github.com/Alice-MacQueen/CDBNgenomics.

GWAS: To explore consistent genetic effects that could be
compared to balanced genetic trials, analyseswere performed
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on genetic BLUPs for each phenotype. BLUPs were calculated
in the rrBLUPpackage inRusinga kinshipmatrix, and treating
location and the interaction between location and year as
fixed effects. The R code to generate the BLUPs is available on
GitHub at https://github.com/Alice-MacQueen/CDBNgenomics/
tree/master/data-raw.TheBLUPs are available inTableS2.R code
treating CDBN germplasm entry as a fixed effect, and treating
location, the interaction between location and year, the in-
teraction between CDBN germplasm entry and location, and
the interaction between CDBN germplasm entry and year as
random effects is also available on GitHub at https://github.
com/Alice-MacQueen/CDBNgenomics/tree/master/data-raw/
ASReml; this model did not significantly affect association rank
order or subsequent analyses. rrBLUPwas also used to calculate
narrow-sense heritability (h2), defined as Va / (Va + Ve), where
Va is the restrictedmaximum likelihood (REML) estimate of the
additive genetic variance from rrBLUP and Ve is the REML esti-
mate of the error variance.

ForGWASphenotypes,BLUPswere retainedonly forCDBN
entries phenotyped at least one time in the CDBN. The kinship
matrixwas calculated using defaultmethods inGAPIT. A total
of 1,221,540 SNPs with a minor allele frequency. 5% in the
CDBN diversity panel were identified and used for the CDBN
GWAS. GWAS analyses were performed using compressed
mixed linear models (Zhang et al. 2010) implemented in
GAPIT with the optimum level of compression (Lipka et al.
2012). These models used a kinship matrix calculated within
GAPIT to account for individual relatedness, and some num-
ber of principal components (PCs) to account for population
structure. The optimum number of PCs to account for

population structure was determined using model selection
in GAPIT, and by selecting the number of PCs that maximized
the Bayesian information criterion. Typically, zero to two PCs
were used (Table S3). The final Manhattan plots were cre-
ated using the ggman R package. Plots of intersecting sets
were created using the UpSetR package (Lex et al. 2014).
Candidate genes within a 20-kb interval centered on the peak
SNP with P-values above a Benjamini–Hochberg false discov-
ery rate (FDR) threshold of 0.1 were examined further. In a
balanced GWAS panel that had many identical genotypes,
this interval size was suitable for capturing LD in the data
(Moghaddam et al. 2016).

Comparison to published genome-wide associations in
common bean: Out of the 21 BLUPs estimated from CDBN
phenotypes, a group of 13 also had published associations
from GWAS on common bean. To compare the major asso-
ciations in our study to those of published studies on bal-
anced genetic trials, we collected the major associations
reported in 11 published GWAS studies of common bean
(Cichy et al. 2015; Kamfwa et al. 2015a,b; Moghaddam et al.
2016; Soltani et al. 2017, 2018; Tock et al. 2017;
Nascimento et al. 2018; Oladzad et al. 2019a,b; Raggi
et al. 2019). We compared these published associations to
the associations for the top 10 SNPs for each of the 13 pheno-
types in this study, thinned to one SNP per 20-kb region. Un-
fortunately, these comparisons were likely very conservative,
in that most of these publications used panels of common
bean that were comprised of material from different gene
pools than the CDBN, with the exception of the MDP and

Figure 1 The CDBN is an extensive multienvironment
trial with hundreds of germplasm entries for common
bean (P. vulgaris) grown at 75 locations over 35 years.
The relationships between germplasm entries (first row
and column), locations (second row and column), and
years (third row and column) used in the CDBN are
shown in the grid. Purple represents genotyped germ-
plasm entries from the Durango race of the Mesoamer-
ican gene pool, blue represents genotyped entries in the
Mesoamerican race of the Mesoamerican gene pool,
green represents genotyped entries in the Nueva Gran-
ada race of the Andean gene pool, and yellow repre-
sents entries that were not genotyped. Beans of the two
most commonly genotyped market classes from each
race are pictured to the right of the color key, and the
number of entries of each race that were genotyped is
displayed to the left of the color key. On the maps of
CDBN locations, pie chart size is scaled relative to the
total number of entries grown at that location, and circle
saturation represents locations with a greater number of
years of data available. CDBN, Cooperative Dry Bean
Nursery.
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DDP (Moghaddam et al. 2016; Soltani et al. 2016; Oladzad
et al. 2019a,b). Both Andean and Middle-American gene
pools have been observed to have different SNPs underlying
domestication traits (Schmutz et al. 2014). Eight of these
publications used v1.0 of the Phaseolus vulgaris genome
annotation, while our associations were mapped to v2.0.
We used the genome browser located at https://legumeinfo.
org/genomes/gbrowse/phavu.G19833.gnm2 to convert associ-
ations between these two versions of the genome annotation.
We then determined the number of overlapping associations
meeting two criteria: first, those within 200 kb of one another,
and second, within 20 kb of one another and with the same
candidate gene. We determined these overlaps for the 80 asso-
ciations from the 11 publishedGWAS tofind an expected rate of
overlap, then compared this to the rate of overlap between this
study and the 11 balanced GWAS.

Analysis of pleiotropy or linked effects on multiple
phenotypes: To increase our power to detect associations
above an FDR, and to find genomic associations with signif-
icant effects on one ormore CDBN phenotype, we used a two-
step empirical Bayes procedure, mash, to estimate effects of
�45,000 SNPs on 20 BLUPs determined from CDBN pheno-
types (Urbut et al. 2019). Mash has been demonstrated to
increase power to detect effects in analyses of human data
(Urbut et al. 2019), and while the methods are extensible to

any data set with many SNPs/markers and many pheno-
types/conditions, it has not yet been used in an agricultural
setting. It can be used for any data set where effects can be
estimated for many conditions (here, phenotypes) across
many units (here, SNPs). Mash first learns patterns of covari-
ance between SNPs and phenotypes from SNPs without
strong effects, then combines these data-driven covariances
with the original condition-by-condition results to produce
improved effect estimates. In this way, mash shares informa-
tion between conditions to increase the power to detect
shared patterns of effects. Importantly, this method does
not have restrictive assumptions about the patterns of effects
between markers or conditions. In addition, estimates with
little uncertainty are not adversely affected by the inclusion
of estimates with high uncertainty. Thus, we included 20
phenotypes in the mash analysis, including 12 phenotypes
with no signal above the Benjamini–Hochberg FDR threshold
in individual GWAS. Two low-signal phenotypes related to
bean common mosaic virus presence or absence were not
included; inclusion of these phenotypes did not significantly
alter the mash results (data not shown). The procedure we
used to generate input matrices for mash is captured in the R
package gapit2mashr, available at https://github.com/Alice-
MacQueen/gapit2mashr. Briefly, the effect of the alternate
allele relative to the reference allele was determined for each
SNP using GAPIT. To allow mash to converge effectively on

Figure 2 Phenotypic data available in the CDBN, and genetic variation within the two of these phenotypes with the most data. (A) Details of
21 phenotypes present in the CDBN; BLUPs from these phenotypes were used for genome-wide association. Black circles left of the y-axis indicate
phenotypes with one or more genetic associations that had P-values above the Benjamini–Hochberg false discovery rate. (B) Manhattan plot of BLUPs for
seed yield (kg/ha) from the CDBN data. The dashed lines are the cutoff values for peak significance. SNPs above the Benjamini–Hochberg false discovery
rate are above the black line, and those in the 0.001 percentile are above the gray line. (C) Quantile–quantile plot of the goodness of fit of the model on
seed yield. (D) Manhattan plot of BLUPs for seed weight (mg) from the CDBN data, as in (B). (E) Quantile–quantile plot of the goodness of fit of the
model on seed weight. Distribution of the BLUPs for (F) seed yield and (G) seed weight. Black represents the presence of the reference allele for the top
SNP labeled in panels (B) and (D), respectively, and gray represents the presence of the alternate allele. BCMV, bean common mosaic virus; BLUP, best
linear unbiased predictor; CBB, common bacterial blight; CDBN, Cooperative Dry Bean Nursery; CTV, curly top virus.
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effect estimates, the effects for each phenotype were standard-
ized to fall between21 and 1, with amean of 0. Becausemash
does not accept NA values, when GAPIT calculated SE
for # 95% of the SNPs in the GWAS, we instead calculated the
SE for that phenotype usingHedges’G(Hedges andOlkin 1985).

Data-driven covariance matrices were estimated using
45,000 randomly selected SNPs from the entire set of
1,221,540 SNPs. These matrices were then used on the top
4000 SNPs for each of the 20 traits, as determined by P-values
in the individual GWAS, which produced a matrix of strong
effects for 45,000 SNPs. Then, we explored the patterns of
significant effects in the mash output. We first determined
which SNPs had evidence of significant phenotypic effects by
determining SNPs with the largest Bayes factors. In this anal-
ysis, the Bayes factor was the ratio of the likelihood of one or
more significant phenotypic effects at a SNP to the likelihood
that the SNP had only null effects. Here, following Kass and
Raftery (1995), a Bayes factor of. 102 is considered decisive
evidence in favor of the hypothesis that a SNP has one or
more significant phenotypic effects. We also compared the
size of significant phenotypic effects, as determined by SNPs
with a local false-sign rate of # 0.05 for one or more pheno-
type. The local false-sign rate is analogous to an FDR, but is
more conservative, in that it also reflects the uncertainty in
the estimation of the sign of the effect (Stephens 2017).

Data availability

Genotypic data are available at the Sequence Read Archive
(SRA) under submission number SUB6162710. Code for SNP
calling is available at https://github.com/Alice-MacQueen/
SNP-calling-pipeline-GBS-ApeKI.

Aligned SNP data are available at https://doi.org/
10.18738/T8/RTBTIR. Raw phenotypic data are available
in the National Agricultural Library: https://www.nal.usda.
gov/. Code used to generate data used in this analysis
from the raw phenotypic data are available at Rpubs, found
at: http://rpubs.com/alice_macqueen/CDBN_Phenotype_
Standardization. Code and data necessary to replicate this
analysis are available as part of the R package CDBNgenomics,
found at: https://github.com/Alice-MacQueen/CDBNgenomics.
Supplemental material available at Texas Data Repository Data-
verse: https://doi.org/10.18738/T8/KZFZ6K.

Results

Phenotypic correlations in the CDBN

The CDBN contains a wealth of data to study the genetics of
phenotypes and phenotypic correlations (Figure 1 and Figure
2A). We were able to obtain and genotype 327 germplasm
entries from the . 544 entries present in the CDBN trials
from 1981 to 2015, including 124 entries that were neither
released commercially nor submitted to the National Plant
Germplasm System (National Plant Germplasm System
2017), and 39 entries whose seed would not germinate. Most
of the remaining entries were grown in the CDBN before
1990 and had seed stocks that, for reasons of practicality,

were no longer maintained by breeders (Figure 1). Genotyping-
by-sequencing of the available genotypes generated 1.2 million
SNPs for analysis of stable effects in the CDBN.

BLUPs of phenotypes from the CDBN, conditioned on
location, location by year, and the kinship matrix, are analo-
gous to breeding values for the CDBN entries. These genetic
values can be used to determine the narrow-sense heritability,
h2, potentially explainable by GWAS. h2 varied between
6 and 73% in the 21 phenotypic BLUPs (Table 1), reflecting
the substantial amount of environmental variation in the data
set. We then determined the correlations between the BLUPs
of CDBN phenotypes or the genetic correlations. Correlation
coefficients between BLUPs of CDBN phenotypes varied
between 20.75 and 0.81, and most phenotypes were signif-
icantly correlated (Figure S1). Two major groups of pheno-
types were positively correlated: biomass, days to flowering,
plant height, zinc deficiency score, days tomaturity, blackroot
presence/absence, and early vigor were in the first of these
groups, and white mold damage score, growth habit, seed
yield, harvest index, lodging, rust damage score, bean com-
mon mosaic virus damage score, and halo blight damage
score were in the second of these groups. These two groups
had negative phenotypic correlations with each other.

Eight CDBN phenotypes have genetic associations
above the FDR

We conducted GWAS on 21 phenotypes using BLUPs calcu-
lated using a kinship matrix, location, and an interaction
between location and year as fixed effects (for details, see
the GWAS section in the Materials and Methods). To deter-
mine if any SNP frequencies had changed over the duration of
the CDBN, we also conducted GWAS on the earliest year that
each germplasm entry was present in the CDBN as a proxy for
the age of the entry. This GWAS was analogous to an envi-
ronmental GWAS that uses climatic variables associated with
a genotype’s location of origin (Hancock et al. 2011; Lasky
et al. 2015), though this GWAS is fitted to a variable corre-
lated with the age of the genotype rather than with its loca-
tion of origin.

Given the analytical issues surrounding the use ofMETs for
unplanned genetic analyses, it was unclearwhether GWASon
CDBN phenotypes would find significant associations, or if
these associations would be reduced or eliminated by envi-
ronmental noise, or by experimental design biases. Thus, we
determined if anyGWASonCDBNphenotypes had significant
associations after a Benjamini–Hochberg FDR correction of
10%.With this criterion, significant associations were discov-
ered for 8 of the 21 phenotypes. More than 33 peaks had
SNPs with P-values above the FDR, indicating the presence
of $ 30 distinct, significant associations with these eight
CDBN-derived phenotypes. Phenotypes with associations
above the FDR generally had more data points in the CDBN
(6500 vs. 2400 data points, Wilcoxon rank sum test P =
0.018; Figure 2A). Phenotypes with associations above the
FDR also had significantly higher narrow-sense heritabilities
estimated from the phenotypic data (h2 of 40.5 vs. 25%,
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Wilcoxon rank sum test P = 0.038, Table 1). We briefly dis-
cuss the associations above the FDR for these eight pheno-
types in the order of most to fewest data points in the CDBN.
In cases where there were multiple associations for a single
phenotype, we discuss only the top associations by P-value.

Seed yield (kg ha21) had one significant peak after FDR
correction, on Pv01 at 42.2 Mb (Figure 2, B and C and Table
S4). This association was correlated with a difference in seed
yield of 104 kg ha21 (Figure 2F and Table S4). Median seed
yields in the CDBN for the Durango, Mesoamerican, and
Nueva Granada races were 2803, 2443, and 2038 kg ha21,
respectively; thus, this genomic region accounts for changes
in seed yield of 3.7–5.1%, or 3–4 years of improvement effort
at historical rates of bean improvement (Vandemark et al.
2014). This association was 3.7-kb upstream of the gene
Phvul.001G167200, a gene that is highly expressed in the
shoot and root tips of common bean at the second trifoliate
stage of development (O’Rourke et al. 2014; Dash et al.
2016). The Arabidopsis thaliana homolog of this gene,
VERNALIZATION INDEPENDENCE 5 (VIP5), affects flowering
time by activating Flower Locus C, which is a repressor of
flowering (Oh et al. 2004).

Seed weight (mg) had associations on nine chromosomes
that were significant after FDR (Figure 2, D and E); the
strongest of these were on Pv02 (Figure 2G), Pv03, Pv05,
and Pv08, though each explained only 1–2% of the variation
in seed weight (Table S4). Because seed weight correlates
strongly with population structure in the three bean races
and two bean gene pools, seven PCs were used to correct
for population structure in this GWAS (Table S3). The as-
sociation on Pv02 was 5-kb upstream of gene model

Phvul.002G150600, a Sel1 repeat protein. Sel1-like repeat
proteins are frequently involved in signal transduction path-
ways and in the assembly of macromolecular complexes (Mittl
and Schneider-Brachert 2007). The association on Pv03 was
10-kb upstream of genemodel Phvul.003G039900, a jasmonic
acid carboxyl methyltransferase. The association on Pv05 was
not within 20 kb of any gene. The association on Pv08 fell in
the coding sequence of Phvul.008G290600, a choline-phos-
phate cytidylyltransferase highly expressed in many tissues,
including roots and pods, and seeds at the heart stage and
stage 2, or seeds 3–4- and 8–10-mm wide (O’Rourke et al.
2014; Dash et al. 2016).

Days to flowering had one significant peak after FDR, on
Pv01 between 13.4 and 17.1 Mb (Figure S2A and Table S4).
It was correlated with a difference in flowering time of 2–
3 days, depending on the population (Figure S3A). A can-
didate gene model hypothesized to affect days to flowering,
Phvul.001G087500, is located at 13.76 Mb in the V2.0 anno-
tation for P. vulgaris. Gene model Phvul.001G087500 is an
ortholog of KNUCKLES (KNU), a protein that is part of the
Polycomb repressive complex 2, a complex that affects both
flowering time and floral meristem development (de Lucas
et al. 2016). KNU is activated in the transition to determinate
floral meristem development and functions in a feedback loop
that promotes determinate development (Payne et al. 2004;
Sun et al. 2014).

Lodging score, where higher scores indicated more stem
breakage near ground level, had associations on three chro-
mosomes that were significant after FDR; one on Pv04 at 2.8
Mb, one on Pv05 at 0.4 Mb, and one on Pv07 at 34.5 Mb
(Figure S2B and Table S4). In total, these three associations

Table 1 BLUP statistics, with phenotypes ordered as in Figure 2

Phenotype Va
a Ve

b h2c BLUP range Units

Seed yield 53,173 222,409 0.193 1,727 kg ha21

Seed weight 2,340 1,076 0.685 443 mg
Days to maturity 12.3 18.3 0.402 17.0 Days
Days to flowering 4.68 6.11 0.434 11.7 Days
Seed fill duration 5.584 17.812 0.239 12.7 Days
Lodging score 0.244 0.466 0.344 2.97 1–5 scale
Harvest index 13.5 31.5 0.299 20.1 %
Plant height 13.8 42.5 0.245 18.1 cm
Biomass 2.46E+05 6.72E+05 0.268 2,990 kg
Growth habit 0.160 0.154 0.509 2.19 1–3 scale
Seed appearance score 0.017 0.241 0.067 0.346 1–3 scale
CBB damage score 0.282 1.127 0.200 2.32 1–9 scale
Rust damage score 3.201 1.957 0.621 7.35 1–9 scale
Early vigor score 0.064 0.747 0.078 0.957 1–9 scale
White mold damage score 0.143 0.631 0.185 2.60 1–5 scale
CTV presence/absence 0.025 0.132 0.157 0.432 0–1 scale
Halo blight damage score 0.176 0.708 0.199 1.12 1–5 scale
BCMV blackroot response 0.049 0.086 0.363 0.843 0–1 scale
BCMV presence/absence 0.016 0.097 0.145 0.428 0–1 scale
Root rot damage score 0.455 3.193 0.125 2.25 1–9 scale
Zinc deficiency damage score 3.831 1.395 0.733 8.96 1–9 scale

BCMV, bean common mosaic virus; BLUP, best linear unbiased predictor; CBB, common bacterial blight; CTV, curly top virus; REML, restricted maximum likelihood.
a Va is the REML estimate of the additive genetic variance from rrBLUP.
b Ve is the REML estimate of the error variance.
c h2 is narrow-sense heritability, defined as Va / (Va + Ve).
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explained 8% of the variation in lodging (Figure S4). The
signal on Pv04 fell within genemodel Phvul.004G025600; the A.
thaliana homolog of this gene is involved in the biosynthesis of
inositol pyrophosphate, a cellular signaling molecule in-
volved in metabolism and energy sensing (Desai et al.
2014). The signal on Pv05 fell within gene model
Phvul.005G005400, a uridine diphosphate glycosyltrans-
ferase superfamily protein (Dash et al. 2016). The stron-
gest signal for lodging, explaining 3% of the variation, fell
in the promoter region of gene model Phvul.007G221800,
which is orthologous to SUPPRESSOR OF AUXIN RESIS-
TANCE 1 (SAR1). In A. thaliana, SAR1 increases plant
height and internode distance, and appears to affect stem
thickness (Cernac et al. 1997; Parry et al. 2006).

Harvest index, or the ratio of seed yield weight to total
above ground biomass, had one significant association on
Pv03 at 2.1 Mb (Figure S2C and Table S4). The alternate
allele was associated with an increase in harvest index of 1.5–
3.5%, and associated with bean race (Figure S3B). This allele
was 20 kb from gene model Phvul.003G023000, a cellulose
synthase-like protein highly expressed in green mature pods,
whole roots, and leaf tissue at the second trifoliate leaf stage
of development (O’Rourke et al. 2014; Dash et al. 2016).

Growth habit encompasses both determinate and indeter-
minate types (I and II/III), as well as upright and prostrate
indeterminate types (II and III). Growth habit had significant
associationsoneverychromosomeafterFDR; thestrongest four
associations were on Pv01 at 6.2 and 42.2Mb, on Pv09 at 30.9
Mb, and Pv10 at 42.7Mb (Figure S2D andTable S4). There are
known to bemultiple determinacy loci segregating in different
gene pools of common bean (Kolkman and Kelly 2003; Kwak
et al. 2012), which could complicate associations between
growth habit and genomic regions in the CDBN panel. These
four associations were associated with variation in determi-
nacy in this panel; however, these four associations were not
sufficient to explain all variation in determinacy, in that 13 ge-
notypes had all alleles that were associated with determinacy,
but were indeterminate, and one genotype had all alleles that
were associatedwith indeterminacy, butwas determinate (Fig-
ure S3C). The association at 6 Mb on Pv01 fell in the coding
sequence of the gene model Phvul.001G055600, a RING-CH-
type zinc finger protein expressed highly in roots and in stem
internodes above the cotyledon at the second trifoliate stage
(O’Rourke et al. 2014; Dash et al. 2016). The association at
42.2 Mb was 3.7-kb upstream of the gene VIP5; as noted
above, this gene and genomic region were also candidate as-
sociations for seed yield (kg ha21). The association on Pv09
was 5-kb upstream of model Phvul.009G204100, which en-
codes a signal peptide peptidase A highly expressed in pods
associatedwith stage-2 seeds and in stem internodes above the
cotyledon at the second trifoliate stage (O’Rourke et al. 2014;
Dash et al. 2016). The association on Pv10 was 1-kb upstream
of model Phvul.010G146500, a gene from an uncharacterized
protein family highly expressed in roots, podswith seeds at the
heart stage, and stem internodes above the cotyledon at the
second trifoliate stage (O’Rourke et al. 2014; Dash et al. 2016).

Bean rust (Uromyces appendiculatus) causes leaf and pod
pustules, and leads to losses in vigor and seed yield. Higher
plant damage caused by rust was indicated by a higher rust
score. Rust score had significant associations on 10 chromo-
somes after FDR (Figure S2E and Table S4). However, the
strongest association was located on Pv11 at 50.6 Mb and
overlapped a major cluster of disease resistance genes con-
taining the rust resistance genes Ur-3, Ur-6, Ur-7, and Ur-11
(Hurtado-Gonzales et al. 2017). This signal fell just upstream
of the gene model Phvul.011G193100, which maps in the
interval suggested to contain the resistance gene Ur-3
(Hurtado-Gonzales et al. 2017). The alternate allele was pre-
sent in the early years of our CDBN data within the Mesoa-
merican race, but was either absent or rare within the
Durango race in the CDBN until 1988, when it was observed
in the pinto Sierra and the great northern Starlight. The al-
ternate allele was not widely distributed in the Durango race
until the mid-1990s (Figure S3D).

Finally, the presence or absence of curly top virus, a virus
characterized by plant stunting anddeformation of leaves and
fruit, had significant associations on seven chromosomes after
FDR; however, the strongest associationswere on Pv01, Pv05,
Pv07, and Pv11 (Figure S2F andTable S4). The association on
Pv01 was 0.5-kb upstream of gene model Phvul.001221100,
found to be associated with days to flowering (Kamfwa et al.
2015b), and recently identified as the photoperiod sensitivity
locus Ppd, or PHYTOCHROME A3 (Kamfwa et al. 2015b;
Weller et al. 2019). The association on Pv05 was within
20 kb of genemodel Phvul.005G051400, a VQmotif-containing
protein highly expressed in leaf tissue. VQ motif-containing
proteins are a class of plant-specific transcriptional regulators
that regulate photomorphogenesis, and responses to biotic and
abiotic stresses (Jing and Lin 2015). The association on Pv07
was 1-kb upstream of gene model Phvul.007G035300, a
pH-response regulator protein. The association on Pv11 was
20-kb downstream of gene model Phvul.011G142800, a ter-
pene synthase gene expressed in young trifoliates, flowers,
and young pods (O’Rourke et al. 2014; Dash et al. 2016). Ter-
penoids are a large class of secondary metabolite, which have
roles in plant defense against biotic and abiotic stresses (Singh
and Sharma 2015).

Three CDBN genetic associations overlap genetic
associations from balanced genetic field trials

The presence of many associations above the FDR threshold
supports using MET data for genetic analyses. However, the
assortative mating employed purposefully by breeders of
entries in the CDBN could potentially lead to a high rate of
false positives (Li et al. 2017). Overall, it was unclear whether
GWAS using phenotypes derived from sparse MET data sets
would yield similar genetic associations as published, bal-
anced field trials. Thus, we compared the top associations
discovered here to associations from 11 published GWAS
papers on common bean. This allowed us to compare associ-
ation overlaps for 13 phenotypes, 7 of which had associations
above the FDR, and gave 34 top associations from this study
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Table 2 Major associations in GWAS from phenotypes from the CDBN and from previously published GWAS

FDRa Trait Study Chr Position in v2.0 Candidate geneb

Plant height (cm) This study 1 6.13c Phvul.001G054800
FDR Growth habit This study 1 6.28c Phvul.001G055600

Biomass (kg) This study 1 6.49c Phvul.001G057100
Lodging score Resende et al. (2018) 1 13.76c Phvul.001G087900
Growth habit Resende et al. (2018) 1 13.76c Phvul.001G087900
Days to flowering Moghaddam et al. (2016) 1 13.76c Phvul.001G087900

FDR Days to flowering This study 1 13.45–15.36c Phvul.001G087900
Root rot damage Oladzad et al. (2019b) 1 23.92
Days to flower Oladzad et al. (2019a) 1 27.68
Root rot damage Oladzad et al. (2019b) 1 33.03
Halo blight damage score This study 1 36.72 Phvul.001G132516
Root rot damage Oladzad et al. (2019b) 1 37.20
Plant height (cm) This study 1 38.74 Phvul.001G143800
Root rot damage Oladzad et al. (2019b) 1 40.20

FDR Growth habit This study 1 42.17c Phvul.001G167200
FDR Seed yield This study 1 42.23c Phvul.001G167200

Growth habit Moghaddam et al. (2016) 1 42.23c Phvul.001G167200
Biomass (kg) This study 1 42.27c Phvul.001G167200
Growth habit Cichy et al. (2015) 1 44.80c Phvul.001G189200
Growth habit Moghaddam et al. (2016) 1 44.80c Phvul.001G192200
Days to flowering Nascimento et al. (2018) 1 47.07 Phvul.001G214500
Days to flowering Raggi et al. (2019) 1 48.86
Days to flowering Raggi et al. (2019) 1 49.65
Halo blight damage score This study 2 16.17 Phvul.002G091900

FDR Seed weight This study 2 30.38 Phvul.002G150600
Days to flowering Oladzad et al. (2019a) 2 38.07
Halo blight damage score Tock et al. (2017) 2 49.08 Phvul.002G326200

FDR Harvest index (%) This study 3 2.16 Phvul.003G023000
FDR Seed weight This study 3 4.40 Phvul.003G039900

Days to maturity This study 3 15.75
Days to maturity This study 3 32.04 Phvul.003G128400
Harvest index (%) This study 3 36.82c Phvul.003G153100
Days to maturity This study 3 36.83c Phvul.003G153100
Seed yield Kamfwa et al. (2015b) 3 37.60 Phvul.001G136600
Days to flowering Oladzad et al. (2019a) 3 40.27
Days to flowering Oladzad et al. (2019a) 3 41.09
Harvest index (%) Kamfwa et al. (2015b) 3 46.70 Phvul.003G233400
Harvest index (%) Kamfwa et al. (2015b) 3 47.17c Phvul.003G237900
Days to flower Oladzad et al. (2019a) 3 47.35c

Seed yield Resende et al. (2018) 3 49.28–50.33c Phvul.003G253700
Days to flowering and days to maturity Oladzad et al. (2019a) 3 51.48
Days to flowering and days to maturity Oladzad et al. (2019a) 3 52.32
Days to flowering and days to maturity Oladzad et al. (2019a) 3 52.6
Halo blight damage score Tock et al. (2017) 4 0.55–1.899c Phvul.004G007600
Days to maturity Moghaddam et al. (2016) 4 1.94c Phvul.004G011400

FDR Lodging score This study 4 2.87 Phvul.004G025600
Growth habit indeterminate Moghaddam et al. (2016) 4 3.20 Phvul.004G027800
Halo blight damage score MacQueen et al. (2020) 4 6.79 Phvul.004G051500
Days to flowering Raggi et al. (2019) 4 16.37
Days to flowering Raggi et al. (2019) 4 36.88
Halo blight damage score Tock et al. (2017) 4 46.20c Phvul.004G158000
Days to flowering and days to maturity Oladzad et al. (2019a) 4 46.33c

Days to flowering and days to maturity Oladzad et al. (2019a) 4 47.06
Halo blight damage score This study 5 13.25 Phvul.005G074200
Halo blight damage score Tock et al. (2017) 5 39.00 Phvul.005G162500
Root rot damage Oladzad et al. (2019b) 6 0.57
Root rot damage Oladzad et al. (2019b) 6 5.75
Root rot damage Oladzad et al. (2019b) 6 6.89
Root rot damage Oladzad et al. (2019b) 6 8.16 Phvul.006G017211
Root rot damage Oladzad et al. (2019b) 6 12.20
Root rot damage Oladzad et al. (2019b) 6 17.85
Plant height (cm) This study 6 20.89 Phvul.006G098300

(continued)
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to compare to 80 published association regions. In addition to
these GWAS associations, the bean rust resistance phenotype
overlapped with a candidate rust resistance gene, Ur-3, one
of the two genes pyramided in the 1980s in bean breeding to
provide comprehensive rust resistance.

Threemajor associations from this studywerewithin 20 kb
of, and had the same candidate gene as, top associations from
published, balancedGWAS:days toflowering, onPv01at13.7
Mb; growth habit, on Pv01 at 42.2 Mb; and lodging, on Pv07
at 34.2 Mb (Table 2). Interestingly, when considering all

Table 2, continued

FDRa Trait Study Chr Position in v2.0 Candidate geneb

Growth habit indeterminate Moghaddam et al. (2016) 6 29.92 Phvul.006G203400
Days to flowering Raggi et al. (2019) 6 31.60
Days to maturity This study 7 1.15 Phvul.007G017000
Growth habit indeterminate Moghaddam et al. (2016) 7 34.12c Phvul.007G246700
Lodging score Moghaddam et al. (2016) 7 34.20c Phvul.007G218900

FDR Lodging score This study 7 33.60–34.51c Phvul.007G218900
Plant height (cm) Moghaddam et al. (2016) 7 34.20c Phvul.007G218900
Growth habit indeterminate Moghaddam et al. (2016) 7 34.20c Phvul.007G218900
Biomass (kg) This study 7 35.74 Phvul.007G233700
Seed weight Moghaddam et al. (2016) 8 1.10c Phvul.008G013300
Root rot damage score This study 8 1.34c

Days to flowering Raggi et al. (2019) 8 4.93
Biomass (kg) Soltani et al. (2017) 8 6.86 Phvul.008G073000
Biomass (kg) Soltani et al. (2017) 8 7.60 Phvul.008G078200
Root rot damage Oladzad et al. (2019b) 8 15.26
Root rot damage Oladzad et al. (2019b) 8 17.72
Days to flowering and days to maturity Oladzad et al. (2019a) 8 24.95
Days to flowering Raggi et al. (2019) 8 26.40
Halo blight damage score Tock et al. (2017) 8 61.34c Phvul.008G268700
Root rot damage score This study 8 61.98c Phvul.008G277352
Halo blight damage score This study 9 5.42 Phvul.009G022400
Days to maturity This study 9 5.85
Seed yield Kamfwa et al. (2015b) 9 10.00 Phvul.009G051600
Plant height (cm) This study 9 27.98 Phvul.009G185100

FDR Growth habit This study 9 30.93 Phvul.009G204100
Biomass (kg) Soltani et al. (2017) 10 0.60 Phvul.010G003600
Seed weight Moghaddam et al. (2016) 10 2.60 Phvul.010G017600
Root rot damage Oladzad et al. (2019b) 10 16.40
Root rot damage Oladzad et al. (2019b) 10 19.51
Root rot damage Oladzad et al. (2019b) 10 25.44
Root rot damage Oladzad et al. (2019b) 10 29.88
Biomass (kg) Soltani et al. (2017) 10 36.45 Phvul.010G099100
Halo blight damage score This study 10 41.52 Phvul.010G133101
Days to flowering Nascimento et al. (2018) 10 42.50c Phvul.010G142900

FDR Growth habit This study 10 42.79c Phvul.010G146500
Biomass (kg) Soltani et al. (2017) 11 1.59 Phvul.011G020500
Days to flowering Oladzad et al. (2019a) 11 4.02
Days to maturity Moghaddam et al. (2016) 11 4.46 Phvul.011G050300
Days to flowering Oladzad et al. (2019a) 11 10.66
days to maturity MacQueen et al. (2020) 11 14.8
Root rot damage Oladzad et al. (2019b) 11 26.41
Days to flowering Oladzad et al. (2019a) 11 27.27
Days to flowering Oladzad et al. (2019a) 11 36.22
Root rot damage Oladzad et al. (2019b) 11 41.36
Days to maturity Moghaddam et al. (2016) 11 45.09c Phvul.011G158300
Days to flowering Oladzad et al. (2019a) 11 45.29c

Growth habit indeterminate Moghaddam et al. (2016) 11 46.75 Phvul.011G164800
Days to flowering Oladzad et al. (2019a) 11 47.3
Root rot damage Oladzad et al. (2019b) 11 50.59c

FDR Rust This study 11 50.67c Phvul.011G193100
Rust Phil McClean 11 50.67c Phvul.011G193100
Biomass (kg) Soltani et al. (2017) 11 52.55 Phvul.011G207500

Chr, chromosome; FDR, false discovery rate; GWAS, genome-wide association study; CDBN, common dry bean nursery.
a FDR indicates associations from this paper, which were above the Benjamini–Hochberg FDR correction.
b Positions (in Mb) indicate associations in more than one published GWAS that are within 200 kb of one another.
c Associations in more than one published GWAS, which fall within 20 kb of one another and have the same candidate gene.
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114 associations, each of these three regions had significant
effects for three phenotypes: lodging, growth habit, and days
to flowering on Pv01 at 13.7 Mb; growth habit, seed yield,
and biomass on Pv01 at 42.2 Mb; and plant height, lodging,
and growth habit on Pv07 at 34.2 Mb (Table 2). In this study,
the top 10 SNPs for harvest index and days to maturity also
had the same candidate gene on Pv03 at 36.8 Mb, the gene
model Phvul.003G153100. Phvul.003G153100 is an APE-
TALA2-like ethylene-responsive transcription factor that is
highly expressed in root tissue and nodules (O’Rourke et al.
2014; Dash et al. 2016). This region of Pv03 has also been
found to have a genetically stable effect on seed yield (Kelly
2018), though our GWAS on seed yield did not detect this
region at a 10% FDR.

In comparisons involving only the 11 balanced studies, 9 of
80 associations fell into three 20-kb regions, while 15 of the
80 associations fell into six 200-kb regions. When this study
was added, seven additional associations fell into four 20-kb
regions, while 12 additional associations fell into 14 overlap-
ping 200-kb regions (Table 2). This study did not identify
many new overlaps at the 20-kb level, though it did find
associations in all three 20-kb overlapping regions found by
comparing the 11 balanced studies alone. However, it did
find many new overlaps with previously published studies
at the 200-kb level, twice as many as expected given the rate
of overlap in the 11 balanced studies (x2 test P = 0.025).
However, as the balanced studies often did not conduct
GWAS on similar phenotypes, our “expected” rate of overlap
is likely to be biased. Thus, we consider the fact that this
study found the same three 20-kb regions that overlap in
balanced GWAS comparisons to be stronger evidence than
the large number of overlaps at the 200-kb level of the con-
clusion that this panel can yield similar associations to bal-
anced GWAS of common bean diversity panels.

Extensive pleiotropy or linked effects within CDBN
genetic associations

We observed that numerous CDBN phenotypes had overlap-
ping distributions of significantly associated SNPs. These over-
laps could be due to pleiotropy (one genetic locus affecting
multiple phenotypes) or due to multiple linked genetic loci
affecting multiple phenotypes. To formally compare these
overlaps, we used mash on 19 sets of 4000 SNPs with the
smallest P-values for phenotypes from the CDBN as well as
4000 SNPs for the earliest year an entry was grown in the
CDBN (Figure 3). Mash shares information about effect sizes
of SNPs across all phenotypes, while accounting for data-
driven covariances in the patterns of effects (Urbut et al.
2019). In contrast to phenotype-by-phenotype analyses,
where only 8 phenotypes had associations above the FDR, in
mash, all 20 phenotypes had SNPs with P-values below the
local false-sign rate, an analog for the FDR. In addition, SNPs
typically had local false-sign rates below this threshold for 11–
14 phenotypes; thus, there was either extensive pleiotropy or
frequent linked effects on multiple phenotypes within entries
in the CDBN. SNPs with Bayes factors . �102, indicative of

decisive evidence favoring that SNP having a significant effect
on one or more phenotypes, were distributed very unevenly
across the genome, with the vast majority of SNPs clustering
within two large regions on Pv01 (Figure 3B and Table S5),
from 5.3 to 20.5 Mb, and from 34.1 to 45.4 Mb. These associ-
ations encompass two regions of intermediate gene density
surrounding the centromere on chromosome 1, but do not
include the gene-rich edges of this chromosome (5 and 6 Mb
in size, respectively). Interestingly, the two largest Bayes fac-
tors across all 20 phenotypes were within these two regions,
on Pv01 at positions 15.4 and 42.2 Mb. These associations
were two that overlapped with top associations from pub-
lished, balanced GWAS (Table 2). Outside of chromosome
Pv01, the most significant Bayes factor was found for a SNP
on Pv07 at 14.5 Mb. This SNP was not within 100 kb of any
annotated gene.

The alternate allele for the SNP on Pv01 at 15.4 Mb was
associated with significant decreases in biomass, days to
flowering, days tomaturity, plant height, and seedappearance
score. It was also associated with increases in common bac-
terial blight (CBB) damage score, harvest index, root rot
damage score, rust damage score, seed fill duration, white
mold damage score, and zinc deficiency damage score (Figure
3D). Here, higher damage scores indicate increased levels of
damage. The alternate allele for the SNP on Pv01 at 42.2 Mb
was associated with significant decreases in biomass, days to
flowering, growth habit (as an increased tendency toward
determinacy), harvest index, lodging score, plant height,
and seed yield, and increases in root rot damage score (Fig-
ure 3E). The allele was also significantly associated with ear-
lier “earliest year in the CDBN,” indicating that this allele has
been declining in frequency in entries in the CDBN over time.
The alternate allele for the SNP on Pv07 at 14.5 Mb was
associated with significant decreases in biomass, days to
flowering, plant height, and seed appearance score (Figure
3F). Overall, two groups of phenotypes had consistent pat-
terns of effect sign and effect magnitude for most significant
SNPs (Figure 3C). Days to maturity, growth habit, seed yield,
days to flowering, biomass, and plant height had a large
fraction of SNPs with significant effects with similar effects
on these phenotypes; in most pairwise comparisons of these
six traits, 40–90% of SNPs had the same sign and similar
magnitudes of effect (Figure 3C). The same was true for seed
fill duration, white mold damage score, zinc deficiency dam-
age score, harvest index, CBB damage score, and rust damage
score; in pairwise comparisons of these six traits, 25–80% of
SNPs had the same sign and similar magnitudes of effect
(Figure 3C). The phenotypes in the first group corresponded
to plant architecture and size, while several phenotypes in
the second group were related to disease response. Few other
SNPs (, 10%) affected these two clusters of phenotypes to a
similar extent with the same sign. Interestingly, groups of
highly positively correlated phenotypic BLUPs, or genetic val-
ues, did not consistently match groups with large fractions of
SNP effects of the same sign and similar magnitude (Figure
S4). Overall, 90% of SNPs with Bayes factors . 102
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affected $ 10 phenotypes (Table S5) and typically affected
phenotypes in the two groups in similar ways. However, a few
exceptions included Pv03 at 10.64 Mb, which affected only
plant height; Pv04 at 17.77 Mb, which affected seed weight
and varied with earliest year in the CDBN; Pv07 at 13.94 Mb,
which affected biomass; and Pv08 at 33.18 Mb, which af-
fected days to flowering, plant height, and seed appearance.

Discussion

Thegenes andgenomic regions affectingphenotypic variation
in commonbeanarenowbeingnarroweddownwith theaidof
a recently released high-quality reference genome (Schmutz
et al. 2014). The use of previously generated phenotypic data
for genetic analysis could circumvent the “phenotypic bottle-
neck” that has previously constrained our understanding of
the genotype–phenotype map in this species. The CDBN of-
fers a vast phenotypic data resource for common bean; how-
ever, it was unclear whether the sparse phenotypic data
matrix from the CDBN, where only 20–30 entries were tested
in each location and year, could be used for GWAS. Our re-
sults provide evidence supporting the use ofMETs such as the
CDBN for genetic analysis. First, 8 of the 22 phenotypes

created using the CDBN data had associations that fell above
the Bonferroni–Hochberg FDR threshold, and 5 of these phe-
notypes had multiple independent peaks that fell above this
threshold. Given our FDR of 10%, there were $ 30 distinct,
significant associations with these CDBN-derived BLUPs for
phenotypes, and these associations tended to be found in
phenotypes with higher heritabilities. However, it is still sur-
prising that only 8 of the 22 phenotypes had significant as-
sociations by the FDR criterion.

We hypothesized that noise caused by environmental or
gene-by-environmental variation in phenotypes across years
and locations reduced our ability to find significant associa-
tions in a condition-by-condition analysis. Supporting this
hypothesis, we found that phenotypes with more data points
in the CDBN were more likely to have associations above the
FDR.Weusedmash to increase our power to detect significant
effects for 20 of these phenotypes, and used an analog of the
FDR, the local false-sign rate, to determine whether an
effect was significant. Mash has been demonstrated to have
higher power to detect significant shared effects in correlated
phenotypes by shrinking effect estimates toward covariance
matrices informed by patterns in the data (Urbut et al. 2019).
Withoutmash,we found significant associations for 8 phenotypes;

Figure 3 Patterns of phenotypic effects of genetic associations for 22 phenotypes from the CDBN, determined using multivariate adaptive shrinkage.
(A) SNPs with significant effects on 1 or more of the 22 phenotypes in the CDBN. (B) Manhattan plot of the Bayes factor (log10) comparing the model
likelihood that the SNP has significant effects to the likelihood that it has no significant effects. Bayes factors of . 102 are considered decisive evidence
in favor of the alternate model. Point color represents the number of phenotypes for which the SNP has a local false-sign rate, 0.05. Squares represent
even chromosomes, while circles represent odd chromosomes. The top associations for three regions of the genome are highlighted. (C) Correlation in
the sign and magnitude of significant effects in all pairwise comparisons of the 22 CDBN phenotypes. Circle size and color indicate the fraction of all
significant SNPs that have the same effect sign and similar effect magnitude. (D–F) Effect estimates and standard errors for 22 phenotypes for the top
associations from three regions of the genome, (D) P. vulgaris chromosome 1 (Pv01) at 15.4 Mb, (E) Pv01 at 42.2 Mb, and (F) Pv07 at 14.5 Mb. Genomic
locations are based on the P. vulgaris v2.1 genome annotation. Standard error bars are colored by the six groups present in (C). CBB, common bacterial
blight; CDBN, Cooperative Dry Bean Nursery; CTV, curly top virus.
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using mash, we found significant associations for all 20 phe-
notypes. Thus, phenotypes derived from CDBNMET data are
suitable for analysis using GWAS, and the additional pheno-
typic data available in this MET can be analyzed in mash to
boost the power to detect significant genetic effects for SNPs
that affect multiple phenotypes.

Second, associations found in our GWAS colocalized with
resultsofpreviousGWASusingbalancedphenotypicdata sets.
Threeassociations fromthis studyoverlapped topassociations
from published, balanced GWAS: Pv01 at 13.7 Mb, Pv01 at
42.2 Mb, and Pv07 at 34.2 Mb (Table 2). The association at
13.7 Mb fell near the candidate gene KNU, a gene that is
activated in, and later promotes, the transition to determi-
nate floral meristem development. This peak falls within an
association for days to flowering observed previously
(Moghaddam et al. 2016). The association at 42.2 Mb fell
near the candidate gene VIP5, an important regulator of flow-
ering time in A. thaliana and other species (Huang et al.
2012). Other mapping studies have also colocated VIP5 with
QTL for flowering time (Zhou et al. 2014). The association at
34.2 Mb on Pv07 also overlapped the strongest association
for the earliest year each entry was grown in the CDBN, a
proxy for the age of the CDBN entry. This association fell near
the candidate gene SAR1, which increases plant height and
internode distance in A. thaliana (Cernac et al. 1997; Parry
and Estelle 2006). A genomic region affecting determinacy in
common bean has been confirmed on Pv07; a genomic region
affecting determinacy, part of growth habit, would also affect
the traits that we find to be affected by this region: biomass,
days to flowering, plant height, and seed appearance score.
The alternate allele for the signal on Pv07 occurred in newer
CDBN entries.

Third, our results are consistent with the recent history of
breeding efforts in common bean, and provide a map of the
genomic regions that have been associatedwith improvement
in the species. Using mash, we found two major genomic
regions on Pv01 associated with many CDBN phenotypes
(Figure 3B). Though SNPs for mash were chosen to have
low LD (r2 , 0.2), significant SNPs nonetheless highlight
two, large linked regions on chromosome 1 that have effects
on many phenotypes. Regions of this size (15 and 11 Mb)
with evidence for significant effects almost certainly require
the presence of multiple linked genes with effects onmultiple
phenotypes. Linked effects do not preclude pleiotropic effects
occurring at single loci within this large region, though mo-
lecular confirmation of pleiotropy is still necessary. We sug-
gest that the two major genomic regions on Pv01 associated
with many CDBN phenotypes were major targets of selection
by breeders for entries that matched an “ideotype” for com-
mon bean. The original ideotype had a long hypocotyl, many
nodes carrying long pods and without side branches, small
leaves, and determinate growth (Adams 1982; Kelly 2001).
The primary plant architecture change introduced into geno-
types tested in the CDBN over the past 30 years was the
adoption of upright indeterminate architecture (type II),
which replaced upright determinate (type I) architecture in

the Mesoamerican race and was introduced into prostrate
indeterminate (type III) germplasm (Kelly 2001; Soltani
et al. 2016). Generally, entries with type II architecture yielded
more than determinate (type I) entries, due to the increased
pod set associated with indeterminate growth (Kelly 2001).
Entries with type II architecture could yield more than type III
entries under grower-preferred direct harvest (Eckert et al.
2011). An association for growth habit on Pv01 at 42.2 Mb
fell near the gene VIP5; this SNP and genewere also candidate
associations for seed yield in this study and days toflowering in
Moghaddam et al. (2016). The Pv01, Pv09, and Pv10 associ-
ations for growth habit alter determinacy and segregate in
different genotypes, consistent with the known multiple ori-
gins of determinacy segregating in this species (Figure S3C).
However, these associations were not sufficient to explain all
variation in determinacy present in this panel, perhaps due to
the relative rarity of some variants controlling determinacy
within the CDBN panel.

Bean breeders in North America generally avoided mod-
ifying days to flowering over the years of the CDBN, to protect
matching of phenology to specific production environments.
However, when type II architecture was introduced from
Mesoamerica race into the Durango/Jalisco race, the first
entries with this architecture showed delayed flowering,
which prevented pod set on lower nodes (Vandemark et al.
2014). Our strongest association for days to flowering was
near the candidate gene KNU. This gene is a candidate for the
gene Higher response (Hr) (Gu et al. 1998), which affects
flowering time. A basic local alignment search tool analysis
of random amplified polymorphic DNA primers from previ-
ous mapping analyses constrains the location of Hr between
1.4 and 21Mb on Pv01 (Gu et al. 1998).Hr is thus a plausible
candidate for the peak at 13Mb.Hr is known to be in LD with
the common bean gene terminal flower 1 (PvTFL1 or fin) on
Pv01, a major determinacy gene in common bean, (Repinski
et al. 2012). Thus, this gene could plausibly have been in-
troduced during the introduction of type II architecture.

The primary disease resistance phenotype introduced into
entries in the CDBN over the past 30 years was bean rust
resistance. Bean rust (U. appendiculatus) was a major disease
in North America in the 20th century (Zaumeyer 1947). Al-
though the first rust-resistant varieties were released in the
1940s (Zaumeyer 1947), rust was primarily controlled by
chemicals prior to the concerted introduction of rust resis-
tance genes in the mid-1980s (Kelly 2001). Our strongest
association for rust damage score fell just upstream of the
gene model Phvul.011G193100, which maps in the interval
suggested to contain the resistance gene Ur-3 (Hurtado-
Gonzales et al. 2017). Initially described by Ballantyne
(1978), Ur-3 was the first gene aggressively used by US
breeders to address bean rust in the mid-1980s (Hurtado-
Gonzales et al. 2017). Combining Ur-3 and Ur-11 provides
resistance against all known rust races (Pastor-Corrales et al.
2003), and the two genes formed the basis of breeding efforts
to pyramid major bean rust resistance genes that led to the
release of pinto, great northern, and black bean germplasm
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currently used in breeding programs. The alternate allele was
present in the early years of the CDBN data in the Mesoamer-
ican race, but was either absent or rare in the Durango/Jalisco
race in the CDBN until 1988, when it was observed in the pinto
Sierra and the great northern variety Starlight. The alternate
allele was not widely distributed in the Durango/Jalisco race
until themid-1990s (Figure S3D). These results agree with the
known timing of breeding for rust resistance.

Finally, this work allowed us to characterize the patterns of
sharingof genetic effects onphenotypes in theCDBN,using an
exciting new method to determine if this data set could un-
cover novel results. Selection for the commonbean ideotype is
known to have led to pleiotropic effects on other traits, such as
seed yield, biomass, and plant height (Soltani et al. 2016).
Previous work has indicated that genes responding to photo-
period have a major influence on many traits, including bio-
mass, harvest index, days to maturity, and plant architecture
traits such as the number of branches and nodes (Wallace
et al. 1993; Gu et al. 1994). Our associations also revealed
substantial overlaps in the genomic regions affecting pheno-
typic variation, suggesting the presence of substantial pleiot-
ropy or linked genes of major effect. The genomic region on
Pv01 from 34 to 48 Mb has also been identified in previous
QTL mapping studies as one that affects many traits, includ-
ing seed yield, days to flowering, days to maturity, seed fill
duration, seed weight, biomass, and pod wall ratio (Trapp
et al. 2015, 2016). Our mash analysis reveals two major
groups of phenotypes with commonly shared SNP effects,
one corresponding to plant architecture and size, and the
other related to disease response. Very few SNPs had similar
effects on both groups of traits (Figure 3C). This indicates
pleiotropy or correlated effects within each group of pheno-
types, and unlinked effects or antagonistic pleiotropy be-
tween these groups of phenotypes. In addition, the two
groups of phenotypes that had similar genetic effects at the
SNP level did not substantially overlap groups of phenotypes
that had highly correlated genetic values by BLUP estimation
(Figure S4). Though many genomic regions affect multiple
phenotypes in the CDBN, the large shared effects detected by
mash do not always combine additively into the overall pat-
terns of genetic correlation present in this data set. However,
two sets of phenotypes did have shared SNP effects and sim-
ilar patterns of phenotypic correlations: lodging, seed yield,
and growth, and biomass, plant height, days to flowering,
and days tomaturity.We suggest that these seven phenotypes
were the most important when breeders selected for pre-
ferred common bean ideotypes. In contrast, many of the
remaining phenotypes were related to disease damage; these
phenotypes might be more affected by epistatic interactions
between genomic regions or by tradeoffs across environments.

Overall, METs such as the CDBN offer a remarkable op-
portunity to identify candidate genes underlying phenotypic
variation and phenotypic plasticity, and to identify how arti-
ficial selection has affected crop phenotypes through time.We
note that the genomic regions found with this approach are
likely to have consistent, stable phenotypic effects across a

large range of environments. These genomic regions are thus
likely to be generally useful to bean breeding. Detailed map-
ping and cloning of the causative genes in these regions will
provide insight into molecular mechanisms that control these
critical phenotypes important for high productivity of com-
mon bean. In the future, we also believe that it would be of
great value to crop breeding and genetics to archiveDNA from
all material used in breeding programs and MET trials.

Many crops, both in the U.S. and worldwide, have public
trials that could be mined in a manner similar to our approach.
This work will require collaborative efforts between crop
breeders and bioinformaticians to digitize, clean, and analyze
phenotypicdata fromMETs, and toobtaingeneticmaterial from
successful andunsuccessful trial entries. Phenotypic andgenetic
datacanbecombinedusinggenomicselectionapproaches,orby
GWASusingmodels thatadjustBLUPs foreffectsof kinship, trial
location, and trial year (Rife et al. 2018; Sukumaran et al.
2018). If effect estimates for genetic markers can be obtained
and some effects are strong, the patterns of significant effects
across markers and phenotypes can be determined using a
metanalysis approach such as mash (Urbut et al. 2019). A
broader effort to collectively mine such extensive phenotypic
data could identify conserved genetic factors important for
improved productivity for many crops in major production
regions. We present the CDBNgenomics R package and anal-
ysis as a resource for other researchers to use the CDBN data
set, and to apply these techniques to other MET data sets.
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