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Abstract

Inferring the gene regulatory network (GRN) is crucial to understanding the working of the
cell. Many computational methods attempt to infer the GRN from time series expression
data, instead of through expensive and time-consuming experiments. However, existing
methods make the convenient but unrealistic assumption of causal sufficiency, i.e. all the
relevant factors in the causal network have been observed and there are no unobserved
common cause. In principle, in the real world, it is impossible to be certain that all relevant
factors or common causes have been observed, because some factors may not have been
conceived of, and therefore are impossible to measure. In view of this, we have developed
a novel algorithm named HCC-CLINDE to infer an GRN from time series data allowing the
presence of hidden common cause(s). We assume there is a sparse causal graph (possibly
with cycles) of interest, where the variables are continuous and each causal link has a delay
(possibly more than one time step). A small but unknown number of variables are not
observed. Each unobserved variable has only observed variables as children and parents,
with at least two children, and the children are not linked to each other. Since it is difficult to
obtain very long time series, our algorithm is also capable of utilizing multiple short time
series, which is more realistic. To our knowledge, our algorithm is far less restrictive than
previous works. We have performed extensive experiments using synthetic data on GRNs
of size up to 100, with up to 10 hidden nodes. The results show that our algorithm can ade-
quately recover the true causal GRN and is robust to slight deviation from Gaussian distribu-
tion in the error terms. We have also demonstrated the potential of our algorithm on small
YEASTRACT subnetworks using limited real data.

Introduction

Knowing the gene regulatory network (GRN) in the cell is crucial to understanding the work-
ing of the cell. In the cell, some proteins are transcription factors (TFs) which trigger or inhibit
the transcription of other gene(s), which are then translated into proteins with a delay. These
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delays have been known to affect the network stability, or cause oscillations [1-4]. A simplistic
view of the GRN is a directed network resulting from the complex causal interactions between
genes, where each directed link is labeled with the delay. Since experimentally determining the
regulatory targets of each TF is expensive and time-consuming, there have been many compu-
tational methods that attempt to utilize high-throughput microarray and RNA-seq gene
expression data to infer the GRN. High-throughput technology such as microarray or RNA-
seq allows the expression of thousands of genes to be measured at the same time, and allows
time series expression data to be obtained when this is done for a number of time points.

Even though many GRN inference methods have been developed, to our knowledge, they
all implicitly make the assumption of causal sufficiency, i.e. all the relevant factors in the causal
network have been observed and there are no unobserved common cause. This assumption is
convenient, but very unrealistic. For example, miRNAs were previously not thought to take
important roles in gene regulation. In principle, in the real world, it is impossible to be certain
that all relevant factors or common causes have been observed, because some factors may not
have been conceived of, and therefore are impossible to measure.

Gene Network Inference

There have been many GRN inference algorithms and models, with different levels of details,
see [5, 6] for surveys of GRN modelling and [7] for survey on GRN inference algorithms for
microarray expression data.

Due to the nature of GRN, most models of GRN could be described as a graph, where the
vertices are the genes under consideration, and the edges represent the regulatory relationships.
Different levels of details could be achieved by labeling the edges with extra information. In the
simplest case, an undirected graph could be used, in which case only an association network of
the genes is captured. ARACNE [8] infers undirected network using mutual information, but
also uses Data Processing Inequality to try to eliminate indirect interactions. C3NET [9] first
identify gene pairs with significant mutual information, then link each gene to the neighbor (if
any) with highest mutual information, and output an undirected and conservative network,
with no other explicit means of eliminating indirect effect.

But without direction in the edges, there is no causal interpretation. On the other hand,
directed edges could be used, as in [10], which uses genetic algorithm to optimize a score based
on partial correlation, estimated regulatory direction and effect, but the output edges are not
labeled with time delays. Since the process of gene transcription and mRNA translation both
take time, and non-negligible translational time delays have been observed [11, 12]. Moreover,
RNA polymerase, a main working protein in transcription, has been observed to pause during
transcription, adding a cumulative of 204-307s over a 2.3kb region [13]. It is known that these
delays affect the network stability, or cause oscillations [1-4]. Therefore, these delays should
also be taken into account for a more accurate GRN model.

Some algorithms consider delay of only one time step, as in [14], which considers discre-
tized expression data, and uses association rule mining to find frequent regulatory patterns, but
without eliminating indirection association. Boolean network, e.g. in [15], is a classic model of
GRN where the expression of each gene is discretized to only “on” or “off”, and the expression
of each gene at the next time step is a boolean function of expression of its regulators at the cur-
rent time step. Another popular class of GRN model is Ordinary Differential Equations (ODE),
where the rate of change of expression of each gene is a (linear or nonlinear) function of the
expression of the gene and its regulators. When discretized in time, it reduces to one time step
model. Examples are [16], which uses Gaussian process for Bayesian inference of an ODE
model; and DELDBN [17], which combines ODE model with local Bayesian analysis, and uses
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estimated Markov blanket as the regulators of each gene. There are also Dynamic Bayesian
Network (DBN) based models, which avoids the limitation of plain Bayesian network that no
cycles are allowed. An example is [18], which utilizes Bayesian structural expectation maximi-
zation to infer a one time step DBN model.

There are relatively few algorithms that infer multiple time delays. [19] first estimates the
possible delays from pairwise mutual information from discretized expression data, then infer
multiple time step DBN by minimizing MDL score using genetic algorithm. Banjo [20] also
optimizes a score metric on DBN using discretized expression data by MCMC based method,
and the program later allows multiple delay. TD-ARACNE [21] is an extension of ARACNE
with time delays. But these algorithms do not label the edges of GRN with regulatory effect. In
contrast, in DD-lasso [22], the expression of a gene is a linear combination of expression of its
regulators at (possibly different) previous time steps. It first estimates the delays between each
gene pairs by maximum likelihood, then uses lasso [23] to remove indirect effects and estimate
the coefficients, therefore the edges are labeled with the delays as well as the regulatory effect.
CLINDE [24] uses a similar model, but uses conditional independence of the shifted time series
to estimate the delays and eliminate indirect effects.

Some other algorithms use perturbation data, or use a combination of perturbation data
and time series expression. [25] is a parallel implementation of the Network Identification by
multiple Regression (NIR) algorithm utilizing perturbation data. [26] needs promoter sequence
and TF binding site information in addition to (non-time series) expression data. [27] is an
Inductive Causation (IC) [28, 29] based method, which uses steady state data, with partial
prior knowledge of ordering of regulatory relationship, and uses entropy to test conditional
independence, giving an acyclic network where some edges may remain undirected. [30] uses
convex programming on an ODE model using perturbation data. TSNI [31] solves a discretized
linear ODE model using time series expression data after each gene is perturbed. [32] uses a
Dynamic Nested Effects Model using perturbation data, where the delays are assumed to have
exponential distribution. [33] uses knockdown data for Boolean network with exponentially
distributed time delays.

Causality Inference

Outside of GRN inference, there have been quite a lot of works in the last two decades on infer-
ring a causal network from observational data. Under the framework, the unknown causal rela-
tionships are represented by a directed graph, and the observed correlations and partial
correlations are related to d-separations among the variables (through statistical tests), and
therefore constrain the possible structures of the graph. In the basic framework, correlations
are used to give possible causal links (without direction), and partial correlations are used to
remove indirect links, finally the assumption of acyclicity gives rise to orientation rules to give
directions to the links. Therefore, sometimes some links would remain undirected, as both
directions are possible. These researches have been well summarized by [28] and [29]. Most
works focused on causal structures represented as directed acyclic graph (DAG), because time
delays are not considered, and the data used are not time series data. [34] attempted to extend
the method for acyclic graph to cyclic graph, with more complex orientation rules. More
recently, LINGAM [35] formulated the causality inference as Independent Component Analy-
sis (ICA) for the linear non-Gaussian acyclic structural equation model, and [36] extended it to
the cyclic case. [37] extended LINGAM to add time delays by first fitting an autoregressive
model for the time delayed effects, and then fit the residuals with LINGAM. [38] revisited the
concept of Granger Causality. [39] generalized Bayesian network structure learning to cyclic
structure.
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Hidden Common Cause

Hidden (latent) variables have been an important topic in causality inference. The problem is
that when hidden common causes are ignored, the causality inferred could be misleading. This
is illustrated in Fig 1, where some nodes are wrongly thought to be causally linked.

[40] is an early work that formulates the problem as determining the constraints on the vari-
ance-covariance matrix of observed data, then searching for a causal structure that would
explain the constraints. Some works assume the presence of hidden common cause of observed
variables, but focus only on the relationship of observed variables, with indication that some
may have hidden common cause. For example, [41] is a Granger-causality based method that
learns a mixed graph from time series data, where directed edges represent direct causal rela-
tionship, and dashed edges represent relationship due to hidden common cause. [42] is an
extension of the FCI algorithm [29] and also outputs a mixed graph, but does not need time
series data. [43] is another extension of the FCI algorithm, and learns an acyclic network with
no time delays, and with no consideration that the latent variables may have observed variables
as parents. In [44], a stochastic differential equation model (discretized in time) is used, where
hidden variables are assumed, but only to more accurately estimate the relationship between
observed variables, by a convex optimization based method. In [45], the d-separation and d-
connection information, which are in practice provided by conditional tests, are encoded as a
Satisfiability (SAT) problem, which is then incrementally solved to attempt to recover the
dependency structure between observed variables, with indication that some have latent vari-
ables, but some edges may be marked as “unknown” if the given information cannot determine
whether it is present or absent. [46] uses nested effects models using perturbation data with no
time delays, and hidden common effect of two observed variables may be predicted, and some
edges indicate possible presence of hidden nodes.

Some works assume that hidden variables may have other hidden variables as parents, but
cannot have observed variables as parents. [47] and [48] are works in this direction, where
observed variables are linear function of its parents (either hidden or observed), and hidden
variables can be nonlinear function of its parents (only hidden variables). In [49], a linear
Bayesian network is learnt, but it is assumed that there are no edges among observed variables,
and that the hidden variables are linearly independent.

On the other hand, some works are more general and allow the hidden variables to have
observed variables as parents. [50] uses a dynamic Bayesian network (DBN) model, and is
based on the observation that in DBN, ignoring hidden variable usually results in violation of
Markov property. Based on this, the algorithm tries to find non-markovian correlations (those
across more than one time step) and introduce hidden variable to explain them. However, this
work does not evaluate how close the resulting dependency structure is to the assumed causal
structure, but only focuses on the likelihood on the testing set. [51] learns a discrete Bayesian
network with hidden variable without time delays. It assumes that a hidden variable has
observed variables as parents and children. It is motivated with the observation that when the
hidden variable is not taken into account, the inferred dependency of the observed variables
(the parents and children of the hidden variable) will usually be overly complicated, with many
connections. Based on this, they find structural signature (semi-clique) to guess the position of
the hidden variable(s) and its local structure, then make adjustment by explicitly linking the
variables of the semi-clique with the introduced hidden variable. This local structure may then
be fine-tuned by Structural-EM (SEM). This work also focuses on the likelihood in the evalua-
tion, but not the inferred structure. This also places some restrictions on the subnetwork sur-
rounding the hidden variable(s), e.g. a hidden variable must have parent(s), which are observed
variable(s), also the total number of parents and children of a hidden variable must be at least
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Fig 1. Example of Misleading Inference if Hidden Common Cause is Ignored. The number on the link is
the delay, and + or — is the sign of the effect.

doi:10.1371/journal.pone.0138596.g001

four, as the smallest semi-clique has size four. [52] complements [51] and focuses on learning
the dimensionality (the number of states) of hidden variables.

Objective

First of all, it is important to emphasize that even inferring the causal relationships of observed
variables is highly non-trivial, so inferring causal relationships of hidden variable(s) is obvi-
ously much more difficult and it is not possible to recover all possible cases of hidden variables.
In some cases, the hidden variable is not very interesting, and in some cases, it would be too dif-
ficult to recover. For instance, if a hidden variable has no children, or one child with zero or
one parent, it is not very interesting and is difficult to detect and estimate. The case that is feasi-
ble to handle is a hidden variable with two or more observed children, with or without parents,
so we focus on this case.

In this paper, we assume that there is a sparse causal graph (possibly with cycles) of interest,
where the variables are continuous and each causal link has a delay (possibly more than one
time step). A small but unknown number of variables are not observed. Each unobserved (hid-
den) variable has only observed variables as children and parents, with at least two children
and possibly no parents, and the children of unobserved variable(s) are not linked to each
other. Although it is conceivable that two children of a hidden variable may be linked, so that a
child has both the other child and the hidden variable as parents, it is difficult to differentiate
whether the high correlation between two children are solely due to the hidden common cause,
or also due to the presence of direct link. Therefore, we make the simplifying assumption that
the children of hidden variable(s) are not linked to each other. Our objective is to infer the
causal graph with the delays, given the time series of the observed variables. Since it is difficult
to obtain very long time series, it is more realistic that the algorithm be also capable of utilizing
multiple short time series, which we call segments in this paper. The segments are not necessar-
ily of the same length (e.g. obtained from replicate experiments). To our knowledge, previous
works either make much more restrictive assumptions or give different types of output (e.g. no
delays in the links).

Methods

The overall flow of the proposed method is given in Fig 2. The steps are 1) infer an initial GRN
of the observed genes, 2) determine the genes with hidden common cause(s) by the variance of
the error terms, 3) estimate the hidden common cause(s), 4) infer the parents and children of
the hidden common causes. The program code is written in C, any parameters described in
this paper has a default value, and can be changed as needed. Also, sample running time is pro-
vided to give an idea of the running time needed. The program can be obtained at https://
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Fig 2. Overall Flow of the Algorithm. The steps are 1) infer an initial GRN of the observed genes, 2) determine the genes with hidden common cause(s) by
the variance of the error terms, 3) estimate the hidden common cause(s), 4) infer the parents and children of the hidden common causes.

doi:10.1371/journal.pone.0138596.9002

github.com/peter19852001/hcc_clinde. Below we first describe the data and model assumed in
this paper, then describe each step in more details, where we first describe the case with one
segment, and later we describe the case of multiple segments in a separate subsection.

Data and Model
The GRN model assumed here is:

n+ny,

xj(t) = Z ax,(t — ;) + €(t)

where

x,(t) is the expression value of gene i at time £,i = 1,.. .,n + ny, t = 1,.. .,m, and there are n
observed genes, 1, hidden variable(s) and m equidistant time points.

1y, is unknown, but 0 < n;, < n.

a;; is the regulatory effect of gene i on gene j, where the regulatory effect is repressive if a;; is
negative, activatory if positive, and absent if zero.

s a;;=0fori,j > n, i.e. there are no causal links between hidden variables.

fori > n, |{j: a; # 0}| > 2, i.e. each hidden variable has at least two observed genes as
children.
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if a gene has a hidden parent, it has no other parents.

7;; is the positive time delay of the edge i — j (if a;; # 0).

€j(t) is the error term for gene j at time t. We assume that E(¢(¢)) = 0 and Var(ei(t)) = o ie.
the error terms are zero-mean and have fixed variance. They are also assumed to be mutually
independent, but otherwise we do not make stringent assumptions on the distribution of the
error terms.

Note that this model does not preclude self-regulation or cycles in the GRN, though any
cycles must have positive delays. The given data is {x;(f)}, for i = 1,.. .,n. If the raw input data
does not have equidistant time points, interpolation (e.g. spline interpolation) could be per-
formed as preprocessing before using this algorithm.

Initial GRN

The first step is to obtain an initial GRN. There are not many GRN inference methods that
handles multiple time delays, CLINDE [24] and DD-lasso [22] are two of them, and both han-
dles multiple short time series. We choose CLINDE to infer the initial GRN, based on the com-
parison in [24], which shows that CLINDE outperforms DD-lasso for smaller number of time
points relative to the number of genes. Also because CLINDE does not restrict the multiple
time series to be of the same length, unlike DD-lasso.

CLINDE is based on the PC algorithm [29], and consists of two stages. Stage 1 considers all
(directed) pairs of genes x and y, and considers all possible delays d up to a maximum allowed
delay, to determine if x — y is significant with the delay d based either on a correlation test, or
mutual information test. The test is considered significant if the score of the test is larger than a
score threshold. In the correlation test and partial correlation test below, the score is —log;o(p-
value), and in the mutual information test and conditional mutual information test below, the
score is the (conditional) mutual information. So a higher score threshold means a more strin-
gent test. And for correlation test, the regulatory effect (positive or negative) is also estimated if
the edge is significant. After stage 1, there may be multiple edges from x to y, but with different
delays. Also note that there may be cycles, but any cycle must have positive delays. Stage 2
attempts to prune the edges by partial correlation test or conditional mutual information test.
Iteratively, the remaining edges are considered for pruning by conditioning firston 4 = 1
neighbor, then h = 2 neighbors, and so on up to h = Ny, for a given parameter Nj. In each itera-
tion, each remaining edge is tested by conditioning on 4 neighbors, shifted properly using the
delays estimated in stage 1. If the conditional test is not significant, the edge is pruned. After
stage 2, the remaining edges are output as the GRN. Note that the pruning removes only indi-
rect effects, and with sufficient data (so that the conditional tests truely reflects conditional
independence relationships) any genuine cycles should remain, because each edge in the cycle
is a direct effect. In this paper, we use (partial) correlation tests, which is the default for
CLINDE. And after stage 2, the links with zero estimated delays are discarded to get the initial
GRN for the following steps, as we assume the delays are positive.

Since CLINDE can infer cyclic GRN, so by using CLINDE for the initial GRN, HCC-CLINDE
can handle cyclic GRN without further special handling.

Identification and Estimation of Hidden Common Cause

After the initial GRN of the observed gene is obtained, for each gene, we can regress its expres-
sion on the shifted expression of its parents and obtain the corresponding error terms. There-
fore we can calculate the empirical variance of the error terms. The idea is that for genes with
hidden common causes, in the initial GRN, its parents would be determined incorrectly (likely
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Fig 3. Example of Hidden Node. X and Y are independent. H is hidden.
doi:10.1371/journal.pone.0138596.g003

the parent(s) or other children of the hidden variable) because the hidden variable is not
observed, and consequently the variance of the error term is likely to differ from the expected
fixed variance. On the other hand, if a gene has no hidden variable as parent, its parents would
hopefully be determined correctly, and therefore the error term would have the expected vari-
ance. The variance of the error terms therefore provides a clue to whether a gene has hidden
variable as parent.

To illustrate, consider the case depicted in Fig 3, where X and Y are independent and H is

hidden:
H = aX+bY+e,
Z = cH+e,
W = dH+e,

Suppose that in the initial GRN, the parents of Z are X and Y, so that Z = c(aX + bY + ¢,) + e,
and the variance of the error terms would be Var(ce, + e,) = ¢*Var(e,) + Var(e,) > Var(e,).
Similarly, if the parent of Z was incorrectly determined to be W, whereas we have

Z =5W — e, + e, and the variance of the error terms would be

Var(e, +e,) = ;—2 Var(e,) + Var(e,) > Var(e,). In both cases, the variance of the fitted error
terms would be larger than expected. On the other hand, in the initial GRN, if too many false
parents were predicted for a gene, its error terms may have smaller variance than expected, but
this is not common in CLINDE. In this paper, we use a simple thresholding to decide if a gene
may have hidden parents: Var(e) > (1 + p)o?, where Var(e) is the observed variance of the
error terms of a gene, p > 0 (with a default value of 0.1) is the tolerance, and ¢” is the expected
variance. Those genes determined to have hidden parents are called candidates.

PLOS ONE | DOI:10.1371/journal.pone.0138596 September 22,2015 8/47
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If the number of observed genes 7 is small, we assume that the expected variance o” is
known and given. In contrast, if  is larger, we could instead estimate ¢ from the observed var-
iances of the error terms of the genes. For each observed gene, we can calculate the variance of
the error terms based on the initial GRN. Based on the assumption that there are only a small
number of hidden variables relative to the number of observed genes, in this paper we simply
use the median of these variances as the estimate of the expected variance.

If there are no candidates, we output the initial GRN as the final GRN. Otherwise, we cluster
them to estimate the hidden common cause for each cluster, based on the fact that genes with
common parent are correlated. From our preliminary tests, we found that even a simple greedy
clustering algorithm works adequately:

1. Let the k candidates be {g1,2>,. . -.gx}

2. Setn.«—1,¢; g, 71 0, C; — {g1}

3. Set po + (1+p)e®, where e” is the expected variance of the error terms, and p is the tolerance
4, Fori=2,...k

a. Letd; = argmax, < ; <, d(cpg:), and set 7; be the associated time shift of g; relative to ¢;

b. Ifd(Cd[,g[) Z \/(1 - #Ucd,)) (1 — #((Jgi)), update Cdi — Cd,U{gi}

c. Otherwise, set n, < n.+ 1, then set C, — {g}, 7, < 0
5. Output the n, clusters {C;: 1 < j < n.}, and the time shifts {r;: 1 <i < k}

where ¢; is the center of cluster i, C; is cluster i. d(x,y) measures the similarity of two time series
x and y, here we use the maximum absolute correlation of the shifted time series (shift y relative
to x, from —7 to 7y, where 7, is the maximum delay).

The basic idea is that for each series, find out which cluster is the most similar to it, and if
the similarity is high enough, it is included in that cluster; otherwise it becomes a new cluster.
The similarity threshold is obtained from simple calculations as follows. Consider Fig 3 for Z
and W, where Z = cH + e, and W = dH + e,,, so we have:

Var(Z) = cVar(H)+ Var(e,) = ] —1ﬁz C2Var(H), with ff, = Y/:*E%;
Var(W) = d'Var(H) + Var(e,) = g—g-d*Var(H), with §, = 3255%
Corr(Z, W) = Cov(Z, W) _ cdVar(H 1
\/Var(Z)Var(W) \/1—ﬁ c*Var(H) =7 d’Var(H)

(1 =p,)(1 — f,) which decreases with increase in f§, and f,

Since our threshold of the variance for e, and e,, is po = (1 + p)ez, for two genes z and w having
a hidden common cause, we have the corresponding lower threshold of correlation as

P P
\/(1 - Var[()z)) (1 - Var((]w))

After the clustering, if there are no clusters with size larger than one, there is no need to esti-
mate the hidden common causes, and we simply output the initial GRN as the final GRN. Oth-
erwise, we would estimate a hidden common cause for each cluster C; where |C;| > 1. Suppose
Ci=1{gi1:8i2- - ~&i|c)}> We first center the expression of these genes to get
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Segment 1 Segment 2

Estimated hidden common cause

Fig 4. lllustration of Estimation of Hidden Common Cause from Un-aligned Time Series.

doi:10.1371/journal.pone.0138596.9004

x,;(t) = x,;(t) — = >°" x,;(7). Since each gene g;; has the associated time shift 7; ; relative to
the cluster center, we wish to estimate the coefficients a; = [a, ... 4, | and the hidden com-
mon cause h(t) where x; (t — 7, ;) ~ a,;h,(t). Note that the scale of @; and h(#) is undetermined
asa,h,(t) = (ja;;)(Bh,(t)) for any B # 0. Also, since the time series may not be aligned (see
Fig 4), so we first estimate the overlapping part, then estimate the prefix and suffix.

Suppose that relative to the cluster center, the overlapping parts are t; <t < t,, let Y; = [yx]
for1 <k <|Cjlandt, <t<t,andy, = x[(t —1,,),and let h = [h(t)] for t, < t < t,, we want
Y, ~a Th, as illustrated in Fig 4. This is conveniently solved by Singular Value Decomposition
of Y; as low rank approximation to get Y, = #i”o¥ + E where o is the largest singular value and

the Frobenius norm of E is minimized. We then arbitrarily take a; = oii and h=7. Having
estimated the coefficients a;, we still need to estimate the non-overlapping prefix (+ < t,) and
suffix (t > t,) of hi(¢), ifany. For t < t_ort > t,, we estimate /() by minimizing

Yolah(t) —x,(t -1, .))? where the sum is over k for which 1 < t-7;; < m. This is readily

solved to be h,(t) = Z"g”‘;k

Lastly, we take hj(t) = h,(t + max, ¢ 7, + 1) for 1 <t <m-1and kj(m) = 0 as the
estimate of the hidden common cause of cluster C;, i.e. take the suffix of h;(t) and shift by 1 so
that h/(t) precedes all the genes in C; in time.

Inferring Causal Relationships of Estimated Hidden Common Cause

After estimating the hidden common cause(s), we attempt to re-estimate the subnetwork of the
introduced hidden common cause(s), the candidates, and the parents of the candidates. For
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Gene 1
Gene 2

this, we apply CLINDE, with the restriction that in stage 1 of CLINDE, we do not consider the
links in-between the candidates and links into the parents of the candidates, and consequently
the resulting subnetwork will only consists of links from parents of candidates to hidden com-
mon causes and candidates, and from hidden common causes to candidates. Having obtained
the subnetwork, we remove the links into the candidates in the initial GRN, and then union the
resulting GRN with the subnetwork to get the final GRN. The rationale is that we expect the
candidates to have hidden common causes as the real parents, where their apparent parents in
the initial GRN may really be parents of the hidden common cause(s). Also, as the hidden com-
mon cause is estimated from the observed children, it is difficult to differentiate whether the
high correlation between two children of a hidden variable is solely due to the hidden common
cause, or that there is also a direct link between the two. In this paper, we therefore make the
simplifying assumption that the children of a hidden variable are not linked to each other.

Handling Multiple Segments of Time Series Data

The above describes the steps of HCC-CLINDE when one segment of time series data is pro-
vided, we now consider the case where multiple segments of time series data are provided. We
do not assume that the segments have the same lengths, but we assume that the time steps of
different segments are the same. The main idea of handling multiple segments is that when the
expression of genes have to be shifted by a delay (e.g. for calculating correlation), all the seg-
ments are shifted, and the overlapping parts are concatenated for the calculation. This is illus-
trated in Fig 5.

For inferring the initial GRN, we use CLINDE, which can handle multiple segments, in the
same manner illustrated in Fig 5 for calculating correlation and partial correlation.

For identifying the candidate genes with hidden common cause, we need to first regress the
expression of a gene on its parents (from the initial GRN), which is done by shifting multiple
segments by the estimated delays using the overlapping parts for regression. After that, the
clustering poses no difficulty as it only needs the correlation, which can be calculated in the
same manner as in the initial GRN.

For estimating the hidden common cause(s) using SVD, we first shift and take the overlap-
ping parts of the segments, and use SVD to estimate the center part of the hidden common
cause for each segment and estimate the coefficients, then we go through each segment and
estimate the prefix and suffix. This is illustrated in Fig 4.

Lastly, after the estimation of hidden common cause(s), we infer the causal links for the hid-
den common cause(s) by CLINDE on subnetwork, which poses no difficulty as CLINDE can
handle multiple segments.

Segment 1 Segment 2

Concatenated for calculation

Fig 5. lllustration of Handling Multiple Segments of Time Series.

doi:10.1371/journal.pone.0138596.g005
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Experiment Results

This section evaluates the effectiveness of our proposed algorithm HCC-CLINDE. We mainly
rely on synthetic data, where we know the underlying gene network and the hidden variables,
and the lack of sufficient expression data is not a concern. Since to our knowledge, there is no
previous work that is similar to ours (infer hidden common cause with time delays), we can
only compare our algorithm on incomplete data with CLINDE on incomplete and complete
data, to show the improvement over ignoring hidden common cause.

We have tested on three types of synthetic data: 1) small GRN with one hidden node and
the variance of error terms is known; 2) small GRN without hidden node and the variance of
error terms is known; 3) large GRN with more than one hidden node and the variance of error
terms is unknown. For all three cases, we try the score thresholds (st) 2, 3 and 4 for CLINDE,
and use the default value for other CLINDE parameters. And for each case, we generate two
types of data: one long segment of time series where we take prefixes of different lengths; and
multiple segments where we use different number of segments for different total number of
time points.

Due to the lack of long time series expression real data, we are unable to test our algorithm
on large GRN, but we could demonstrate our algorithm on small GRNs. A dataset with rela-
tively large number of time points is [53], which measures the expression of over 6,000 genes of
Saccharomyces cerevisiae using DNA microarrays, with three different methods of synchroni-
zation for studying yeast cell cycle. Together with previous data from [54] (also included in
[53]), we have 4 time series with information shown in Table 1. For the GRN, we use YEAS-
TRACT [55], which is a curated database of over 200,000 transcription regulatory associations
in Saccharomyces cerevisiae (including 113 TFs). Since the GRN is too large for the available
expression data, we extract a small number of subnetworks for testing instead.

In the following, we first describe the performance metrics, and then the generation of syn-
thetic expression data once the GRN is given, and then describe the generation of the synthetic
GRN for different cases, and the results of the three types of synthetic data. After that, we
describe the preprocessing of the YEASTRACT subnetworks and the expression data, and then
present the results of our algorithm on the real data.

Performance Metrics

It is more appropriate to focus on correctly predicting the presence of links rather than its
absence, due to the sparse nature of GRNs. We assess the performance of the inference algo-
rithm on three aspects, namely Links (which is considered correct if and only if both the gene
pair and the direction are correct), Delays (which is considered correct if and only if both the
link and the time delay 7;; are correct) and Effects (which is considered correct if and only if
both the link and the sign of the effect a;; are correct). For each aspect, we look at three metrics

Table 1. Information of the Time Series Real Data.

Series Raw Time Points (Min) Interpolated Time
Points (Min)
alpha every 7 mins from 0 to 119 every 10 mins from 0 to
120
cde15 10, 30, 50, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, every 10 mins from 10 to
190, 200, 210, 220, 230, 240, 250, 270, 290 290
cdc28 every 10 mins from 0 to 160 same time points
elu every 30 mins from 0 to 390 every 10 mins from 0 to
390

doi:10.1371/journal.pone.0138596.t001
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Fig 6. Example of Flipping Signs of Links and Shifting of Delays for Hidden Node. The number on the
link is the delay, and + or — is the sign of the effect. Consistently flipping the signs and shifting the delays
results in equivalent predicted GRN, as the hidden node is not observed.

doi:10.1371/journal.pone.0138596.g006

- +FN, Precision = +FP and F-score = m%, where TP is
the number of true positives, FP is the number of false positives, FN is the number of false nega-
tives. But since F-score is an overall measurement of performance, we focus on it.

We assume that in the true GRN, the hidden nodes are labeled. But in the predicted GRN,
the number and the indices of the predicted hidden nodes may not be the same as the true
GRN. Therefore, we need to map the predicted hidden nodes to the true GRN before doing the
above performance calculations. Also, for the links to/from the hidden common nodes, the
delays and the effects cannot be completely determined because there is no observed time series
data for the hidden nodes to constrain them. This is illustrated in Fig 6, where the sign of a hid-
den node can be flipped, and be compensated by a flipping the signs of all its links; and the
delays of links out of a hidden node can be shifted, and be compensated by the same shift of
links into the hidden node. Therefore, in mapping the predicted hidden nodes to true hidden
nodes, we may need to shift the delays, and flip the signs of the links appropriately, for useful
calculation of the performance.

For each predicted hidden node, we try to align it to each of the true hidden nodes, and
choose the one with the most matched links and delays (after shifting). And in case of ties, we
arbitrarily choose true hidden node with the lowest index. When aligning a predicted hidden
node, we consider only the links to/from observed genes, and consider all possible shifts in
delay (for a shift of d, the delays in parent links will be increased by d, while that in children
links will be decreased by d), and also whether to flip the signs of the links. How well it is
aligned is measured by the sum of number of matched links and shifted delays. After the map-
ping of predicted hidden nodes (and shifting in delays and flipping of signs), the performance
of the predicted GRN is calculated as described above.

respectively, namely Recall =

Generation of Synthetic Expression Data

One Segment. Given a network as (a;;,7;) where a;; is the effect of gene i to gene j, and 7 is
the associated delay if a;; # 0. Given the parameters ¢” which is the variance of the error terms,
and a which controls the gaussianity of error terms, we then generate the expression data with
m time points as follows:

1. For —79p <t < 0,1 <j<n,setx;(t) = ej(t), where each ej(f) is generated from N(0,1)

2. For1 <t<m,1<j<m,setx;(t) = > " ayxi(t — t;) + ¢;(t), where e;(t) = sign(z;,)s|z;|,
where each z;; is generated from N(0,1) and s is used for scaling such that Var(e,(t)) = o

3. Output {x](t)}l <t<ml<j<n
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Fig 7. Small Synthetic GRN. There are p parents, ¢ children and one hidden node.
doi:10.1371/journal.pone.0138596.9007

Multiple Segments. In order to generate K segments of time series data, we first randomly
pick the lengths of each segment uniformly between 20 and 30 (inclusive), emulating the situa-
tion of multiple short time series, possibly with different lengths. Then we generate each seg-
ment of specified length as above.

Synthetic Small GRN with One Hidden Node

We first test our proposed algorithm on small GRN where there is only one hidden node, and
the variance of the error terms is assumed known.

Network Generation. In this small GRN case, each GRN has one hidden node, p observed
parents and ¢ observed children, as illustrated in Fig 7, but when applying the algorithm, we do
not assume the presence of hidden node. For each link, the delay is uniformly chosen from {1.. . .,
7o}, where 7o = 4; and the coefficient is a;, = p;, z;,,, where p;,, is uniformly chosen from {-1,1}
and z;,, is uniformly chosen from (0.5,1.5). Then we permute the indices of the observed genes.

We test a few values of the parameters, as shown in the column Small GRN of Table 2. For
each setting of p, ¢, 0> and @, we generate 20 replicates, for a total of 6,400 GRNS. For the one
segment case, for each replicate, we generate expression data with 200 time points, and then

Table 2. Parameter Settings of Synthetic Data Generation.

Parameter Small GRN Large GRN
Parents (p) 0,1,2,3 —
Children (c) 2,3,4,5 —
Observed genes (n) p+c 50, 100
Hidden nodes (ny) 1 for hidden case, 0 for non-hidden case 5 for n = 50, 10 forn = 100
o 05,1,2,3,4 05,1,2,3,4
a 05,1,2,3 05,1,2,3
Maximum parents (M) = 4
Maximum delay (o) 4 4
Replicates 20 40
Time points (m) 20, 50, 100, 200 20, 50, 100, 200, 400, 800
Number of segments (K) 1,2,4,8 1,2, 4,8, 16, 32
o0® known? Yes No

doi:10.1371/journal.pone.0138596.t002
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Fig 8. Profiles of F-scores of Links, Delays and Effects for Different Settings for Small Hidden Case. The x-axis shows the records.

doi:10.1371/journal.pone.0138596.g008

take prefix to get m time points, and output only the expression of the observed genes, for a total
of 25,600 time series. And for the multiple segments case, for each replicate, we generate 8 seg-
ments, for a total of 51,200 segments, and for each setting, we test using K segments at a time.

Results. First we show that the performances of Links, Delays and Effects are usually very
consistent, with occasional discrepancies. Fig 8 shows the profiles of F-scores of Links, Delays
and Effects for different settings for small hidden case with one segment time series. The three
F-scores are mostly consistent with each other, though occasionally there are greater discrepan-
cies for some records. In order to illustrate that these cases are very small, we plot the histogram
of the absolute difference between Links and Effects F-scores in Fig 9. The histogram for differ-
ence of F-scores between Delays and Effects and between Links and Effects are similar and are
shown in Figures A to B in S1 File. This suggests that the Links, Delays and Effects are usually
inferred correctly at the same time, rather than getting one correct but the other incorrect.
Therefore, in the following we mainly show the results of Effects, for the lack of space, but the
full results including Links and Delays are provided in additional files.

Next we consider the F-scores under different o°. If we repeat the above method of showing
the profiles of F-score for different o, we found that the F-score of individual record for differ-
ent > show great discrepancies for some records. However, Fig 10 shows the boxplot of Effects
F-score for different o” for one segment case, which shows that the overall distribution of F-
scores are quite similar. The boxplot for the multiple segment case is similar and is shown in
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Fig 9. Histogram of Absolute Difference of F-scores of Links and Effects for Small Hidden Case.

doi:10.1371/journal.pone.0138596.9009

Figure L in S1 File. Therefore, we mainly show the results for Effects F-score for ¢° = 2 in
Table 3 for one segment case and in Table 4 for multiple segments case, and the full results of
median performance for small hidden case are shown in Table A in S1 File for one segment
case and in Table D in S1 File for multiple segment case.

The results of the small case with one hidden node have no clear trend for either score
threshold, o or the number of time points m. We would expect that the performance is better
with larger m, but there are some cases where this is not the case. One possible reason is that
for this case, the algorithm need to correctly detect the presence of hidden common node, and
infer the link(s) between the hidden node and the observed genes, so the performance has
more variability. For example, if the algorithm incorrectly predicted that there are no hidden
node, then the F-score will surely be 0, as in the true GRN, all links are to/from the hidden
node. For o, there are some differences between o = 0.5,1 and 2, but the differences are not
great. For a = 3, the algorithm seems to have worse performance when m is small. However,
note that when m is large, the F-scores are quite satisfactory for one segment case, and in many
settings are over 0.9 or even 1. For multiple segments case, for p = 2,3, the results are a bit
worse, especially for o = 3, but can still reach 0.6 in F-score. The results show that the proposed
algorithm can adequately detect and estimate the hidden node in a simple setting, and is robust
towards slight deviation of gaussianity in the error terms.
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Fig 10. Boxplot of Effect F-score with Different o for Small Hidden Case.
doi:10.1371/journal.pone.0138596.g010

Synthetic Small GRN without Hidden Node

In this case, we test the effectiveness of the algorithm when there are in fact no hidden node.
And in applying the algorithm, we do not assume the number of hidden nodes is known, but
the variance of the error terms is known. The parameters are same as above, which is shown in
the column Small GRN of Table 2.

Network Generation. For this purpose, we generate some “confusing” cases as follows.
For each GRN (p, ¢, 0>, & and replicate) in the above cases of small GRN with one hidden node,
we use the (incomplete) data of 200 time points, and use CLINDE (with score threshold of 2
using PCor) to infer an GRN, which is definitely wrong, as CLINDE does not handle hidden
nodes, and there are no true links among observed genes. If this GRN is non-empty, it is used;
otherwise, a small GRN of a node in the middle with p parents, and ¢—1 children is generated
as above, but all genes are labeled as observed. Having obtained the 6,400 GRNs without hid-
den nodes, the same method as above is used to generate the 25,600 time series data for one
segment case, and 51,200 segments for multiple segments case.

Results. Similar to the small case with hidden node, the F-scores of Links, Delays and
Effects are fairly consistent, so we omit the profiles and histograms here, but they are in Figures
Cto Fin S File. Also, the situation is similar for the F-scores with different ¢*, and we show
the boxplot in Figure J in S1 File for one segment case, and in Figure M in S1 File for multiple
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Table 3. Median Effects F-scores for One Segment Small Hidden Case with o = 2.

a=05 a=1 a=2 a=3
c m st2 st3 st4 st2 st3 st4 st2 st3 st4 st2 st3 st4
0 2 20 0.667 0.667 0.667 0.500 0.500 0.583 0.000 0.000 0.000 0.000 0.000 0.000

50 1.000 1.000 1.000 1.000 1.000 1.000 0.583 0.733 0.733 0.000 0.000 0.000

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0 3 20 0.667 0.667 0.500 0.583 0.733 0.500 0.000 0.200 0.500 0.000 0.250 0.500
50 0.833 0.900 0.800 1.000 1.000 1.000 0.733 0.800 0.800 0.450 0.536 0.536

100 1.000 1.000 1.000 0.829 0.829 0.900 0.667 0.667 0.667 0.733 0.800 0.800

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0 4 20 0.500 0.619 0.667 0.619 0.619 0.667 0.571 0.667 0.667 0.143 0.333 0.367
50 0.857 0.857 0.857 0.667 0.667 0.750 0.667 0.667 0.667 0.500 0.571 0.571

100 0.750 0.804 0.857 0.750 0.857 0.857 0.708 0.750 0.804 0.708 0.708 0.708

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0 5 20 0.536 0.571 0.389 0.422 0.500 0.536 0.400 0.536 0.536 0.400 0.472 0.500
50 0.764 0.800 0.844 0.727 0.750 0.844 0.633 0.664 0.727 0.400 0.400 0.586

100 0.800 0.900 1.000 0.727 1.000 1.000 0.727 0.764 0.800 0.671 0.664 0.697

200 1.000 1.000 1.000 0.955 1.000 1.000 1.000 1.000 1.000 0.955 1.000 1.000

1 2 20 0.400 0.400 0.500 0.400 0.400 0.650 0.536 0.667 0.500 0.000 0.000 0.000
50 0.800 0.800 0.800 0.667 0.733 0.733 0.000 0.000 0.000 0.000 0.000 0.000

100 1.000 0.900 0.900 0.800 0.800 0.800 0.667 0.733 0.733 0.143 0.167 0.167

200 0.800 0.800 0.800 0.829 0.800 0.800 1.000 0.900 0.900 0.857 0.857 1.000

1 3 20 0.536 0.619 0.667 0.571 0.571 0.667 0.536 0.619 0.536 0.000 0.000 0.310
50 0.873 0.873 0.857 0.661 0.750 0.708 0.708 0.667 0.667 0.571 0.571 0.571

100 0.873 0.929 0.929 0.857 0.857 0.857 0.750 0.750 0.804 0.536 0.571 0.619

200 1.000 1.000 1.000 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857

1 4 20 0.667 0.667 0.571 0.522 0.500 0.500 0.545 0.667 0.667 0.191 0.216 0.250
50 0.697 0.844 0.844 0.600 0.708 0.750 0.727 0.733 0.667 0.472 0.523 0.600

100 0.909 1.000 1.000 0.800 0.800 0.844 0.844 0.844 0.889 0.545 0.600 0.633

200 0.955 1.000 1.000 0.889 0.889 0.889 0.909 1.000 1.000 0.889 0.889 0.889

1 5 20 0.500 0.600 0.600 0.503 0.667 0.550 0.265 0.400 0.444 0.364 0.382 0.422
50 0.748 0.800 0.800 0.697 0.748 0.727 0.667 0.667 0.667 0.445 0.523 0.481

100 0.883 0.909 0.909 0.769 0.833 0.871 0.833 0.833 0.833 0.714 0.721 0.727

200 0.909 0.909 0.909 0.962 1.000 1.000 0.923 0.909 0.909 0.871 0.909 0.909

2 2 20 0.310 0.333 0.367 0.000 0.143 0.619 0.250 0.286 0.367 0.000 0.292 0.367
50 0.536 0.571 0.667 0.000 0.000 0.000 0.333 0.619 0.619 0.143 0.143 0.143

100 0.571 0.667 0.619 0.571 0.571 0.619 0.667 0.667 0.667 0.417 0.417 0.452

200 0.708 0.708 0.667 0.750 0.750 0.804 0.857 0.857 0.857 0.750 0.857 0.857

2 3 20 0.633 0.667 0.571 0.500 0.571 0.661 0.508 0.500 0.500 0.222 0.286 0.286
50 0.667 0.708 0.708 0.573 0.522 0.583 0.444 0.472 0.500 0.000 0.111 0.450

100 0.697 0.775 0.775 0.775 0.750 0.750 0.727 0.750 0.750 0.543 0.545 0.523

200 0.817 0.889 0.889 0.775 0.775 0.775 0.800 0.889 0.889 0.800 0.889 0.844

2 4 20 0.545 0.633 0.600 0.396 0.545 0.453 0.091 0.091 0.291 0.321 0.364 0.382
50 0.697 0.727 0.727 0.500 0.545 0.545 0.348 0.282 0.382 0.437 0.481 0.481

100 0.833 0.833 0.833 0.633 0.748 0.748 0.606 0.606 0.606 0.641 0.586 0.633

200 0.871 0.909 0.909 0.833 0.909 0.909 0.817 0.871 0.909 0.817 0.909 0.909

(Continued)
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Table 3. (Continued)

a=0.5 a=1 a=2 a=3
c m st2 st3 st4 st2 st3 st4 st2 st3 st4 st2 st3 st4
2 5 20 0.500 0.615 0.580 0.462 0.580 0.545 0.481 0.523 0.444 0.348 0.414 0.400

50 0.667 0.641 0.667 0.708 0.769 0.742 0.571 0.593 0.580 0.268 0.297 0.321

100 0.829 0.829 0.857 0.742 0.769 0.769 0.558 0.500 0.545 0.450 0.502 0.571

200 0.857 0.923 0.923 0.862 0.890 0.923 0.857 0.923 0.923 0.785 0.857 0.857

3 2 20 0.347 0.500 0.500 0.250 0.286 0.333 0.286 0.286 0.310 0.000 0.111 0.268
50 0.571 0.536 0.571 0.472 0.571 0.571 0.400 0.422 0.444 0.000 0.000 0.000

100 0.500 0.571 0.571 0.523 0.571 0.536 0.472 0.417 0.417 0.100 0.000 0.000

200 0.667 0.667 0.667 0.633 0.667 0.633 0.750 0.750 0.750 0.739 0.750 0.750

3 3 20 0.422 0.472 0.500 0.382 0.365 0.422 0.400 0.400 0.400 0.000 0.200 0.211
50 0.586 0.573 0.600 0.382 0.422 0.422 0.573 0.600 0.600 0.400 0.400 0.422

100 0.721 0.727 0.727 0.500 0.600 0.550 0.531 0.633 0.667 0.397 0.453 0.422

200 0.769 0.800 0.764 0.721 0.727 0.727 0.817 0.800 0.800 0.769 0.800 0.764

3 4 20 0.414 0.481 0.523 0.348 0.364 0.400 0.382 0.422 0.400 0.321 0.297 0.279
50 0.667 0.667 0.727 0.571 0.667 0.667 0.429 0.462 0.462 0.400 0.462 0.431

100 0.714 0.690 0.690 0.742 0.769 0.769 0.593 0.615 0.615 0.438 0.462 0.413

200 0.785 0.817 0.785 0.769 0.769 0.769 0.714 0.833 0.833 0.769 0.769 0.769

3 5 20 0.434 0.558 0.503 0.445 0.481 0.462 0.369 0.414 0.400 0.321 0.333 0.348
50 0.646 0.667 0.667 0.625 0.593 0.641 0.471 0.571 0.536 0.388 0.388 0.429

100 0.686 0.710 0.714 0.681 0.714 0.714 0.473 0.500 0.517 0.541 0.588 0.561

200 0.750 0.800 0.800 0.840 0.866 0.857 0.866 0.866 0.866 0.800 0.875 0.866

The medians are taken over the 20 replicates. st2, st3 and st4 are for score thresholds of 2, 3 and 4 respectively.

doi:10.1371/journal.pone.0138596.t003

segments case. Therefore, we show the results of Effects for o> = 2 in Table 5 for one segment
case, and in Table 6 for multiple segments case, and the full results of median performance is
shown in Table B in S1 File for one segment case and in Table E in S1 File for multiple seg-
ments case.

For this case, when m is larger, the F-score is usually higher, although there are some excep-
tions, especially for a = 3 and p = 0. Also, small score thresholds usually work well, especially
when m is small. The F-score is often 0 for small m with high score threshold, which means the
score threshold is too stringent. When m is larger, using a more stringent score threshold also
gives good F-score, but is only occasionally better than small score threshold. The F-scores can
reach over 0.9 or even 1 in many settings, and over 0.6 in all settings. Similar to the above case,
the performance does not show great difference for different o, though small ¢ is usually
slightly better. The results show that the proposed algorithm works satisfactorily even when
there are no hidden node in a simple setting.

Synthetic Large GRN with More than One Hidden Node

The above two cases are for small GRN, and where the variance of the error terms is known.
We also test the more realistic case of larger GRN with more than one hidden node (but the
number is unknown), and that the variance of the error terms is unknown, but estimated by
the algorithm. For a network with n observed genes, we would generate n, = [%] hidden
nodes.
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Table 4. Median Effects F-scores for Multiple Segments Small Hidden Case with 0% = 2.

a=05 a=1 a=2 a=3
c K m st2 st3 st4 st2 st3 st4 st2 st3 st4 st2 st3 st4

0 2 1 20 1.000 1.000 0.667 0.900 1.000 0.667 0.667 0.667 0.833 0.500 1.000 1.000
2 43 1.000 1.000 1.000 1.000 1.000 1.000 0.900 1.000 1.000 0.500 0.500 0.833

4 94 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

8 201 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0 3 1 30 0.667 0.800 0.800 0.800 0.800 0.800 0.733 0.800 0.800 0.667 0.800 0.800
2 51 0.800 0.800 0.800 0.733 0.800 0.800 0.667 0.667 0.667 0.733 0.800 0.900

4 100 0.829 0.800 0.800 1.000 1.000 1.000 0.833 0.800 0.800 0.800 0.733 0.800

8 199 1.000 1.000 1.000 0.929 1.000 1.000 0.929 0.900 0.900 0.775 0.733 0.900

0 4 1 21 0.571 0.667 0.667 0.708 0.750 0.667 0.667 0.667 0.804 0.571 0.667 0.619
2 48 0.750 0.750 0.857 0.857 0.857 0.857 0.750 0.750 0.804 0.750 0.750 0.857

4 100 0.804 0.857 0.857 0.857 0.944 1.000 0.944 1.000 1.000 0.762 0.857 0.857

8 204 0.889 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.889 0.929 0.929

0 5) 1 25 0.495 0.619 0.571 0.633 0.633 0.571 0.550 0.633 0.750 0.545 0.739 0.750
2 54 0.800 0.800 0.889 0.808 0.844 0.889 0.697 0.844 0.889 0.800 0.800 0.844

4 110 0.764 0.800 0.844 0.817 0.889 0.944 0.727 0.844 0.889 0.800 0.800 0.889

8 205 0.844 0.844 0.944 0.844 0.909 0.909 0.739 0.800 0.800 0.775 0.800 0.800

1 2 1 26 0.733 0.800 0.800 0.686 0.800 0.800 0.450 0.500 0.583 0.000 0.200 0.400
2 51 0.800 0.800 0.800 0.800 0.800 0.800 0.333 0.367 0.400 0.167 0.367 0.367

4 109 0.800 0.800 0.800 0.800 0.800 0.800 0.667 0.733 0.800 0.667 0.667 0.733

8 195 0.800 0.800 0.800 0.733 0.800 0.800 0.667 0.733 0.800 0.333 0.286 0.333

1 3 1 23 0.750 0.762 0.667 0.619 0.667 0.667 0.675 0.804 0.857 0.667 0.571 0.667
2 48 0.667 0.708 0.708 0.750 0.857 0.857 0.571 0.571 0.571 0.804 0.857 0.857

4 96 0.750 0.750 0.750 0.857 0.857 0.857 0.804 0.857 0.857 0.804 0.857 0.857

8 201 0.708 0.708 0.750 0.750 0.750 0.750 0.750 0.804 0.804 0.661 0.729 0.762

1 4 1 29 0.775 0.889 0.800 0.667 0.750 0.750 0.727 0.739 0.708 0.667 0.667 0.633
2 50 0.844 0.844 0.889 0.708 0.708 0.708 0.733 0.733 0.708 0.633 0.667 0.708

4 99 0.844 0.889 0.889 0.697 0.750 0.775 0.664 0.764 0.800 0.727 0.800 0.800

8 191 0.800 0.889 0.844 0.800 0.889 0.844 0.800 0.800 0.764 0.664 0.800 0.800

1 5 1 28 0.817 0.833 0.800 0.727 0.667 0.697 0.748 0.800 0.800 0.727 0.697 0.697
2 58 0.833 0.871 0.909 0.833 0.817 0.817 0.801 0.909 0.909 0.801 0.909 0.909

4 105 0.909 0.909 0.909 0.909 0.909 0.909 0.839 0.877 0.909 0.785 0.833 0.833

8 204 0.909 0.909 0.909 0.866 0.909 0.909 0.871 0.909 0.909 0.769 0.871 0.909

2 2 1 27 0.400 0.619 0.667 0.571 0.619 0.667 0.310 0.400 0.571 0.333 0.400 0.400
2 54 0.667 0.667 0.667 0.000 0.571 0.571 0.571 0.619 0.667 0.667 0.667 0.667

4 108 0.571 0.667 0.667 0.571 0.619 0.619 0.750 0.750 0.667 0.619 0.667 0.667

8 216 0.667 0.667 0.667 0.619 0.619 0.619 0.750 0.750 0.750 0.708 0.708 0.667

2 3 1 21 0.586 0.619 0.571 0.472 0.571 0.571 0.500 0.571 0.500 0.444 0.500 0.472
2 43 0.633 0.633 0.619 0.667 0.667 0.708 0.500 0.500 0.500 0.376 0.404 0.472

4 98 0.600 0.586 0.586 0.550 0.600 0.600 0.422 0.472 0.472 0.522 0.556 0.556

8 181 0.697 0.750 0.708 0.500 0.571 0.571 0.667 0.667 0.619 0.626 0.500 0.550

2 4 1 30 0.633 0.664 0.667 0.727 0.727 0.800 0.608 0.633 0.667 0.400 0.495 0.600
2 58 0.641 0.667 0.697 0.748 0.800 0.800 0.641 0.697 0.727 0.748 0.727 0.727

4 102 0.641 0.727 0.727 0.721 0.748 0.748 0.718 0.727 0.727 0.665 0.667 0.697

8 209 0.630 0.665 0.690 0.667 0.785 0.800 0.748 0.727 0.727 0.665 0.697 0.697

(Continued)

PLOS ONE | DOI:10.1371/journal.pone.0138596 September 22,2015 20/47



@'PLOS ‘ ONE

Time Delayed Causal Gene Network Inference with Hidden Common Causes

Table 4. (Continued)

o
X
3

22
45
93
196
23
50
106
202
28
48
98
194
25
53
97
188
23
52
105
199

® BN = 0 BN 20BN 00 AN OAND =

st2

0.615
0.641
0.690
0.593
0.500
0.500
0.200
0.422
0.450
0.573
0.586
0.550
0.523
0.464
0.500
0.533
0.517
0.431
0.588
0.588

st3

0.667
0.714
0.714
0.641
0.571
0.500
0.222
0.444
0.600
0.545
0.600
0.473
0.545
0.473
0.523
0.558
0.593
0.445
0.620
0.732

st4 st2 st3 st4 st2 st3 st4 st2 st3 st4

0.667 0.615 0.586 0.573 0.445 0.500 0.600 0.286 0.354 0.422
0.690 0.714 0.769 0.769 0.615 0.665 0.665 0.437 0.462 0.464
0.769 0.690 0.714 0.714 0.769 0.769 0.769 0.354 0.414 0.381
0.667 0.602 0.615 0.667 0.769 0.769 0.769 0.464 0.533 0.558
0.452 0.472 0.571 0.571 0.250 0.333 0.333 0.343 0.310 0.333
0.571 0.500 0.536 0.571 0.250 0.250 0.268 0.404 0.310 0.393
0.250 0.536 0.536 0.571 0.422 0.389 0.472 0.404 0.250 0.250
0.444 0.500 0.500 0.500 0.200 0.286 0.286 0.536 0.500 0.536
0.633 0.545 0.633 0.667 0.573 0.600 0.500 0.382 0.400 0.444
0.523 0.573 0.600 0.633 0.481 0.422 0.400 0.400 0.400 0.400
0.600 0.396 0.523 0.473 0.545 0.573 0.600 0.472 0.573 0.500
0.473 0.481 0.503 0.503 0.573 0.633 0.633 0.573 0.573 0.573
0.545 0.584 0.552 0.552 0.500 0.500 0.545 0.354 0.445 0.495
0.473 0.500 0.523 0.545 0.536 0.558 0.580 0.429 0.462 0.500
0.545 0.571 0.641 0.641 0.641 0.667 0.667 0.517 0.545 0.558
0.580 0.431 0.462 0.545 0.571 0.598 0.620 0.433 0.466 0.481
0.593 0.533 0.571 0.593 0.598 0.615 0.615 0.450 0.466 0.462
0.462 0.445 0.481 0.481 0.552 0.552 0.571 0.388 0.431 0.481
0.641 0.590 0.690 0.714 0.620 0.690 0.769 0.556 0.641 0.615
0.690 0.481 0.620 0.646 0.646 0.732 0.760 0.533 0.556 0.556

The medians are taken over the 20 replicates. st2, st3 and st4 are for score thresholds of 2, 3 and 4 respectively. K is the number of segments used. m is
the total number of time points of the segments used.

doi:10.1371/journal.pone.0138596.t004

Network Generation. For n observed genes and ny, hidden nodes, a maximum of M,
parents for observed genes, maximum of 7, as delay, we generate a GRN with the structure
shown in Fig 11 as follows:

1. Choose the number of parents (all distinct) for the hidden nodes: first for each i € {0,1,2,3},
assign || nodes to have i parents; for each of the remaining 7, — %] nodes, randomly
choose i from {0,1,2,3} as the number of parents.

2. Similarly choose the number of children (all distinct and distinct from the parents) for the
hidden nodes: first for each i € {2,3,4,5}, assign |J] nodes to have i children; for each of the

Iy,

| nodes, randomly choose i from {2,3,4,5} as the number of children.

remaining n, — |’
3. Let N, and N, be the total number of parents and children of hidden nodes respectively.
4. Let N, = n—N,~N, (n should be large enough relative to n, so that N, > 0)

5. For 1 <i < N,, randomly choose p; from {0,. . .,My}, and randomly link p; parents from
{1,.. ,n} to node i.

6. For N, < i < N, + N,, randomly choose p; from {0,. . .,Mo}, and randomly link p; parents
from {1,...,n—N_} to node i.

7. For the hidden nodes, link from distinct parents from {N, + 1,.. .,N,, + N,}, respecting the
number of parents chosen above.
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Table 5. Median Effects F-scores for One Segment Small Non-Hidden Case with o® = 2.

a=0.5 a=1 a=2 a=3
c m st2 st3 st4 st2 st3 st4 st2 st3 st4 st2 st3 st4
0 2 20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000

50 1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.333 0.000 0.000

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0 3 20 0.500 0.000 0.000 0.500 0.000 0.000 0.167 0.000 0.000 0.500 0.000 0.000
50 0.733 0.619 0.000 0.667 0.667 0.000 0.667 0.167 0.000 0.583 0.000 0.000

100 0.800 0.800 0.800 1.000 1.000 1.000 0.667 0.667 0.619 0.800 0.800 0.583

200 1.000 1.000 0.900 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0 4 20 0.333 0.000 0.000 0.000 0.000 0.000 0.333 0.000 0.000 0.333 0.333 0.143
50 0.800 0.667 0.125 0.619 0.310 0.000 0.583 0.400 0.143 0.444 0.444 0.367

100 0.857 0.829 0.800 0.750 0.750 0.667 0.667 0.667 0.523 0.667 0.536 0.536

200 1.000 1.000 1.000 1.000 1.000 0.873 1.000 0.929 0.857 0.889 0.889 0.889

0 5 20 0.325 0.000 0.000 0.236 0.000 0.000 0.364 0.000 0.000 0.333 0.268 0.222
50 0.571 0.500 0.364 0.500 0.422 0.292 0.481 0.367 0.254 0.500 0.472 0.348

100 0.775 0.750 0.667 0.697 0.633 0.539 0.641 0.472 0.365 0.586 0.571 0.400

200 0.916 0.916 0.804 0.857 0.845 0.800 0.873 0.873 0.857 0.899 0.909 0.909

1 2 20 0.450 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.400 0.450 0.250
50 1.000 1.000 0.667 0.733 0.800 0.667 0.667 0.667 0.200 0.583 0.500 0.450

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.733 0.667 0.667

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.929 1.000 1.000

1 3 20 0.500 0.422 0.286 0.333 0.000 0.000 0.450 0.333 0.000 0.422 0.167 0.143
50 0.800 0.775 0.633 0.775 0.619 0.333 0.523 0.400 0.310 0.571 0.500 0.500

100 0.857 0.857 0.857 1.000 1.000 0.929 0.733 0.667 0.667 0.571 0.571 0.536

200 0.889 0.944 0.889 1.000 1.000 1.000 1.000 0.944 0.857 1.000 1.000 0.929

1 4 20 0.236 0.000 0.000 0.211 0.211 0.000 0.422 0.100 0.111 0.348 0.400 0.268
50 0.523 0.382 0.278 0.600 0.558 0.236 0.545 0.481 0.382 0.500 0.453 0.404

100 0.800 0.775 0.775 0.800 0.817 0.750 0.739 0.667 0.558 0.608 0.641 0.593

200 0.889 0.873 0.857 0.889 0.889 0.889 0.955 1.000 0.889 0.873 0.899 0.857

1 5 20 0.364 0.182 0.000 0.382 0.211 0.000 0.336 0.268 0.167 0.321 0.348 0.000
50 0.552 0.382 0.321 0.620 0.500 0.364 0.438 0.364 0.364 0.552 0.545 0.523

100 0.727 0.717 0.625 0.750 0.727 0.667 0.558 0.500 0.500 0.593 0.500 0.500

200 0.845 0.916 0.697 0.916 0.899 0.829 0.883 0.909 0.732 0.833 0.857 0.829

2 2 20 0.000 0.000 0.000 0.583 0.167 0.000 0.000 0.000 0.000 0.400 0.310 0.000
50 0.667 0.533 0.400 0.733 0.667 0.667 0.733 0.500 0.400 0.500 0.500 0.333

100 0.829 0.929 0.667 1.000 1.000 0.900 0.829 0.929 0.800 0.708 0.800 0.775

200 0.829 1.000 1.000 0.929 1.000 1.000 1.000 1.000 1.000 0.944 1.000 1.000

2 3 20 0.310 0.000 0.000 0.400 0.286 0.000 0.400 0.333 0.000 0.367 0.286 0.000
50 0.697 0.667 0.472 0.697 0.667 0.571 0.667 0.523 0.367 0.667 0.586 0.472

100 0.857 0.857 0.800 0.857 0.857 0.829 0.750 0.708 0.667 0.667 0.500 0.500

200 0.899 0.909 0.857 0.873 0.916 0.944 0.873 0.944 0.889 0.889 0.889 0.857

2 4 20 0.404 0.111 0.000 0.500 0.348 0.000 0.236 0.250 0.100 0.286 0.308 0.222
50 0.641 0.586 0.536 0.523 0.523 0.422 0.600 0.523 0.310 0.472 0.472 0.422

100 0.861 0.845 0.750 0.667 0.667 0.646 0.633 0.633 0.633 0.667 0.602 0.561

200 0.923 0.916 0.962 0.833 0.845 0.845 0.889 0.899 0.861 0.833 0.833 0.833

(Continued)
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Table 5. (Continued)

a=0.5 a=1 a=2 a=3
c m st2 st3 st4 st2 st3 st4 st2 st3 st4 st2 st3 st4
2 5 20 0.226 0.160 0.144 0.310 0.174 0.000 0.236 0.225 0.143 0.333 0.333 0.250

50 0.615 0.429 0.358 0.523 0.523 0.400 0.517 0.517 0.410 0.563 0.481 0.333

100 0.766 0.683 0.649 0.667 0.665 0.593 0.539 0.563 0.563 0.646 0.625 0.497

200 0.857 0.845 0.775 0.875 0.857 0.845 0.833 0.714 0.667 0.840 0.812 0.769

3 2 20 0.333 0.000 0.000 0.000 0.000 0.000 0.310 0.000 0.000 0.268 0.000 0.000
50 0.571 0.500 0.500 0.571 0.250 0.000 0.382 0.382 0.310 0.417 0.333 0.367

100 0.667 0.800 0.733 0.667 0.667 0.667 0.633 0.571 0.586 0.500 0.400 0.333

200 0.857 1.000 0.857 0.800 1.000 0.829 0.873 0.883 0.857 0.845 0.857 0.829

3 3 20 0.250 0.000 0.000 0.321 0.000 0.000 0.333 0.143 0.000 0.236 0.211 0.000
50 0.633 0.545 0.389 0.500 0.523 0.422 0.472 0.444 0.444 0.414 0.431 0.400

100 0.857 0.889 0.857 0.739 0.708 0.667 0.641 0.586 0.472 0.558 0.573 0.481

200 0.909 1.000 0.899 0.889 0.889 0.889 0.873 0.889 0.889 0.817 0.829 0.775

3 4 20 0.388 0.100 0.000 0.268 0.222 0.000 0.236 0.286 0.202 0.321 0.236 0.222
50 0.500 0.500 0.462 0.533 0.552 0.453 0.586 0.500 0.472 0.400 0.348 0.297

100 0.727 0.697 0.608 0.739 0.727 0.633 0.641 0.608 0.545 0.608 0.523 0.500

200 0.828 0.817 0.800 0.909 0.909 0.883 0.857 0.889 0.857 0.775 0.750 0.708

3 5 20 0.267 0.136 0.000 0.276 0.276 0.000 0.321 0.211 0.168 0.297 0.183 0.121
50 0.500 0.364 0.258 0.471 0.343 0.286 0.462 0.353 0.286 0.466 0.437 0.354

100 0.710 0.667 0.627 0.588 0.586 0.544 0.620 0.517 0.517 0.556 0.517 0.429

200 0.812 0.857 0.812 0.866 0.812 0.667 0.824 0.838 0.718 0.800 0.806 0.750

The medians are taken over the 20 replicates. st2, st3 and st4 are for score thresholds of 2, 3 and 4 respectively.

doi:10.1371/journal.pone.0138596.t005

8. Similarly link to distinct children for the hidden nodes from {N, + N, + 1,... .,n}, respecting
the number of children chosen above.

9. For each link L, randomly set the coefficient as a; = p; z;, where p; is uniformly chosen
from {-1,1} and z; is uniformly chosen from (0.5,1.5).

10. For each link L, uniformly choose 7; from {1,. . .,7o}.
11. Since the GRN may have cycles, scale the coefficients to make the GRN stable.
12. Lastly, randomly permute the indices of the observed genes {1,. . .,n}.

The parameters that we have tested are listed in column Large GRN of Table 2. For each set-
ting of 1, 0%, &, we randomly generate 40 replicates as described above, for a total of 1,600
GRNGs. Then for each GRN, for the one segment case, we generate expression data with
m = 800 time points, and take prefixes to get different number of time points. So there are a
total of 9,600 time series. And for the multiple segments case, we generate 32 segments for each
replicate, for a total of 51,200 segments. We test more time points because now the number of
genes is larger than the above two small cases.

Results. Fig 12 shows the profiles of F-scores of Links, Delays and Effects for different set-
tings for large case, which shows that the three are very consistent, so we omit the histograms of
absolute differences here, but they are in Figures G to I in S1 File. In addition, Fig 13 shows the
profiles of Effects F-scores for different o* and Figure K in S1 File shows the corresponding box-
plot for one segment case, and Figure N in S1 File for multiple segments case. Both show that
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Table 6. Median Effects F-scores for Multiple Segments Small Non-Hidden Case with o® = 2.

a=05 a=1 a=2 a=3
c K m st2 st3 st4 st2 st3 st4 st2 st3 st4 st2 st3 st4

0 2 1 28 1.000 0.000 0.000 0.333 0.000 0.000 1.000 0.000 0.000 0.333 0.000 0.000
2 50 1.000 1.000 0.000 1.000 0.000 0.000 1.000 0.833 0.000 1.000 1.000 0.833

4 110 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

8 211 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0 3 1 20 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 43 0.619 0.417 0.333 0.667 0.000 0.000 0.667 0.000 0.000 0.667 0.667 0.583

4 93 1.000 0.800 0.800 1.000 1.000 0.800 1.000 1.000 0.800 1.000 1.000 1.000

8 197 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0 4 1 20 0.364 0.000 0.000 0.343 0.000 0.000 0.000 0.000 0.000 0.286 0.000 0.000
2 41 0.667 0.333 0.000 0.667 0.400 0.000 0.450 0.333 0.000 0.422 0.444 0.000

4 89 1.000 0.857 0.667 0.829 0.667 0.667 0.667 0.571 0.523 0.762 0.733 0.500

8 197 1.000 1.000 1.000 1.000 0.873 0.857 0.857 0.857 0.857 0.889 0.944 0.857

0 5) 1 27 0.500 0.200 0.000 0.250 0.000 0.000 0.400 0.000 0.000 0.310 0.236 0.000
2 51 0.641 0.500 0.268 0.667 0.333 0.182 0.558 0.500 0.222 0.545 0.382 0.222

4 96 0.800 0.667 0.487 0.800 0.667 0.558 0.775 0.667 0.667 0.785 0.697 0.619

8 194 1.000 0.962 0.873 0.833 0.857 0.817 0.889 0.857 0.857 0.857 0.899 0.844

1 2 1 21 0.667 0.667 0.000 0.333 0.000 0.000 0.000 0.000 0.000 0.400 0.000 0.000
2 44 1.000 1.000 0.800 0.900 1.000 0.667 0.667 0.500 0.450 0.500 0.500 0.333

4 94 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.733 0.667 0.667

8 196 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.800

1 3 1 27 0.619 0.472 0.292 0.500 0.310 0.000 0.536 0.200 0.000 0.444 0.000 0.000
2 54 0.800 0.800 0.800 0.800 0.800 0.667 0.600 0.619 0.536 0.571 0.571 0.500

4 100 0.857 0.857 0.829 0.857 1.000 0.857 0.829 0.800 0.800 0.857 0.857 0.733

8 211 0.889 0.873 0.873 1.000 1.000 1.000 0.857 0.929 0.857 1.000 1.000 0.857

1 4 1 29 0.586 0.348 0.000 0.500 0.382 0.000 0.500 0.293 0.091 0.382 0.211 0.000
2 55 0.750 0.732 0.573 0.667 0.500 0.500 0.500 0.545 0.481 0.497 0.321 0.222

4 97 0.775 0.775 0.750 0.775 0.697 0.667 0.857 0.775 0.697 0.697 0.586 0.481

8 202 0.857 0.857 0.857 0.845 0.889 0.873 0.909 0.899 0.889 0.857 0.813 0.817

1 5 1 21 0.348 0.167 0.000 0.268 0.077 0.000 0.286 0.222 0.000 0.276 0.211 0.000
2 44 0.517 0.400 0.301 0.445 0.400 0.286 0.445 0.310 0.367 0.500 0.453 0.388

4 89 0.667 0.620 0.593 0.667 0.558 0.481 0.558 0.517 0.400 0.641 0.571 0.458

8 187 0.845 0.727 0.727 0.873 0.882 0.690 0.833 0.732 0.646 0.800 0.833 0.764

2 2 1 20 0.400 0.000 0.000 0.400 0.000 0.000 0.310 0.000 0.000 0.333 0.000 0.000
2 44 0.667 0.500 0.367 0.733 0.667 0.536 0.667 0.583 0.000 0.667 0.500 0.500

4 96 0.829 0.800 0.667 1.000 1.000 0.800 0.750 0.733 0.667 0.857 1.000 0.900

8 193 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 3 1 22 0.500 0.400 0.000 0.400 0.000 0.000 0.310 0.000 0.000 0.422 0.268 0.310
2 48 0.750 0.667 0.472 0.800 0.775 0.583 0.536 0.400 0.367 0.500 0.444 0.444

4 103 0.829 0.857 0.800 0.857 0.873 0.829 0.708 0.708 0.667 0.697 0.708 0.633

8 197 0.889 0.889 0.857 0.857 0.889 0.873 0.857 0.800 0.800 0.800 0.800 0.739

2 4 1 28 0.500 0.268 0.000 0.382 0.367 0.367 0.422 0.348 0.250 0.437 0.343 0.200
2 55 0.739 0.536 0.481 0.667 0.573 0.533 0.641 0.481 0.400 0.517 0.500 0.462

4 102 0.817 0.800 0.739 0.764 0.748 0.671 0.714 0.667 0.608 0.567 0.533 0.481

8 200 0.873 0.889 0.899 0.889 0.833 0.833 0.873 0.899 0.817 0.785 0.733 0.733

(Continued)
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Table 6. (Continued)

o
X
3

28
58
113
216
20
40
91
198
28
49
94
188
22
47
105
207
24
47
93
197

® BN = 0 BN 20BN 00 AN OAND =

st2

0.364
0.600
0.714
0.875
0.143
0.667
0.857
1.000
0.422
0.727
0.708
0.845
0.333
0.571
0.769
0.833
0.321
0.500
0.690
0.845

st3

0.258
0.466
0.750
0.866
0.000
0.500
0.929
1.000
0.400
0.667
0.800
1.000
0.222
0.500
0.667
0.833
0.250
0.471
0.571
0.845

st4

0.148
0.429
0.598
0.768
0.000
0.400
0.667
1.000
0.250
0.400
0.667
0.889
0.111
0.400
0.594
0.800
0.133
0.381
0.541
0.753

st2

0.400
0.611
0.785
0.817
0.111
0.400
0.708
0.873
0.558
0.571
0.697
0.873
0.348
0.586
0.748
0.909
0.301
0.453
0.615
0.778

st3

0.287
0.500
0.774
0.857
0.000
0.333
0.667
0.857
0.400
0.523
0.750
0.857
0.250
0.517
0.727
0.909
0.267
0.321
0.485
0.683

st4

0.167
0.481
0.646
0.817
0.000
0.000
0.500
0.667
0.286
0.444
0.667
0.817
0.000
0.437
0.667
0.833
0.071
0.297
0.402
0.588

st2

0.336
0.502
0.686
0.828
0.111
0.125
0.708
0.873
0.400
0.444
0.667
0.857
0.333
0.544
0.721
0.889
0.400
0.375
0.717
0.812

st3

0.182
0.402
0.602
0.817
0.000
0.286
0.500
0.800
0.000
0.444
0.727
0.889
0.208
0.481
0.764
0.889
0.308
0.429
0.578
0.845

st4

0.211
0.336
0.528
0.775
0.000
0.000
0.472
0.708
0.000
0.250
0.667
0.750
0.000
0.400
0.608
0.833
0.148
0.286
0.513
0.801

st2

0.330
0.517
0.580
0.706
0.111
0.333
0.571
0.800
0.267
0.382
0.558
0.739
0.286
0.400
0.615
0.769
0.243
0.429
0.533
0.775

st3

0.167
0.517
0.539
0.706
0.000
0.310
0.550
0.800
0.222
0.348
0.500
0.721
0.111
0.429
0.544
0.769
0.194
0.348
0.502
0.626

st4

0.138
0.445
0.558
0.667
0.000
0.167
0.500
0.800
0.000
0.333
0.422
0.667
0.000
0.388
0.466
0.760
0.183
0.297
0.450
0.602

The medians are taken over the 20 replicates. st2, st3 and st4 are for score thresholds of 2, 3 and 4 respectively. K is the number of segments used. m is
the total number of time points of the segments used.

doi:10.1371/journal.pone.0138596.t006

for large case, the performance is very consistent for different o”. Therefore, in the following we
show the results of Effects F-scores for o> = 2 in Table 7 for one segment case, and in Table § for
multiple segments case, where we show the performances of complete: CLINDE on the complete
data (i.e. with also the expression of the “hidden” nodes), hidden: the proposed algorithm on the

parents

children

Fig 11. Large Synthetic GRN. Each hidden node has up to 3 distinct parents, and up to 5 distinct children.

doi:10.1371/journal.pone.0138596.g011
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Fig 12. Profiles of F-scores of Links, Delays and Effects for Different Settings for Large Case. The x-axis shows the records.

doi:10.1371/journal.pone.0138596.9012

incomplete data (i.e. only the expression of observed genes), and hiddenCL: CLINDE on the
incomplete data. Note that the complete case is mainly for comparison purpose, as in real-life,
the hidden variables cannot be observed. It is unsurprising if the complete case has better perfor-
mance, as CLINDE has more data in this case, so it is the comparison between hidden and hid-
denCL that is of main interest here. The full results of median performance are shown in

Table L in S1 File for one segment case and Table F in S1 File for multiple segments case. In
Tables 7 and 8, we also show the ratio of F-score of hidden to that of complete, in percentages.

Generally, the F-score is better for larger m, however, note that even with m = 800 or K = 32
on the complete data, CLINDE cannot infer the whole GRN, because the GRNs are not small.
For each of complete, hidden and hiddenCL, for o = 0.5,1 and 2, the F-scores are quite similar,
though the F-scores are usually worse for o = 3 for one segment case; for multiple segments,
the results are similar for & = 0.5,1,2, and 3. This shows the robustness of all three methods
towards slight deviation from gaussianity for the error terms, though for larger deviation, the
difference in performance is more noticeable. As for the score threshold, when m is small,
smaller score threshold is better, and for larger m, larger score threshold is better.

When comparing between complete, hidden and hiddenCL, we see that in almost all settings,
complete is better than hidden, which in turn is better than hiddenCL. The exceptions are all for
m < 100 or K < 4. Note that hidden, using incomplete data, is usually able to achieve 70% to
80% of the performance of complete, and can get up to about 90% with large m. We have also
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Fig 13. Profiles of Effects F-scores for Different o? for Different Settings for Large Case. The x-axis shows the records.

doi:10.1371/journal.pone.0138596.9013

performed one-sided Wilcoxon signed-rank test to test whether the median Effects F-score of
hidden is better than hiddenCL. The p-values for 0> = 2 are shown in Table 9 for one segment
case and in Table 10 for multiple segments case. And the p-values for other o* are shown in
Table C in S1 File for one segment case and in Table G in S1 File for multiple segments case.
We see that for most settings, the p-values are very small, but occasionally the p-values are a bit
larger for m <200 or K < 4.

The results show the effectiveness of the proposed algorithm in detecting and estimating
hidden nodes in large GRN, without knowing the number of hidden nodes and the variance of
error terms.

Heterogeneous Variance in Error Terms in Synthetic Large GRN

In previous sections, the error terms of all genes have the same constant variance in the syn-
thetic data. This is an admittedly restrictive assumption. In this section, we test our algorithm
on heterogeneous variance in the error terms for the synthetic large GRNs generated in the pre-
vious section, to test how robust HCC-CLINDE is towards violation of the assumption of con-
stant variance in error terms. We simulate data as above, but instead of a constant, the variance
of error terms for gene i is generated as 6> = max (0.1, z,), where z; ~ N(2,6°), and we test dif-
ferent values of 6°:0.05, 0.1,0.2, 0.5,0.7, 0.9, 1.
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Table 7. Median Effects F-scores for One Segment Large Case with o® = 2.

complete (C) hidden (H) H/C hiddenCL

n ny a m st2 st3 st4 st2 st3 st4 st2 st3 st4 st2 st3 st4
50 5 0.5 20 0.123 0.088 0.021 0.097 0.055 0.009 78.7% 63.0% 45.0% 0.081 0.046 0.000
50 0.413 0.397 0.279 0.323 0.269 0.171 78.3% 67.9% 61.4% 0.294 0.266 0.180
100 0.659 0.667 0.608 0.532 0.517 0.446 80.7% 77.6% 73.5% 0.476 0.492 0.438
200 0.788 0.847 0.815 0.656 0.715 0.667 83.3% 84.4% 81.8% 0.584 0.651 0.622
400 0.847 0.933 0.933 0.737 0.808 0.816 87.1% 86.6% 87.5% 0.616 0.703 0.718
800 0.850 0.966 0.979 0.769 0.878 0.893 90.5% 90.8% 91.3% 0.600 0.698 0.724
50 5 1 20 0.118 0.078 0.039 0.107 0.062 0.022 90.9% 78.8% 56.0% 0.078 0.054 0.021
50 0.399 0.374 0.274 0.310 0.282 0.191 77.7% 75.5% 69.7% 0.288 0.275 0.183
100 0.642 0.654 0.596 0.493 0.500 0.432 76.8% 76.5% 72.5% 0.481 0.500 0.438
200 0.776 0.855 0.817 0.652 0.694 0.667 84.0% 81.2% 81.6% 0.592 0.655 0.632
400 0.834 0.931 0.934 0.724 0.812 0.806 86.8% 87.2% 86.2% 0.616 0.711 0.719
800 0.847 0.965 0.975 0.754 0.867 0.881 89.0% 89.9% 90.4% 0.603 0.705 0.730
50 5 2 20 0.136 0.120 0.066 0.116 0.104 0.054 85.2% 86.4% 81.7% 0.090 0.073 0.040
50 0.385 0.384 0.300 0.298 0.284 0.210 77.5% 73.8% 70.0% 0.282 0.263 0.196
100 0.607 0.626 0.575 0.453 0.457 0.409 74.6% 73.1% 71.2% 0.450 0.464 0.425
200 0.765 0.831 0.806 0.601 0.646 0.626 78.5% 77.7% 77.6% 0.567 0.632 0.626
400 0.820 0.932 0.933 0.663 0.760 0.762 80.9% 81.6% 81.7% 0.600 0.696 0.707
800 0.833 0.959 0.976 0.731 0.850 0.870 87.8% 88.6% 89.1% 0.595 0.686 0.719
50 5 3 20 0.160 0.146 0.103 0.131 0.117 0.084 82.0% 80.2% 81.5% 0.107 0.086 0.058
50 0.370 0.341 0.310 0.304 0.260 0.235 82.3% 76.3% 75.7% 0.263 0.246 0.220
100 0.546 0.545 0.505 0.423 0.409 0.379 77.3% 75.1% 75.1% 0.396 0.399 0.377
200 0.676 0.726 0.735 0.530 0.572 0.573 78.4% 78.9% 77.9% 0.505 0.558 0.569
400 0.746 0.855 0.882 0.601 0.703 0.719 80.6% 82.3% 81.5% 0.554 0.648 0.688
800 0.768 0.906 0.951 0.690 0.829 0.872 89.9% 91.4% 91.6% 0.558 0.668 0.706
100 10 0.5 20 0.071 0.060 0.016 0.075 0.047 0.011 106.6% 78.0% 68.9% 0.052 0.038 0.011
50 0.347 0.364 0.281 0.259 0.252 0.181 74.8% 69.1% 64.3% 0.250 0.251 0.196
100 0.597 0.654 0.602 0.453 0.495 0.435 75.8% 75.6% 72.2% 0.424 0.483 0.441
200 0.720 0.833 0.819 0.595 0.687 0.676 82.6% 82.5% 82.6% 0.533 0.626 0.625
400 0.781 0.925 0.933 0.674 0.798 0.813 86.3% 86.4% 87.2% 0.574 0.689 0.718
800 0.773 0.948 0.977 0.700 0.865 0.892 90.5% 91.2% 91.3% 0.562 0.689 0.723
100 10 1 20 0.075 0.059 0.022 0.078 0.048 0.016 104.0% 81.9% 71.0% 0.051 0.037 0.012
50 0.348 0.357 0.288 0.265 0.252 0.187 76.3% 70.7% 65.0% 0.255 0.251 0.194
100 0.593 0.645 0.592 0.454 0.483 0.443 76.6% 74.9% 74.7% 0.431 0.477 0.432
200 0.735 0.838 0.819 0.596 0.685 0.669 81.1% 81.8% 81.6% 0.545 0.627 0.628
400 0.781 0.927 0.934 0.669 0.801 0.815 85.6% 86.4% 87.3% 0.567 0.683 0.703
800 0.785 0.953 0.980 0.702 0.853 0.888 89.4% 89.6% 90.5% 0.557 0.684 0.721
100 10 2 20 0.106 0.095 0.061 0.106 0.084 0.041 99.3% 88.1% 68.2% 0.072 0.062 0.031
50 0.350 0.366 0.315 0.255 0.259 0.218 72.6% 70.9% 69.3% 0.244 0.251 0.212
100 0.563 0.618 0.587 0.414 0.454 0.422 73.5% 73.4% 71.9% 0.412 0.456 0.429
200 0.702 0.814 0.817 0.542 0.641 0.630 77.2% 78.7% 771% 0.513 0.601 0.619
400 0.761 0.913 0.937 0.628 0.760 0.784 82.6% 83.2% 83.7% 0.541 0.674 0.705
800 0.771 0.947 0.981 0.686 0.856 0.887 89.0% 90.4% 90.5% 0.539 0.675 0.717
(Continued)
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Table 7. (Continued)

complete (C) hidden (H) H/C hiddenCL
n ny a m st2 st3 st4 st2 st3 st4 st2 st3 st4 st2 st3 st4
100 10 3 20 0.132 0.126 0.105 0.120 0.111 0.087 91.4% 88.1% 82.4% 0.088 0.079 0.061

50 0.318 0.312 0.291 0.256 0.241 0.218 80.7% 77.3% 75.0% 0.224 0.211 0.188
100 0.470 0.479 0.477 0.356 0.375 0.359 75.8% 78.3% 75.2% 0.341 0.355 0.353
200 0.586 0.666 0.697 0.459 0.519 0.539 78.4% 78.0% 77.3% 0.441 0.501 0.531
400 0.653 0.790 0.849 0.514 0.636 0.683 78.8% 80.5% 80.5% 0.484 0.597 0.651
800 0.677 0.858 0.927 0.605 0.776 0.843 89.4% 90.4% 90.9% 0.484 0.618 0.688

The medians are taken over the 40 replicates. st2, st3 and st4 are for score thresholds of 2, 3 and 4 respectively. complete is using CLINDE on the
complete data. hidden is our proposed algorithm on the incomplete data. hiddenCL is CLINDE on the incomplete data. H/C is the F-score of hidden
divided by that of complete and shown as percentage.

doi:10.1371/journal.pone.0138596.t007

Results. Figs 14 and 15 show the median Effects F-scores against different §” for different
o and different number of time points for one segment case with score threshold st = 2 for
n =50 and n = 100 respectively; while Figs 16 and 17 show the results for multiple segment
case with st = 2 for n = 50 and #n = 100 respectively. The full table of median F-scores (with dif-
ferent st, and also Links and Delays performances including Recall, Precision and F-score) are
given in Tables H and I in S1 File for one segment case and multiple segments case
respectively.

First, note that the median Effects F-scores for complete (which is CLINDE on the complete
data) and hiddenCL (which is CLINDE on the incomplete data) are mostly stable for different
values of 8, which is reasonable because CLINDE ignores hidden common cause, and makes
no assumption on the variances of the error terms. We have also performed one-sided Wil-
coxon signed-rank test to test whether the median Effects F-score of hidden is better than hid-
denCL. The p-values are shown in Table 11 for st = 2 for both one segment and multiple
segments cases, and the p-values for st = 3 and st = 4 are in Tables ] and K in S1 File for one
segment and multiple segments cases respectively. With sufficient time points (or segments),
for small &% the F-scores of hidden (which is HCC-CLINDE on the incomplete data) is smaller
than complete but larger than hiddenCL, which is qualitatively the same as the constant vari-
ance case in previous section. Up to 8> = 0.2, the p-values are less than 0.001 for 400 or 800
time points, and 16 and 32 segments. As 8> increases, the F-scores decrease, and usually at §* =
0.5, the performance of hidden would be close to hiddenCL and that hidden is no longer signifi-
cantly better than hiddenCL, indicating that HCC-CLINDE cannot effectively recover the hid-
den common causes and has no advantage over ignoring hidden common causes. However,
note that when 8 = 0.2, the variances of most genes are between 1 and 3, and when 54 =0.5,
most variances are between 0.1 and 4, which are moderately heterogeneous. Therefore, the
results show that HCC-CLINDE can tolerate slight violation of the assumption of constant var-
iances in the error terms of the genes.

Small YEASTRACT Subnetworks with Real Data

Preprocessing of Subnetworks. We accessed YEASTRACT [55] (http://www.yeastract.
com/formfindregulators.php) on 7th Feb, 2015 to get the regulating TFs of a list of 149 TFs.
We chose “DNA binding and expression evidence” (which gives more confidence than having
only binding evidence or expression evidence alone) and queried twice, once with “TF acting
as activator” and once with “TF acting as inhibitor” to try to get the regulatory effects (positive
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Table 8. Median Effects F-scores for Multiple Segments Large Case with o® = 2.

complete (C) hidden (H) H/C hiddenCL

n ny a K m st2 st3 st4 st2 st3 st4 st2 st3 st4 st2 st3 st4
50 5 0.5 1 30 0213 0.175 0.094 0.163 0.119 0.063 76.8% 67.9% 672% 0.142 0.120 0.060
2 59 0.449 0453 0.341 0.339 0.307 0.206 755% 67.8% 60.3% 0.334 0.302 0.220
4 100 0.622 0.633 0558 0488 0.467 0.400 784%  737% 71.7% 0456 0.474 0.407
8 196 0.770 0.816 0.768 0.623 0.647 0.614 80.9% 79.3% 80.0% 0589 0.614 0.585
16 400 0.867 0.922 0905 0.733 0.782 0.775 84.6% 848% 85.7%  0.631 0.701 0.706
32 812 0887 0968 0.968 0.754 0.846 0.865 85.1% 874% 89.4% 0.633 0.697 0.722
50 5 1 1 30 0.198 0.175 0.087 0.166 0.134 0.058 83.7% 76.3% 65.9% 0.150 0.127  0.051
2 59 0455 0435 0.334 0313 0.309 0.231 68.8% 71.1% 69.2% 0329 0.306 0.234
4 100  0.601 0.613 0.538 0.481 0.464 0.388 79.9% 758% 721%  0.458  0.461 0.386
8 196 0.774 0807 0.759 0645 0660 0.614 83.3% 81.8% 80.8% 0.584 0.611 0.590
16 400 0.846 0916 0.901 0.734 0.796 0.778 86.7% 87.0% 86.4% 0.645 0.694 0.697
32 812 0873 0963 0.969 0.765 0.848 0.854 87.7% 881% 88.2%  0.631 0.707  0.717
50 5 2 1 30 0.199 0.167 0.096 0.146 0.118 0.058 73.6% 70.6% 60.3% 0.139 0.114 0.045
2 59 0.428 0.417 0.333 0.331 0.296  0.241 775% 71.0% 724% 0317 0.294 0.233
4 100 0.600 0.621 0.547 0.479 0.467 0.403 79.8%  752% 73.7% 0.456 0.463 0.407
8 196 0.777 0809 0779 0619 0.658 0.614 79.6% 814% 788% 0576 0.612 0.600
16 400 0.851 0.925 0914 0.714 0.782 0.769 83.9% 845% 842% 0.625 0.691 0.704
32 812 0876 0966 0.972 0.736 0.822 0.831 84.0% 851% 855% 0.625 0.706 0.725
50 5 3 1 30 0.184 0.152 0.102 0.155 0.122 0.074 84.6% 802% 725% 0.130 0.104 0.062
2 59 0409 0386 0.308 0.300 0.278 0.213 734%  719% 694% 0293 0.285 0.210
4 100  0.581 0.595 0.531 0.444 0.445 0.385 76.4%  748% 725% 0424 0.438 0.393
8 196 0.744 0792 0.754 0619 0.639 0.602 83.2% 80.7% 79.8% 0.567 0.611 0.582
16 400 0.844 0.907 0.896 0.707 0.781 0.772 83.8% 86.1% 86.2% 0.629 0.698 0.695
32 812 0877 0964 0.964 0.745 0.821 0.843 85.0% 85.1% 87.4% 0.628 0.703 0.716
100 10 05 1 21 0.071 0.058  0.021 0.069  0.051 0.016 97.9%  89.0% 75.1%  0.051 0.044  0.011
2 48 0.307 0299 0233 0232 0.213 0.160 755% 713% 68.8% 0222 0.213 0.158
4 92 0.530 0567 0.518 0.398 0.420 0.364 75.0% 741% 702% 0.389 0416 0.374
8 188 0719 0.789 0.758 0.574 0.625 0.606 79.7%  79.3%  80.0%  0.531 0.594  0.581
16 387 0.808 0910 0902 0.678 0.772 0.769 839% 849% 852% 0595 0.686 0.694
32 811 0.831 0.960 0.974 0.720 0.844 0.860 86.7% 87.9% 883% 0.602 0.703 0.724
100 10 1 1 21 0.088 0.076 0.030 0.085 0.065 0.021 95.8% 85.1% 71.8% 0.060 0.057 0.020
2 48 0.323 0.335  0.251 0.232 0.236 0.162 71.8% 705% 64.6% 0222 0.223 0.158
4 92 0.550 0.577 0520 0.425 0.434 0.368 772%  753% 70.7% 0399 0.426 0.367
8 188 0.725 0.792  0.761 0.578 0.647 0.611 79.7%  81.7% 80.4% 0539 0.600 0.580
16 387 0807 0910 0.907 0.680 0.770 0.774 84.3% 846% 854% 0.603 0.685 0.692
32 811 0.842 0.959 0.971 0.728 0.853  0.859 86.5% 89.0% 885% 0.607 0.698 0.721
100 10 2 1 21 0.083 0.067 0.036 0.086 0.055 0.029 1032% 812% 80.3% 0.059 0.045 0.023
2 48 0.296 0.295 0.249 0.221 0.214 0.164 74.6% 72.6% 65.8% 0.218 0.205 0.155
4 92 0.529 0559 0518 0.404 0422 0.382 76.3%  755% 73.7% 0374 0.409 0.377
8 188  0.711 0.780  0.761 0.578 0.626  0.602 81.4% 80.3% 79.1% 0529 0586 0.577
16 387 0806 0914 0906 0.669 0.755 0.759 83.1% 826% 83.7% 0588 0.674 0.688
32 811 0.836 0.959 0977 0.715 0.839 0.857 85.4%  87.6% 87.7%  0.591 0.688 0.716
(Continued)
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Table 8. (Continued)

n ny a K
100 10 3 1
2
4
8
16
32

m

21
48
92
188
387
811

st2

0.072
0.265
0.488
0.685
0.778
0.817

complete (C) hidden (H) H/C hiddenCL
st3 st4 st2 st3 st4 st2 st3 st4 st2 st3 st4
0.067 0.044 0.075 0.058 0.029 103.9% 87.1% 66.7% 0.048 0.044 0.026

0250 0212 0.197 0.187 0.144 742% 749% 679% 0189 0.177  0.141
0.521 0.491 0.361 0.371 0.339 739% 711% 69.0% 0348 0372 0.347
0.742 0.743 0544 0593 0.577 794% 799% 776% 0497 0554 0.562
0.885  0.891 0.641 0.738  0.741 82.4% 834% 83.1% 0565 0.660 0.685
0.949 0968 0.693 0.810 0.840 848% 854% 86.8% 0578 0.691 0.717

The medians are taken over the 40 replicates. st2, st3 and st4 are for score thresholds of 2, 3 and 4 respectively. K is the number of segments used. m is
the total number of time points of the segments used. complete is using CLINDE on the complete data. hidden is our proposed algorithm on the
incomplete data. hiddenCL is CLINDE on the incomplete data. H/C is the F-score of hidden divided by that of complete and shown as percentage.

doi:10.1371/journal.pone.0138596.t008

or negative) of the regulatory relationships. The obtained 392 links involve only 129 TFs, and
we used “ORF List < Gene List” utility of YEASTRACT (http://www.yeastract.com/
formorftogene.php) to convert the gene names into ORF id’s, and all these 129 id’s appear in
the yeast cell cycle [53] data.

However, the GRN is too large for the limited data, so we have chosen 22 subnetworks with
sizes and constituent TFs shown in Table 12. For each subnetwork, a TF (which has children in
the subnetwork) is chosen to be the hidden node. As the delays in the links are not known, and
for a TF pair, some links may be both positive and negative in the YEASTRACT network, so
we focus on the performance on Links.

Preprocessing of Expression Data. We downloaded the yeast cell cycle [53] data from
http://genome-www.stanford.edu/cellcycle/. The expression data contains 4 time series: alpha,
cdcl5, cdc28 and elu, with different lengths and time points, as shown in the second column of
Table 1. Since the time steps of the 4 time series are not all the same, for each TF, we perform
spline interpolation (using the spline () function in R) to the time points shown in the third
column of Table 1. Also, some TFs in some series are entirely missing (this seems more often
in cdc15), and we fill in with zero. For other missing values, we rely on the spline interpolation
to fill in the value.

After this, for each subnetwork we use the converted ORF id of each TF to retrieve expres-
sion data of the TFs on the 4 time series, to obtain one set labeled complete which contains the
expression data of all TFs of the subnetwork, and another labeled incomplete which contains
the expression data of all but the chosen TF of the subnetwork. Therefore, for each subnetwork,
we have 8 expression datasets.

Results. The Links F-scores of CLINDE with complete data, our proposed algorithm (with
normalization of data, with unknown ¢* and unknown number of hidden nodes) on incomplete
data, and CLINDE on incomplete data on the subnetworks are shown in Table 13, where we set
the maximum delay 7, to be 4, and use the score threshold of 1 as the number of time points is
not large. We run the algorithms (ours and CLINDE) separately on one time series and used
the 4 time series together (all), because both CLINDE and our proposed algorithm can handle
multiple segments of time series. We show which segment(s) have the best performance.

First, as the 4 time series segments are from different experimental conditions, so it is possi-
ble that different genes have better responses in different segments. Consequently, using all 4
segments (all) may not give the best results, even though the total number of time points is
larger.
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Table 9. P-values of one-sided Wilcoxon signed-rank test on whether the medians Effects F-scores of hidden is better than hiddenCL for the One
Segment Large Case with o® = 2.

n a m st2 st3 st4

50 0.5 20 1.85082E-09 4.27927E-04 5.91254E-02
50 1.22187E-06 1.97777E-02 7.05012E-01

100 1.25890E-07 4.13188E-03 4.55023E-01

200 9.09495E-13 6.36646E-12 5.21868E-09

400 9.09495E-13 9.09495E-13 9.09495E-13

800 9.09495E-13 9.09495E-13 9.09495E-13

50 1 20 3.64207E-08 1.03680E-04 1.36338E-02
50 1.76024E-03 1.84770E-02 6.32721E-01

100 4.21831E-04 1.47409E-01 9.18072E-01

200 3.00133E-11 4.70440E-08 1.13534E-05

400 9.09495E-13 9.09495E-13 1.81899E-12

800 9.09495E-13 9.09495E-13 9.09495E-13

50 2 20 3.91992E-09 1.34587E-08 2.29484E-06
50 1.78595E-04 1.03773E-02 4.49752E-03

100 9.21563E-02 6.12502E-01 8.15900E-01

200 3.38990E-06 5.88649E-03 1.47409E-01

400 1.72804E-11 9.09495E-13 2.30102E-10

800 9.09495E-13 9.09495E-13 9.09495E-13

50 3 20 4.06544E-10 9.09495E-13 1.92938E-07
50 1.18116E-08 3.94010E-07 8.41174E-04

100 2.84941E-04 2.22241E-03 1.62600E-01

200 1.02952E-04 2.32674E-03 1.94996E-01

400 1.27329E-11 6.36646E-12 1.18116E-08

800 9.09495E-13 9.09495E-13 9.09495E-13

100 0.5 20 3.00133E-11 5.60030E-04 5.22645E-02
50 3.95898E-03 1.84770E-02 9.97212E-01

100 2.14964E-07 1.78595E-04 9.97084E-01

200 9.09495E-13 1.81899E-12 5.82077E-10

400 9.09495E-13 9.09495E-13 9.09495E-13

800 9.09495E-13 9.09495E-13 9.09495E-13

100 1 20 1.81899E-12 3.23034E-08 1.06658E-01
50 6.77883E-03 1.18525E-01 9.10652E-01

100 1.33686E-06 2.78850E-03 4.39254E-01

200 1.27329E-11 9.09495E-13 1.74014E-08

400 9.09495E-13 9.09495E-13 9.09495E-13

800 9.09495E-13 9.09495E-13 9.09495E-13

100 2 20 2.27374E-11 3.91083E-11 4.10137E-08
50 3.13413E-05 2.84941E-04 1.31949E-03

100 9.62277E-03 1.18525E-01 9.99385E-01

200 6.00448E-09 3.03602E-07 6.83742E-04

400 9.09495E-13 9.09495E-13 2.72848E-12

800 9.09495E-13 9.09495E-13 1.85347E-08

(Continued)
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Table 9. (Continued)

n a m st2 st3 st4
100 3 20 9.09495E-13 6.36646E-12 9.09495E-13
50 2.51475E-09 8.22183E-10 4.10137E-08
100 5.05048E-05 1.22426E-05 5.76843E-03
200 1.09601E-04 3.23034E-08 3.76574E-03
400 1.26774E-07 6.36646E-11 4.87489E-10
800 9.09495E-13 9.09495E-13 9.09495E-13

The tests are based on the 40 replicates. st2, st3 and st4 are for score thresholds of 2, 3 and 4 respectively.

doi:10.1371/journal.pone.0138596.t009

Second, our proposed algorithm on incomplete data has better F-scores than CLINDE on
complete data in 14 out of 22 subnetworks, with 3 ties. There are two possible reasons. One is
that after estimating the initial GRN, the subsequent steps make some assumptions on the
structure of the GRN around the hidden common cause(s). This may help the GRN inference,
especially in case of limited data. The other is that after estimating the hidden common cause
(s), the re-estimation of the links around the hidden common cause(s) works only on a subnet-
work. However, we expect that as the amount of (quality) data increases, the situation would
be more like the synthetic large case, where CLINDE on complete data has better performance,
but our algorithm is close to it.

Third, our proposed algorithm on incomplete data outperforms CLINDE on incomplete
data in 21 out of 22 subnetworks. This is as expected, as CLINDE is unaware of the presence of
hidden node(s), so there could be misleading links (as illustrated in Fig 1).

In short, due to limited real expression data, we cannot draw very strong conclusions, but
the results indicate the potential of our proposed algorithm in recovering hidden common
cause(s) using real data, when the error variance and the number of hidden node(s) is
unknown.

Discussions

In this section, we discuss possible extensions to the basic algorithm introduced above to relax
some assumptions made.

Variance of Error Terms

In the proposed algorithm, we assume that the variance of the error terms is a constant. This
assumption is used in detection of genes with hidden common cause, and in calculation of cor-
relation threshold in clustering.

This assumption can be relaxed, for example to assume that the error terms of some genes
have variance 62 and some have variance o;. After inferring an initial GRN and calculating the
empirical variances of the error terms, instead of using the median as estimate of the true vari-
ance, we may cluster the empirical variances and use the centers of the two largest clusters as
estimates of ¢7 and ¢3. Having obtained the estimates (or assumed given if the number of
observed genes is too small to allow good estimation), those observed genes with empirical var-
iances too far away from the estimates are predicted to have hidden common cause.

The variance of the error terms is also used in calculating the threshold of absolute correla-
tion in clustering the genes having the same hidden common cause. If we assume more than
one possible variance, we may use the larger one to calculate a conservative threshold.
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Table 10. P-values of one-sided Wilcoxon signed-rank test on whether the medians Effects F-scores of hidden is better than hiddenCL for the Mul-
tiple Segments Large Case with 0® = 2.

n a K m st2 st3 st4
50 0.5 1 30 1.38532E-03 3.32451E-02 9.21645E-02
2 59 1.97233E-02 6.95747E-01 7.61896E-01
4 100 4.79873E-06 1.13695E-01 9.78903E-01
8 196 8.00355E-11 5.81749E-08 5.81073E-07
16 400 9.09495E-13 9.09495E-13 9.09495E-13
32 812 9.09495E-13 9.09495E-13 9.09495E-13
50 1 1 30 6.77883E-03 6.05550E-03 1.17538E-01
2 59 2.17906E-01 2.61704E-01 3.52344E-01
4 100 6.10535E-06 2.18740E-02 1.56701E-01
8 196 1.27329E-11 2.53194E-08 5.83590E-04
16 400 9.09495E-13 9.09495E-13 2.72848E-12
32 812 9.09495E-13 9.09495E-13 9.09495E-13
50 2 1 30 1.24866E-02 1.35190E-01 4.48704E-02
2 59 6.00796E-03 4.18378E-01 3.05251E-01
4 100 7.48913E-05 3.85003E-02 6.27698E-01
8 196 1.00044E-10 3.56872E-07 1.68219E-04
16 400 1.85347E-08 9.09495E-13 9.09495E-12
32 812 9.09495E-13 9.09495E-13 9.09495E-13
50 8 1 30 1.01875E-06 1.28805E-04 1.59819E-03
2 59 1.56904E-01 2.10106E-01 5.43996E-02
4 100 3.19229E-04 5.09871E-03 7.05012E-01
8 196 9.09495E-12 1.62785E-06 2.24322E-04
16 400 9.09495E-13 9.09495E-13 9.09495E-13
32 812 9.09495E-13 9.09495E-13 9.09495E-13
100 0.5 1 21 2.79215E-10 2.24432E-04 2.35524E-01
2 48 1.05239E-05 1.60394E-02 6.91068E-01
4 92 2.53916E-05 9.10447E-04 9.95689E-01
8 188 9.09495E-13 6.36646E-12 1.93759E-07
16 387 9.09495E-13 9.09495E-13 9.09495E-13
32 811 9.09495E-13 9.09495E-13 9.09495E-13
100 1 1 21 2.30102E-10 7.64159E-07 4.52594E-03
2 48 3.37733E-04 2.04941E-05 1.91553E-01
4 92 9.13360E-08 4.69068E-03 3.42508E-01
8 188 9.09495E-13 1.81899E-12 2.46640E-06
16 387 9.09495E-13 9.09495E-13 9.09495E-13
32 811 9.09495E-13 9.09495E-13 9.09495E-13
100 2 1 21 4.54747E-12 5.82077E-10 9.55109E-04
2 48 2.78850E-03 1.13837E-03 4.20773E-02
4 92 5.18348E-08 7.73253E-06 4.44501E-01
8 188 9.09495E-13 9.09495E-13 3.04778E-06
16 387 9.09495E-13 9.09495E-13 9.09495E-13
32 811 9.09495E-13 9.09495E-13 9.09495E-13
(Continued)
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Table 10. (Continued)

n

100

a K

3 1
2
4
8
16
32

m st2

21 1.81899E-12
48 5.27871E-07

92 3.99203E-04
188 1.00044E-10
387 9.09495E-13
811 9.09495E-13

st3

5.37816E-07
4.12623E-05
3.57299E-01
1.27329E-11
9.09495E-13
9.09495E-13

st4

5.09440E-07
3.63203E-03
8.94343E-01
2.92082E-07
9.09495E-13
1.85347E-08

The tests are based on the 40 replicates. st2, st3 and st4 are for score thresholds of 2, 3 and 4 respectively. K is the number of segments used. m is the
total number of time points of the segments used.

doi:10.1371/journal.pone.0138596.1010
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our proposed algorithm on the incomplete data. hiddenCL is CLINDE on the incomplete data. st used is 2.

doi:10.1371/journal.pone.0138596.9014
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Fig 15. Median Effects F-scores for n = 100 with Different 5> for One Segment Large Case. complete is using CLINDE on the complete data. hidden is
our proposed algorithm on the incomplete data. hiddenCL is CLINDE on the incomplete data. st used is 2.

doi:10.1371/journal.pone.0138596.g015

Alternatively, for each observed gene, we may choose the estimate closer to the empirical vari-
ance as its true variance, and calculate the threshold accordingly. At this point, it is unclear
which method gives better clustering, and further study is needed.

However, it is difficult to handle a very general and spread-out distribution of the variances
of the error terms. If the distribution is unknown and we desire to estimate it from the empiri-
cal variances, a large number of observed genes is needed for meaningful estimation, but this
increases the difficulty of inference of the initial GRN substantially because of the increased
number of genes. Even if we assume the distribution is known or well estimated, given an
empirical variance, we need to decide whether this is as expected, which is essentially a statisti-
cal test, which is more difficult for less concentrated distribution.

Discrete Data

The proposed algorithm handles continuous data, here we discuss the possibility of extending
it to discrete time series data. For this purpose, a few parts would need to be adapted.
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Fig 16. Median Effects F-scores for n = 50 with Different 5° for Multiple Segments Large Case. complete is using CLINDE on the complete data. hidden
is our proposed algorithm on the incomplete data. hiddenCL is CLINDE on the incomplete data. st used is 2.

doi:10.1371/journal.pone.0138596.9016

Firstly, the data model would be different. Instead of a linear combination of its parents’ val-
ues (with time delay) plus an additive error, the value of a node would depend on its parents
through a conditional distribution. In addition, we assume that given each configuration of the
parents, the conditional distribution has most probability (e.g. 1-p,) concentrated on a value,
and the remaining p, is spread over other values, i.e. the value of the node is roughly a function
of its parents, with a “noise level” of p..

Secondly, the inference of initial GRN needs adaptation. This is simple because similar to the
PC algorithm [29], CLINDE can use any type of independence and conditional independence
test suitable for the data. For example, y* tests could be used instead of the correlation test.

Thirdly, we need to predict the nodes with hidden common cause based on the initial GRN.
Given an initial GRN, we could estimate the maximum likelihood conditional distribution of
each node from the data, and analogous to variance of the error terms, the empirical “noise
level” could be calculated and compared with the expected level to predict whether that node
has hidden common cause. If we assume a constant “noise level” for all the nodes, it could be
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Fig 17. Median Effects F-scores for n = 100 with Different 52 for Multiple Segments Large Case. complete is using CLINDE on the complete data.
hidden is our proposed algorithm on the incomplete data. hiddenCL is CLINDE on the incomplete data. st used is 2.

doi:10.1371/journal.pone.0138596.9017

given (for small number of nodes) or estimated from empirical “noise levels” (for large number
of nodes).

Fourthly, for the clustering of nodes having the same hidden common cause, since two
nodes having the same parent would be associated, so it is only necessary to determine an
appropriate threshold for the association measure based on the “noise levels”.

Lastly, instead of using Singular Value Decomposition to estimate hidden common cause
(s), a different method has to be used. For example, Structural-EM could be used as in [51],
and the method in [52] could be used for the related problem of determining the number of
states for the hidden common cause(s).

Relax Structural Assumptions

Nodes with More than One Hidden Common Cause. In the basic algorithm, we assume
that if a gene has a hidden parent, it has no other parents. Here we consider the possibility that
a gene has two or more hidden parents (both hidden common causes). This should pose little
difficulty for predicting the genes with hidden common cause(s), as they would have the wrong
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Table 11. P-values of one-sided Wilcoxon signed-rank test on whether the medians Effects F-scores of hidden is better than hiddenCL for the Het-
erogeneous Variance Large Case.

n a 52 nps = 200 nps = 400 nps = 800 K=8 K=16 K =32
50 0.5 0.05 2.51475E-09 9.09495E-13 9.09495E-13 5.82077E-10 9.09495E-13 1.81899E-12
0.1 1.46175E-06 1.72804E-11 1.53705E-10 2.92082E-07 3.91992E-09 6.36646E-11
0.2 2.13304E-04 1.77279E-05 7.73253E-06 5.38597E-05 1.22187E-06 4.53190E-05
0.5 2.68777E-02 3.51204E-02 1.44876E-01 1.35193E-01 7.83223E-01 4.30922E-01
0.7 2.25867E-01 2.04007E-02 9.38085E-02 1.66783E-01 1.84100E-01 3.48342E-01
0.9 7.88755E-02 4.34017E-01 8.39846E-01 2.78850E-03 8.50441E-02 7.70093E-01
1.0 3.72302E-01 9.06192E-01 8.22954E-01 1.84100E-01 8.60265E-01 9.08685E-01
50 1 0.05 1.53705E-10 2.72848E-12 1.81899E-12 1.26774E-07 9.09495E-13 9.09495E-12
0.1 1.85082E-09 3.00133E-11 1.72804E-11 3.17419E-06 1.00044E-10 4.06544E-10
0.2 3.41121E-02 1.31954E-05 2.01109E-04 5.53261E-04 3.57201E-04 1.58393E-04
0.5 4.91390E-02 2.96950E-02 1.41598E-01 4.35158E-02 2.59897E-02 6.03618E-02
0.7 3.62532E-02 2.90787E-01 5.02651E-01 1.91553E-01 2.66446E-01 7.89894E-01
0.9 5.47211E-01 2.90403E-01 8.94343E-01 1.63447E-01 1.44329E-01 3.82076E-01
1.0 1.73106E-01 7.05012E-01 8.08678E-01 4.30922E-01 9.73459E-01 7.82094E-01
50 2 0.05 3.56872E-07 4.54747E-12 9.09495E-13 1.97442E-08 3.00133E-11 9.09495E-12
0.1 1.68219E-04 1.74174E-06 2.86163E-08 8.23745E-06 7.30443E-08 3.91992E-09
0.2 5.43599E-03 3.17871E-06 6.39177E-07 1.63188E-04 5.81749E-08 3.61960E-06
0.5 8.51795E-01 1.66629E-02 8.04618E-01 2.86594E-02 4.25285E-01 2.95777E-01
0.7 6.07236E-01 3.97724E-01 9.67926E-01 2.72400E-01 6.47656E-01 9.75042E-01
0.9 8.93482E-02 4.91650E-01 4.19823E-01 6.12502E-01 5.18552E-01 8.57140E-01
1.0 1.19160E-01 9.80935E-01 9.98489E-01 2.59264E-01 4.92047E-01 9.99624E-01
50 3 0.05 2.22241E-03 1.03501E-08 1.81899E-12 4.61341E-08 1.72804E-11 2.27374E-11
0.1 6.83742E-04 2.84941E-04 1.24601E-10 3.35921E-05 5.81749E-08 2.51475E-09
0.2 5.52734E-01 6.16046E-05 1.75435E-05 2.01897E-04 8.35792E-06 7.98702E-05
0.5 1.00421E-03 4.09055E-02 2.23464E-01 1.79761E-03 1.03308E-01 8.68181E-02
0.7 3.37733E-04 1.23964E-01 2.65413E-02 2.17906E-01 1.38298E-01 5.90745E-02
0.9 1.78022E-02 4.70862E-01 3.52344E-01 5.18552E-01 2.63607E-01 7.40736E-01
1.0 1.66100E-02 2.42260E-01 9.90377E-01 5.44977E-01 5.50242E-01 9.77451E-01
100 0.5 0.05 1.81899E-12 9.09495E-13 9.09495E-13 6.93035E-10 9.09495E-13 9.09495E-13
0.1 1.72804E-11 9.09495E-13 2.72848E-12 1.53705E-10 4.54747E-12 9.09495E-13
0.2 5.63730E-06 6.39177E-07 2.16005E-09 2.12223E-03 2.26382E-06 2.26382E-06
0.5 1.44329E-01 6.47656E-01 9.79599E-01 7.36393E-01 9.85053E-01 9.99799E-01
0.7 5.13254E-01 9.90737E-01 9.94901E-01 4.81448E-01 9.91421E-01 9.98546E-01
0.9 9.68908E-01 9.34221E-01 9.99999E-01 7.40736E-01 9.96814E-01 1.00000E+00
1.0 9.61500E-01 9.96208E-01 9.99842E-01 9.62402E-01 9.99476E-01 9.99997E-01
100 1 0.05 1.81899E-12 9.09495E-13 9.09495E-13 2.92221E-09 9.09495E-13 9.09495E-13
0.1 5.21868E-09 9.09495E-12 6.36646E-11 2.63926E-07 8.22183E-10 1.53705E-10
0.2 3.56872E-07 1.85082E-09 2.92082E-07 3.22983E-07 1.53150E-08 4.07638E-06
0.5 1.44250E-02 8.71768E-02 1.73583E-01 1.66629E-02 5.59250E-02 1.18525E-01
0.7 6.17588E-01 6.37723E-01 9.93221E-01 2.94988E-01 8.12230E-01 9.63531E-01
0.9 9.23105E-01 9.06192E-01 9.99988E-01 2.42260E-01 9.55396E-01 9.99643E-01
1.0 1.41292E-01 9.94463E-01 9.99993E-01 3.96647E-02 7.76206E-01 9.99811E-01
(Continued)
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Table 11. (Continued)

n a &2 nps = 200 nps = 400 nps = 800 K=8 K=16 K=32

100 2 0.05 2.27374E-11 2.72848E-12 9.09495E-13 9.09495E-13 9.09495E-13 1.81899E-12
0.1 3.75407E-06 1.00044E-10 3.00133E-11 5.20249E-06 6.36646E-11 1.81899E-12
0.2 1.07730E-02 1.42158E-05 2.23736E-08 2.13304E-04 5.63730E-06 1.74014E-08
0.5 4.55023E-01 4.34017E-01 9.72496E-01 2.38104E-01 5.60747E-01 9.08441E-01
0.7 9.26339E-03 9.59143E-01 7.45043E-01 3.32894E-03 2.21867E-01 9.45600E-01
0.9 5.02651E-01 9.55396E-01 9.94463E-01 7.89894E-01 8.88969E-01 9.95689E-01
1.0 4.39254E-01 9.10652E-01 9.99503E-01 4.28791E-01 8.70430E-01 9.99999E-01

100 3 0.05 1.08313E-03 1.33686E-06 9.09495E-13 2.14964E-07 1.24601E-10 9.09495E-13
0.1 1.39181E-02 6.10535E-06 1.81899E-12 1.57007E-07 4.06544E-10 2.27374E-11
0.2 6.00796E-03 1.31954E-05 3.45537E-06 1.68219E-04 1.90650E-05 2.39727E-04
0.5 1.22987E-01 6.52587E-01 7.23150E-01 5.20007E-02 1.11031E-01 9.35002E-01
0.7 4.12623E-05 7.82094E-01 9.83961E-01 5.50242E-01 9.21125E-01 9.59143E-01
0.9 5.76843E-03 9.37642E-01 9.99993E-01 8.43097E-01 9.99554E-01 9.99989E-01
1.0 1.84100E-01 7.53545E-01 9.99811E-01 8.29838E-01 9.81523E-01 1.00000E+00

The tests are based on the 40 replicates. st used is 2. K is the number of segments in multiple segment case. nps is the number of time points in single
segment case.

doi:10.1371/journal.pone.0138596.t011

Table 12. YEASTRACT Subnetworks.

sn n n. Hidden TF Other TFs
sn1 4 5 MBP1 ASH1, HCM1, SWi4
sn2 5 11 GLN3 DAL80, GAT1, GCN4, UGA3
sn3 6 5 ADRH1 IME1, MSN4, PIP2, STE12, USV1
sn4 6 5 ASH1 ACE2, MBP1, SWI5, TOS8, YHP1
sn5 6 6 YAP6 CBF1, CIN5, MOT3, PDR1, TUP1
sn6 6 10 MSN2 ADR1, FHL1, NRG1, SOK2, USV1
sn7 6 12 DAL80 GAT1, GLN3, STE12, SUM1, TEC1
sn8 7 6 ACE2 ASH1, FKH2, GAT1, HMS2, INO4, SFL1
sn9 7 7 MET4 ABF1, HAP4, MET28, MET32, SFP1, TYE7
sn10 7 7 MSN4 ADR1, HAL9, RAP1, ROX1, RPN4, SOK2
snii 7 7 UME6 GAT1, GSM1, LEU3, MSN2, OAF1, SIP4
sni12 7 8 STE12 MIG2, MSN2, PDR1, PDR3, SOK2, YAP1
sni13 7 9 CIN5 FLO8, IXR1, NRG1, XBP1, YAP1, YAP6
sni14 7 11 MCM1 MET32, STE12, SWI4, SWI5, TYE7, YAP3
sni15 7 11 RAP1 FKH1, FKH2, MCM1, SFP1, STE12, SWI5
sn16 7 14 FLO8 CIN5, HCM1, HMS1, STE12, TEC1, TOS8
sn17 9 12 PDR1 HAP4, MET28, PDR3, RPN4, SFL1, SWI4, YAP5, YAP6
sn18 9 16 RPN4 HSF1, MSN2, MSN4, PDR1, PDR3, PUT3, REB1, YAP1
sn19 10 17 STE12 CBF1, HAP4, MET4, MSN2, PDR1, RAP1, ROX1, SOK2, YAP1
sn20 11 13 ABF1 DAL81, ECM22, HAP1, HMS2, MET4, MGA1, REB1, RTG3, STP1, SUM1
sn21 12 23 STE12 ASH1, FLO8, OAF1, RAP1, RFX1, SFP1, SKO1, SOK2, TEC1, TOS8, XBP1
sn22 13 38 ROX1 FHL1, HAP1, HAP4, HMS1, IXR1, MSN2, MSN4, SKN7, SKO1, STE12, XBP1, YAP1

sn is the subnetwork. n is the number of TFs in the subnetwork, n, is the number of links in the subnetwork. The hidden TF is the one with expression
hidden in incomplete setting of the experiments.

doi:10.1371/journal.pone.0138596.t012
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Table 13. Links F-scores for YEASTRACT Subnetworks.

complete (C) hidden (H) H/C hiddenCL

sn n n. best which best which best best which
sn1 4 5 0.889 cdc28 0.444 cdc28, elu 50.0% 0.364 alpha, cdc28
sn2 5 11 0.476 cdc15 0.324 all, alpha 68.1% 0.267 alpha
sn3 6 5 0.286 cdc28 0.364 cdc15 127.3% 0.000 —
sn4 6 5 0.333 alpha 0.333 cdc15 100.0% 0.000 —
sn5 6 6 0.308 alpha 0.308 cdc28 100.0% 0.000 —
sn6 6 10 0.646 cdc28 0.545 elu 84.4% 0.471 elu
sn7 6 12 0.526 cdc15 0.556 elu 105.6% 0.455 cdc15
sn8 7 6 0.286 cdc28 0.333 elu 116.7% 0.000 —
sn9 7 7 0.429 cdc28 0.375 cdc15 87.5% 0.154 cdc28
sn10 7 7 0.293 cdc28 0.353 cdc15 120.6% 0.000 —
sni1 7 7 0.353 cdc28 0.353 alpha 100.0% 0.133 cdc28
sni2 7 8 0.421 elu 0.444 cdc15 105.6% 0.500 cdc15
sn13 7 9 0.305 all 0.375 alpha 122.8% 0.083 all
sni14 7 11 0.381 cdc28 0.421 cdc28 110.5% 0.174 cdc15
sn15 7 11 0.320 elu 0.385 all 120.2% 0.245 cdc15, cdc28
sn16 7 14 0.441 elu 0.545 cdc15 123.6% 0.417 elu
sni17 9 12 0.296 elu 0.364 alpha 122.7% 0.174 elu
sn18 9 16 0.214 cdc15 0.367 cdc15 171.3% 0.154 cdc15
sn19 10 17 0.253 cdc28 0.333 cdc15 131.9% 0.253 cdc28
sn20 11 13 0.282 cdc15 0.435 alpha 154.3% 0.000 —
sn21 12 23 0.386 elu 0.326 elu 84.5% 0.295 elu
sn22 13 38 0.190 elu 0.309 cdc15 162.2% 0.136 elu

sn is the subnetwork. The score threshold is 1. n is the number of TFs in the subnetwork, n, is the number of links in the subnetwork. complete is using
CLINDE on the complete data. hidden is our proposed algorithm on the incomplete data. hiddenCL is CLINDE on the incomplete data. H/C is the F-score
of hidden divided by that of complete and shown as percentage. best is the best of the four segments, and which shows the best segment (all is using all
4 segments). The maximum delay r, used is 4.

doi:10.1371/journal.pone.0138596.t013

parent(s) in the initial GRN, and consequently the empirical variance of they error terms are
likely different from expected. On the other hand, the clustering and estimation of hidden com-
mon causes would need some adaptation. For clustering, the determination of the correlation
threshold is not as straightforward. One simple strategy is to use a fixed conservative threshold,
and hope that genes without the same hidden common cause(s) would not be close enough to
have high correlation. And for the estimation of the hidden common cause(s), we may still
apply SVD, but use more singular vectors corresponding to the largest singular values. The
main difficulty is that a way is needed to determine how many singular vectors to take, i.e. how
many hidden common causes the set of genes have. One possible strategy is to successively
take more singular vectors, until the drop in residual error is small. But this is a sort of model
selection problem, which is not straightforward. Therefore, more study is needed to determine
whether the strategy would work well.

Multiple Layers of Hidden Nodes. The current model and algorithms assumes that any
hidden common cause does not have other hidden common cause as parents, i.e. the hidden
common causes are not connected directly to each other. This simplifying assumption may be
restrictive in some cases, where multiple layers of hidden common causes may exist and may
have meaningful interpretation. One possible strategy is to first infer possible hidden common
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cause(s) of observed genes, then treat them as observed (because our algorithm also estimates
the time series of the predicted hidden common cause(s)), and repeat the process to see if fur-
ther hidden common cause(s) could be inferred. However, at this stage, it is unclear whether
this strategy would work well, because the estimated time series of the hidden common cause
(s) may not be accurate enough. Moreover, it is unclear that whether it is even feasible to infer
rich structures among hidden nodes without prior knowledge or assumptions, given only lim-
ited data of observed nodes. We leave these issues as future work.

Relative Error Model

The proposed algorithm assumes a constant variance for the additive error terms, and the vari-
ance could be known or estimated from empirical variances. Alternatively, we may assume a
model where the variance of the error terms is a constant proportion of the variance of the
gene. This could be easily handled by (centering and) normalizing the input expression data
such that each gene has a variance of one (except those with constant expression). The propor-
tion of variance of error terms to the variance of the gene would remain unchanged, but now it
is also the variance of the error terms. This normalization does not affect the inference of the
initial GRN, as CLINDE uses correlation and conditional correlation tests, which are unaf-
fected by centering and scaling.

Delays with Distribution

In our current model, we assume the delay between two genes is deterministic (but unknown
and is to be found). While this assumption makes the model and algorithm simpler, in reality,
due to the stochastic operations of the cell, it is more realistic to model the delays as random
variable, e.g. with exponential distribution as in [32] and [33]. We leave this as future work.

Not Using Time Series Data

The basic algorithm uses time series data, here we briefly consider the possibility of using non-
time series data. To begin with, without time series data, it would be impossible to estimate the
delays in the links, but it may still be possible to infer the directions of the links, just as in the
PC algorithm [29]. However, without time series data, inferring the directions of the links is
much more difficult, especially when we allow the presence of cycles in the causal network.
Also, the directions of some links may still remain undetermined given the data, because both
directions are consistent with the data. The clustering and estimation of hidden common
cause, on the other hand, does not pose great difficulty when using non-time series data,
assuming the initial GRN is well estimated.

Conclusion

To summarize, we have developed an algorithm to recover the causal GRN with delays in the
regulatory links from time series expression data, where a small but unknown number of nodes
are hidden, i.e. without expression data. We have tested our algorithm on 3 types of synthetic
data: small GRN with one hidden node, small GRN with no hidden node, and large GRN with
a small but unknown number of hidden nodes. Results on synthetic data show that our algo-
rithm can effectively recover the causal GRN. We have also demonstrated our algorithm on
small subnetworks of YEASTRACT with real expression data, and the results show the poten-
tial of our algorithm to recover hidden nodes using real data.
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Supporting Information

S$1 File. Containing various supplementary figures and tables, listed as follows. Figure A,
Histogram of Absolute Differences of F-scores of Delays and Effects for One Segment
Small Hidden Case. Figure B, Histogram of Absolute Differences of F-scores of Links and
Delays for One Segment Small Hidden Case. Figure C, Profiles of F-scores of Links, Delays
and Effects for Different Settings for One Segment Small Non-Hidden Case. Figure D, His-
togram of Absolute Differences of F-scores of Links and Effects for One Segment Small
Non-Hidden Case. Figure E, Histogram of Absolute Differences of F-scores of Delays and
Effects for One Segment Small Non-Hidden Case. Figure F, Histogram of Absolute Differ-
ences of F-scores of Links and Delays for One Segment Small Non-Hidden Case. Figure G,
Histogram of Absolute Differences of F-scores of Links and Effects for One Segment Large
Case. Figure H, Histogram of Absolute Differences of F-scores of Delays and Effects for
One Segment Large Case. Figure I, Histogram of Absolute Differences of F-scores of Links
and Delays for One Segment Large Case. Figure J, Boxplot of Effects F-score with Different
o” for One Segment Small Non-Hidden Case. Figure K, Boxplot of Effects F-score with Dif-
ferent ¢° for One Segment Large Case. Figure L, Boxplot of Effects F-score with Different
o” for Multiple Segments Small Hidden Case. Figure M, Boxplot of Effects F-score with Dif-
ferent o” for Multiple Segments Small Non-Hidden Case. Figure N, Boxplot of Effects F-
score with Different ¢* for Multiple Segments Large Case. Table A, Full Results of Median
Performance for One Segment Small GRN with One Hidden Node. e2 is o, alphaisa,
nps is number of time points m, st is the score threshold. For the data column, hidden
means using our proposed algorithm on the incomplete data, complete means using
CLINDE on the complete data (i.e. all nodes are not hidden), hiddenCL means using
CLINDE on the incomplete data. 12.,d2. and e2. are Links, Delays and Effects respectively.
r is Recall, p is Precision and £ is F-score. Each median is taken over 20 replicates. Table B,
Full Results of Median Performance for One Segment Small GRN without Hidden Node.
e2is 0%, alpha is &, nps is number of time points 7, st is the score threshold. For the data
column, hidden means using our proposed algorithm on the incomplete data. 12.,d2. and
e?2. are Links, Delays and Effects respectively. r is Recall, p is Precision and £ is F-score. Each
median is taken over 20 replicates. Table C, P-values of one-sided Wilcoxon signed-rank test
on whether the medians Effects F-scores of hidden is better than hiddenCL for the One Seg-
ment Large Case. Table D, Full Results of Median Performance for Multiple Segments
Small GRN with One Hidden Node. 2 is 0?, alpha is @, nsegs is number of segments K,
st is the score threshold. For the data column, hidden means using our proposed algo-
rithm on the incomplete data, complete means using CLINDE on the complete data (i.e. all
nodes are not hidden), hiddenCL means using CLINDE on the incomplete data. 12.,d2.
and e2 . are Links, Delays and Effects respectively. r is Recall, p is Precision and £ is F-score.
Each median is taken over 20 replicates. Table E, Full Results of Median Performance for
Multiple Segments Small GRN without Hidden Node. e2 is ¢°, alpha is @, nsegs is num-
ber of segments K, st is the score threshold. For the data column, hidden means using our
proposed algorithm on the incomplete data. 12.,d2. and e2. are Links, Delays and Effects
respectively. r is Recall, p is Precision and £ is F-score. Each median is taken over 20 replicates.
Table F, Full Results of Median Performance for Multiple Segments Large GRN with More
than One Hidden Node with # = 50 and # = 100. ng is the number of observed genes #, nh is
the number of hidden nodes ny, €2 is ¢, alpha is @, nsegs is number of segments K, st is
the score threshold. For the data column, hidden means using our proposed algorithm on
the incomplete data, complete means using CLINDE on the complete data (i.e. all nodes are
not hidden), hiddenCL means using CLINDE on the incomplete data. 12.,d2. and e2.
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are Links, Delays and Effects respectively. r is Recall, p is Precision and £ is F-score. Each
median is taken over 40 replicates. Table G, P-values of one-sided Wilcoxon signed-rank test
on whether the medians Effects F-scores of hidden is better than hiddenCL for the Multiple
Segments Large Case. Table H, Full Results of Median Performance for One Segments
Large GRN with Different 5° with 7 = 50 and 7 = 100. ng is the number of observed genes 7,
nh is the number of hidden nodes 1y, €2 is 0%, alpha is @, nps is number of time points 1,
st is the score threshold. For the data column, hidden means using our proposed algo-
rithm on the incomplete data, complete means using CLINDE on the complete data (i.e. all
nodes are not hidden), hiddenCL means using CLINDE on the incomplete data. 12.,d2.
and e2 . are Links, Delays and Effects respectively. r is Recall, p is Precision and £ is F-score.
d2 is 8°. Each median is taken over 40 replicates. Table I, Full Results of Median Perfor-
mance for Multiple Segments Large GRN with More than One Hidden Node with n = 50
and » = 100. ng is the number of observed genes 1, nh is the number of hidden nodes n,, 2 is
0%, alpha is @, nsegs is number of segments K, st is the score threshold. For the data col-
umn, hidden means using our proposed algorithm on the incomplete data, complete
means using CLINDE on the complete data (i.e. all nodes are not hidden), hiddenCL means
using CLINDE on the incomplete data. 12.,d2. and e2. are Links, Delays and Effects
respectively. r is Recall, p is Precision and f is F-score. d2 is 6°. Each median is taken over 40
replicates. Table J, P-values of one-sided Wilcoxon signed-rank test on whether the medians
Effects F-scores of hidden is better than hiddenCL for the Heterogeneous Variance One Seg-
ment Large Case. Table K, P-values of one-sided Wilcoxon signed-rank test on whether the
medians Effects F-scores of hidden is better than hiddenCL for the Heterogeneous Variance
Multiple Segments Large Case. Table L, Full Results of Median Performance for One Seg-
ment Large GRN with More than One Hidden Node with n = 50 and » = 100. ng is the num-
ber of observed genes n, nh is the number of hidden nodes 1, €2 is o, alphaisa npsis
number of time points m, st is the score threshold. For the data column, hidden means
using our proposed algorithm on the incomplete data, complete means using CLINDE on
the complete data (i.e. all nodes are not hidden), hiddenCL means using CLINDE on the
incomplete data. 12.,d2. and e2. are Links, Delays and Effects respectively. r is Recall, p is
Precision and £ is F-score. Each median is taken over 40 replicates.
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