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Abstract: The heme molecule serves as an essential prosthetic group for oxygen transport and storage
proteins, as well for cellular metabolic enzyme activities, including those involved in mitochondrial
respiration, xenobiotic metabolism, and antioxidant responses. Dysfunction in both heme synthesis
and degradation pathways can promote human disease. Heme is a pro-oxidant via iron catalysis that
can induce cytotoxicity and injury to the vascular endothelium. Additionally, heme can modulate
inflammatory and immune system functions. Thus, the synthesis, utilization and turnover of heme
are by necessity tightly regulated. The microsomal heme oxygenase (HO) system degrades heme to
carbon monoxide (CO), iron, and biliverdin-IXα, that latter which is converted to bilirubin-IXα by
biliverdin reductase. Heme degradation by heme oxygenase-1 (HO-1) is linked to cytoprotection
via heme removal, as well as by activity-dependent end-product generation (i.e., bile pigments and
CO), and other potential mechanisms. Therapeutic strategies targeting the heme/HO-1 pathway,
including therapeutic modulation of heme levels, elevation (or inhibition) of HO-1 protein and
activity, and application of CO donor compounds or gas show potential in inflammatory conditions
including sepsis and pulmonary diseases.

Keywords: acute lung injury; carbon monoxide; heme; heme oxygenase; inflammation; lung dis-
ease; sepsis

1. Introduction

Heme (iron protoporphyrin-IX) is a naturally occurring iron chelate that exerts vital
functions in cellular and organismic homeostasis, and which paradoxically can also play
deleterious roles in organ pathophysiology [1–4]. Thus, the biological synthesis, utilization,
and turnover of heme are tightly regulated [5,6]. The synthesis of heme begins and ends in
the mitochondria, where heme-containing cytochromes exert indispensable functions in cel-
lular bioenergetics as components of the electron transport chain (ETC) [7,8]. Additionally,
heme serves as a prosthetic group in proteins involved in oxygen transport and storage,
cellular and xenobiotic metabolism, cell signaling, and transcriptional regulation [8,9].
Genetic deficiencies in heme synthesis pathway enzymes are associated with inherited
human diseases (e.g., porphyrias) [10,11]. In addition to physiological functions, heme
in excess or released in certain pathophysiological contexts can have a pro-injury role in
inflammatory diseases [1]. These effects of heme are primarily attributed to potential pro-
oxidant effects, involving iron-dependent catalysis of free radical generating reactions [12].
In addition to oxidative stress, heme can modulate inflammation and innate immune
programs [1]. Further, heme and heme-iron dependent cytotoxicity, may be associated
with the activation of programmed cell death pathways, including apoptosis, necroptosis,
and ferroptosis [13–18]. Importantly, circulating heme released from hemoglobin during
hemolytic disorders, can injure vascular endothelium, leading to compromised vascular
function [19–22]. In human diseases, free heme has been implicated as a harmful medi-
ator in sickle cell disease (SCD) [23–27], malaria [14,28,29], sepsis [30], acute lung injury
(ALI) [31,32] acute kidney injury (AKI) [33–35], and other inflammatory conditions.

Heme is degraded by the heme oxygenase (HO; EC 1:14:14:18) enzyme system [36,37].
The HO system was initially characterized in 1968 as a coupled NADPH-dependent micro-
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somal oxygenase system distinct from cytochrome p-450-dependent drug metabolism but
nevertheless requiring the reductase component of cytochrome p-450 [36,37]. In the HO re-
action, heme serves as its own catalytic co-factor in its enzyme-dependent oxygenation [38].
Molecular genetics characterizations have revealed two distinct molecular species: heme
oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2), each encoded by distinct genes [39].
HO-2 is regarded as primarily constitutively expressed, whereas HO-1 represents the
inducible form [4].

HO-1, in addition to providing essential metabolic function, represents a major in-
ducible component of cellular defense as a principal player in the mammalian stress
response [40]. HO-1 was identified as a stress protein whose regulation responded to
chemical and physical perturbations including its enzymatic substrate heme, and other pro-
oxidant compounds (e.g., H2O2, menadione), heavy metals and thiol-reactive substances,
polyphenolic antioxidants, heat stress, ultraviolet-A radiation and altered oxygen (O2)
environments [41–44]. Although genetic deficiency of HO-1 is extremely rare in humans,
clues to the systemic importance of HO-1 were revealed in the initial characterization of
a single documented case. The individual with HO-1 deficiency presented with severe
growth retardation, abnormal coagulation/fibrinolysis and evidence of extensive endothe-
lial cell damage. Interestingly, the subject also presented with anemia, and pathological
redistribution of iron in tissues, including the kidneys [45]. The importance of HO-1 in
systemic homeostasis and iron metabolism has also been validated in studies using mice
genetically-deficient in HO-1 (Hmox1−/−). These mice display a phenotype of increased
oxidative stress, and abnormal systemic iron metabolism as evidenced by hepatic and
renal iron deposition (localized to renal cortical tubules, Kupffer cells, hepatocytes, and
hepatic vascular tissue) and serum iron-deficiency anemia [46]. Furthermore, embryonic
fibroblasts isolated from these mice were sensitized to oxidant and heavy metal-induced
toxicity [47]. An important role for HO-1, and of HO-1-dependent heme degradation, in
the regulation of inflammation, emerged from studies that discovered a protective function
of HO-1 in limiting macrophage inflammatory responses. Specifically, HO-1 was associated
with attenuation of Toll-like receptor-4 (TLR4)-dependent pro-inflammatory cytokines pro-
duction in lipopolysaccharide (LPS)-stimulated macrophages [48]. HO-1 expression was
also associated with cytoprotection, including attenuation of TNF-α-mediated apoptosis in
fibroblasts and endothelial cells [49,50].

Heme-derived CO, generated endogenously by HO activity, or applied at low con-
centrations designed to mimic biological production, may impact cellular functions by
affecting endogenous signal transduction pathways [51,52]. Specifically, these effects in-
clude the modulation of apoptosis and other regulated forms of cell death, inflammation,
cell proliferation, autophagy and other biological processes [51–53]. Collectively, these
studies establishing cellular effects of CO served as the basis for widespread development
of CO releasing molecules (CORMs) and organic CO-donor compounds, as potential can-
didates for therapeutic application [54,55]. Further, these studies set the stage for current
and projected clinical studies to test inhaled CO (iCO) for therapeutic benefit in human
subjects [52,56]. This review will explore the pro-and antioxidant sequelae of heme accumu-
lation, and activation of its degradation pathway via HO-1 modulation, and their combined
relevance to the pathogenesis of inflammatory disorders. Emphasis will be placed on ALI,
sepsis, and other inflammatory conditions, with consideration of therapeutic implications.

2. Physiological Roles of the Heme Molecule
2.1. Heme Synthesis

There exists an intimate relationship between heme and the mitochondria, wherein
the heme molecule originates in this organelle and also acts as an essential co-factor in
bioenergetic reactions [7,8]. Heme synthesis requires eight sequential enzymatic steps,
which begin and culminate in the mitochondria (step 1 and steps 7–8), with the intermediate
steps (steps 2–6) occurring in the cytoplasm (Figure 1) [57].
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Figure 1. Mammalian Heme Synthesis and Utilization Pathways. Heme synthesis requires eight sequential enzymatic steps,
which begin and end in the mitochondria, with intermittent cytosolic steps. (Step 1), mitochondrial 5-aminolevulinic acid
synthase (ALAS; EC 2.3.1.37) condenses succinyl-Co-A and glycine to form 5-aminolevulinic acid (ALA). (Step 2) Two mol
ALA are condensed to porphobilinogen (PBG) by ALA dehydratase (ALAD, EC 4.2.1.24, porphobilinogen synthase). (Step 3)
Porphobilinogen deaminase (PBGD, EC 2.5.1.61, hydroxymethylbilane synthase) condenses four mol PBG, to generate
hydroxymethylbilane (HMB). (Step 4) Uroporphyrinogen-III synthase (UROS, EC 4.2.1.75, uroporphyrinogen III cosyn-
thase) catalyzes the cyclization of hydroxymethylbilane and inversion the D ring to form uroporphyrinogen III (UPGIII).
(Step 5) Uroporphyrinogen III is decarboxylated by uroporphyrinogen decarboxylase (UROD, EC 4.1.1.37) to generate
coproporphyrinogen III (CPGIII). (Step 6) Coproporphyrinogen III is imported into mitochondria and then decarboxylated
by coproporphyrinogen oxidase (CPO, EC 1.3.3.3) to form protoporphyrinogen IX (PPGIX). (Step 7) Protoporphyrinogen
IX is converted to protoporphyrin IX (PPIX) by protoporphyrinogen oxidase (PPO, EC 1.3.3.4, protoporphyrinogenase).
In the final step (Step 8), ferrous iron is incorporated into the PPIX ring within the mitochondria to form heme-b by the
enzyme ferrochelatase (FECH, EC 4.99.1.1, protoheme ferrolyase). Heme is used systemically for oxygen transport and
storage functions. In eukaryotic cells, heme is utilized for peroxidase, monooxygenase, and dioxygenase activities, and for
cytochromes, including cytochrome p-450s involved in drug metabolism and mitochondrial respiratory chain components.

In the rate limiting step of heme biosynthesis, (step 1) mitochondrial 5-aminolevulinic
acid synthase (ALAS), which utilizes pyridoxal 5’-phosphate as a co-factor, condenses
succinyl-Co-A derived from the tricarboxylic acid (TCA) cycle and the amino acid glycine,
to form 5-aminolevulinic acid (ALA). ALAS localizes to the matrix side of the mitochon-
drial inner membrane. Following its mitochondrial export, ALA is condensed to por-
phobilinogen (step 2) by cytosolic ALA dehydratase (ALAD, porphobilinogen synthase).
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Porphobilinogen deaminase (PBGD) condenses four mol porphobilinogen, to generate the
linear tetrapyrrole precursor hydroxymethylbilane (step 3). Uroporphyrinogen-III synthase
(UROS) catalyzes the cyclization of hydroxymethylbilane with inversion the D-ring to form
uroporphyrinogen III, a common precursor of tetrapyrroles (step 4). A shunt pathway
generates uroporphyrinogen I, and subsequently coproporphyrinogen I, which are not uti-
lized in heme biosynthesis. Uroporphyrinogen III is decarboxylated by uroporphyrinogen
decarboxylase (UROD) to produce coproporphyrinogen III (step 5). Coproporphyrinogen
III is imported into mitochondria by unknown transport mechanism, and the subsequent
enzymatic steps take place at the cytosolic side of the inner mitochondrial membrane.
Coproporphyrinogen III is decarboxylated by coproporphyrinogen oxidase (CPO) (step
6). The resulting protoporphyrinogen IX is then converted to protoporphyrin IX (PP-IX)
(step 7) by protoporphyrinogen oxidase (PPO). In the final enzymatic step (step 8), ferrous
iron is incorporated into the PP-IX ring to form heme-b by the enzyme ferrochelatase
(FECH) on the matrix side of the inner mitochondrial membrane [58,59]. FECH consists
of a homodimer, with each subunit containing and [2Fe–2S] cluster [59]. Accumulation
of heme has a feedback inhibitory role on its synthesis by inhibiting ALAS1, but not the
erythroid-specific form of ALAS (ALAS2) [8]. Additional enzymatic transformation of
heme generates a and c type hemes used in electron transport. Heme c is formed by
covalent attachment of heme-b to the cytochrome c apoprotein by cytochrome c-heme
lyase [59]. Heme-a is synthesized from heme-b via the sequential action of heme-o synthase
and heme-a synthase [60].

2.2. Disorders of Heme Synthesis: Porphyrias

Genetic deficiencies or mutations in heme synthesis pathway enzymes are associated
with human diseases, commonly known as porphyrias [10,11]. These conditions are associ-
ated with pathological accumulations of heme precursor molecules and are broadly classed
into two groups: acute hepatic porphyrias (AHPs) [10] and cutaneous porphyrias [11].
Among the AHPs, deficiency in ALAD (step 2) results in ALAD-deficiency porphyria, a
rare autosomal-recessive disorder. PBGD deficiency (step 3) results in acute intermittent
porphyria, associated with urinary accumulations of ALA and porphobilinogen. CPO defi-
ciency (step 6) results in hereditary coproporphyria; and deficiency in PPO (step 7) results
in variegate porphyria. ALA, which accumulates in these disorders, is believed to represent
the primary neurotoxic agent [10]. Among the cutaneous porphyrias, which are associated
with skin ailments and photosensitivity, UROS deficiency (step 4) results in congenital
erythropoietic porphyria, with increased production of uroporphyrinogen I and toxic accu-
mulation of coproporphyrinogen I. UROD deficiency (step 5) results in porphyria cutanea
tarda, with cutaneous photosensitivity associated with uroporphyrinogen III buildup.
Genetic deficiency of FECH (step 8) results in erythropoietic porphyria. Accumulation of
PP-IX in this disorder results in severe skin photosensitivity [11], ALAS2 (step 1) gain-of-
function mutations result in X-linked porphyria, which, similar to erythropoietic porphyria,
is also associated with cutaneous PP-IX accumulation and skin photosensitivity [11,61].
Mutations in ALAS2 are also associated with X-linked sideroblastic anemia [61,62].

3. Heme Degradation
3.1. Heme Oxygenases

Heme turnover in mammals is catalyzed by microsomal heme oxygenase (HO) [EC
1:14:14:18, decyclizing] [36,37]. HO catalyzes the oxygenation of heme at the α-methene
bridge carbon, to generate carbon monoxide (CO), and biliverdin-IXα (BV) as the products
of tetrapyrrole cleavage, while releasing the central heme iron chelate as ferrous iron (Fe-II)
(Figure 2). Enzymatic heme degradation utilizes molecular oxygen (O2) and electrons
derived from NADPH: cytochrome p450 reductase (EC 1.6.2.4) [36,37]. The three oxy-
genation cycles proceed via three intermediates: a meso-hydroxyhemin, verdoheme, and
a ferric iron-biliverdin complex [38]. The BV generated in the HO reaction is reduced to
bilirubin-IXα (BR) by cytosolic NAD(P)H: biliverdin reductase (BVR; EC 1.3.1.24) [63]. BR,
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which is lipid soluble is conjugated in the liver by uridine diphosphate glycosyltransferase
1A1 (UGT1A1; EC 2.4.1.17) and eliminated via the biliary fecal route [64,65]. HO consists of
two major isoforms, an inducible isozyme (HO-1) and a constitutively expressed isozyme
(HO-2), which are encoded by distinct genes [4,39]. Heme is the natural substrate of HO-1
and HO-2 [4].
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Figure 2. Heme degradation and cytoprotective effects of the reaction products. The heme molecule is a potent transcrip-
tional activator of heme oxygenase-1 via repression of the transcriptional inhibitor Bach1, resulting in increased synthesis
of enzymatically active. The heme oxygenase (HO, EC 1:14:14:18) reaction oxidizes heme, which serves as substrate and
co-factor in its degradation, at the α-methene bridge carbon. The reaction, which requires O2, NADPH and the reductase
component of cytochrome p450, produces carbon monoxide (CO), biliverdin-IXα and ferrous iron (Fe II). In the second step
of heme degradation biliverdin-IXα is reduced to bilirubin-IXα by NAD(P)H: biliverdin reductase (BVR; EC 1.3.1.24). Both
BV and BR are implicated as cellular and circulating antioxidants. Iron released from HO activity is sequestered in a complex
with ferritin, which serves as a cellular antioxidant. Excess iron may drive pathological processes including free radical
generation and ferroptotic cell death. CO generated from the HO reaction can exert multiple cellular effects, which may
be beneficial at low concentrations. Namely, these include inhibition of apoptosis and inflammatory pathways, as well as
inhibition of cell proliferation. CO forms a tight binding complex with hemoglobin in circulation to form carboxyhemoglobin
(CO-Hb). CO is eliminated by diffusion at the alveolus and exhaled.

Although HO-1 is not a hemoprotein per se, it becomes a transient hemoprotein upon
binding to the catalytic site, whereby heme catalyzes its own oxygenation [66]. HO-2 binds
heme at its catalytic site but also bears two additional heme binding sites termed heme
regulatory motifs (HRMs), which contain Cys-Pro motifs [67]. In recent studies, mutation
in the HRMs of HO-2 was found to accelerate HO-2 turnover via chaperone-mediated
autophagy, suggesting that heme bioavailability regulates post-translational stability of HO-
2 [68]. Ferric heme bound to HRMs may be reversibly transferred to the HO-1 catalytic site
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for degradation [69]. Redox-dependent variation in the modes of heme ligand orientation
to HRMs of HO-2 and other hemoproteins, suggest that these domains participate in redox
sensing mechanisms [70].

3.2. Disorders of Heme Degradation (Neonatal Jaundice, Hyperbilirubinemia)

Excess hepatic HO activity in neonates leads to serum hyperbilirubinemia [71]. Mild
elevations in unconjugated serum bilirubin are associated with reduction of cardiovascular
disease (CVD) risk, where high serum bilirubin may pose a risk for neurological sequelae,
leading to acute and chronic (kernicterus) bilirubin encephalopathy [71,72]. Phototherapy
to remove bilirubin remains the current clinical mainstay [73,74]. Treatment with metallo-
porphyrin inhibitors (i.e., SnPPIX) have been explored as alternate therapy [75]. In contrast,
genetic deficiency of HO-1 is an extremely rare condition associated with endothelial cell
dysfunction and severe cardiovascular abnormalities [45].

4. Heme Utilization
4.1. Heme Utilization in Oxygen Transport

Heme serves as a prosthetic group in vital cellular hemoproteins involved in oxygen
transport and storage [8]. Heme is the cofactor for hemoglobin, the principal oxygen carrier
in the blood. The iron center of heme-b is coordinated to four nitrogens of the porphyrin
ring and one amino acid of the apoprotein, leaving one coordination site available for
gaseous ligand binding [76]. Heme also serves as prosthetic group for myoglobin, the
oxygen storage component of muscle [77]. Neuroglobin, which contains a single globin
monomer with hexacoordinated heme, serves as an oxygen carrier in neurons with the
ability to prevent hypoxic injury [78].

4.2. Heme Utilization in Cellular Processes

Heme-b and its derivatives (heme-a and heme-c) serve as prosthetic co-factor in
mitochondrial respiratory chain complexes (complex II, complex III, complex IV, and
cytochrome c) [79]. Heme is used as cofactor for essential enzymatic activities, including
peroxidases, monooxygenases, and dioxygenases. For example, heme serves as cofactor for
cytochrome p-450s, which are a family of monooxygenases involved in drug metabolism
and steroid biosynthesis. Heme serves as a cofactor for prostaglandin cyclooxygenase, and
of indoleamine 2,3-dioxygenase 1 (IDO1), which converts tryptophan to kynurenine [80,81].
Additionally, catalase, which catalyzes the decomposition of hydrogen peroxide to water,
contains four heme catalytic groups. Heme is also a co-factor of endothelial (eNOS) and
inducible (iNOS) nitric oxide synthases, which catalyze the formation of nitric oxide (NO)
from arginine [82]. Finally, key signaling proteins such as guanylate cyclase (sGC), which
generates cGMP, has a heme moiety for sensing of gaseous ligands (i.e., NO, CO) [4].

Heme may also serve as a prosthetic or interactive group for several transcription
factors [62]. The classical example, neuronal PAS domain protein 2 (NPAS2), forms het-
erodimers with Bmal1 involved in regulation of circadian rhythm [83]. Heme also binds to
transcription factors Rev-Erb-α/β, which act as transcriptional repressors by recruiting co-
repressor NCoR and histone deacetylase-3 (HDAC3) to their target gene promotors. [84,85].
Rev-Erb-α acts as a repressor of Bmal1 and PGC-1α genes, the latter which is a primary
regulator of mitochondrial biogenesis [84]. Heme acts as an inhibitor of Bach1 and Bach2, of
which Bach1 regulates globin gene expression and acts a repressor of the Hmox1 gene (see
section on HO-1 gene regulation below) [86]. Emerging evidence suggests that heme also
regulates the processing of non-coding RNAs, including micro RNAs (miRs) involved in
gene expression [62]. Additionally, other potential roles for heme in nucleic acid activities
and chromatin regulation have been uncovered. For example, heme binds to guanine
rich regions of DNA and RNA with high affinity, to form secondary structure termed
G-quadruplexes (G4) [87]. Recent studies demonstrate peroxidase catalytic activity of
heme-bound G4 DNA [88].
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4.3. Heme Export and Scavenging

Heme is exported from cells by the feline leukemia virus subgroup C receptor-a
isoform (FLVCR1a) [89]. A mitochondrial isoform FLVCR1b regulates erythropoiesis
by controlling intracellular heme efflux from the mitochondria to the cytoplasm [90].
Hemopexin is the major vehicle for the scavenging and transportation of heme in the
plasma for delivery to sites of detoxification (i.e., liver) [91]. Hemopexin is a plasma
glycoprotein that binds heme in a 1:1 molar ratio, with the highest affinity (Kd < 1 pM),
relative to other circulating proteins with capacity to bind heme. The function of the
heme-hemopexin interaction is primarily antioxidative, in that it prevents circulating
heme from catalyzing harmful reactions [91]. Other circulating proteins (i.e., albumin,
α-macroglobulin) play a lesser role in heme scavenging.

5. Pathological Properties of Heme
5.1. Heme as Catalyst in Pro-Oxidant Reactions

Heme, while indispensable as a biological catalyst, also has a potential for acting as a
harmful mediator of inflammation and disease (Figure 3).
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Figure 3. Pathological consequences of heme release. Free heme can promote hemolysis of red cells. Heme released into the
circulation under hemolytic conditions poses a risk to the vascular endothelial cells, including the promotion of membrane
damage, and necrotic and apoptotic cell death. Injured endothelial cells may compromise vascular function, and release
DAMPs into the circulation. The toxicity of free heme may be limited by scavenging with hemopexin. Heme can act as
a catalyst for pro-oxidant reactions, including LDL oxidation, and the peroxidation of lipids. Iron released from heme
degradation may, in excess, further propagate pro-oxidant reactions and trigger ferroptotic cell death. Heme may also
promote inflammation by activating TLR4-dependent and inflammasome-dependent pathways in inflammatory cells,
leading to the production of pro-inflammatory cytokines.
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Heme in protein-bound form, as in hemoproteins, can form higher valence states of
iron involved in oxidative catalysis [92]. In its unbound form, when released in circulation,
heme can destabilize red cell integrity and thereby act a hemolytic agent [13]. The role
of heme in the decomposition of peroxides has been described in the literature since the
middle of the twentieth century [93,94]. Heme, as an iron chelate, can potentially catalyze
iron-dependent free radical generating reactions, and has been implicated as a Fenton
reagent [95]. The reaction of hydrogen peroxide with hemes, dependent on valence state,
may result in formation of a porphyrin cation radical, or catalyze the decomposition of
peroxide to form hydroxyl radical (.OH), a reactive species capable of oxidizing DNA,
lipids, and proteins [96]. The potential for heme in accelerating lipid peroxidation has
been described since the 1950s [96–98]. The catalysis of lipid peroxidation by heme was
shown to be reversed by hemopexin binding [99]. Heme can also cause oxidation of
proteins leading to cross-linking [96], and was also shown to act as a catalyst for protein
nitration [100]. Further, heme transferred from methemoglobin can promote the oxidation
of low-density lipoprotein (LDH), by binding to high affinity sites in the ApoB moiety,
leading to generation of cytotoxic products [101,102]. By these mechanisms, heme was
implicated as a pro-oxidant hazard to vascular endothelial cells, and as an initiating factor
in atherogenesis [22,103].

5.2. Heme as a Regulator of Inflammation and Vascular Permeability

Heme has emerged as a regulator of the innate immune system. Unbound heme can
activate endothelial cells and promote inflammatory responses of macrophages and neu-
trophils [1,104,105]. Heme causes vascular permeability in vivo and activates endothelial
cells to produce intracellular adhesion molecules and secrete chemokines for neutrophil
recruitment [106]. Circulating heme can be regarded as a damage associated molecular
pattern (DAMP) with respect to activation of innate immune responses.

Heme acts as a regulator of Toll-like receptor-4 (TLR-4) signaling via MyD88 to regu-
late pro-inflammatory cytokine (i.e., TNFα) production in macrophages and other target
cells [107]. A combination of antioxidant-sensitive pathways triggered by heme-dependent
ROS production via spleen tyrosine kinase (Syk) signaling, and TLR4 activation were
required for cytokines/chemokines production in macrophages and lethal effects of hemol-
ysis in mice [108]. Recent studies describe differential effects of pro-inflammatory stimuli
(i.e., LPS) on labile heme pools and Hmox1 gene expression in mouse bone marrow-derived
macrophages (BMDMs) and human monocyte-derived macrophages (MDMs). LPS in-
duced the levels of labile heme available for upregulation of HO-1 in mouse BMDMs. In
contrast, in human MDMs, LPS decreased the levels of labile heme and downregulated
HO-1. The effects of LPS on the labile heme pool in macrophages were dependent on
TLR4 [109].

Myeloid differentiation factor-2 (MD-2) is an adaptor for TLR4-dependent pro-inflam
matory signaling. Recent studies have characterized a heme binding contact points (W23
and Y34) on MD2, which may facilitate heme dependent TLR4 activation [110]. Heme was
also found to bind to the soluble form of MD2 (sMD2), found in plasma [111]. Heme induces
IL-1β production through the activation of the nucleotide-binding domain and leucine-rich
repeat-containing family and pyrin domain containing 3 (NLRP3), which activates caspase-
1 in macrophages, leading to maturation and secretion of pro-inflammatory cytokines.
The activation of the NLRP3 inflammasome by heme required NOX2-dependent ROS
formation, and K+-efflux [112]. In addition to caspase-1, heme-dependent IL-1β activation
was also found to require a non-canonical pathway involving caspase-4 and caspase-5 [113].

Heme may act as a potent activator of NLRP3 upregulation and IL-1β production
in endothelial cells, effects which could be amplified by LPS priming [114]. Additionally,
heme interaction with the receptor for advanced glycation end products (RAGE) can
promote production of TNF-α and IL-1β [115].

Heme was also found to trigger endothelial barrier dysfunction by a pathway involv-
ing MKK3/p38 MAPK activation, independently of TLR4. Heme reduced the expression of
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tight junction proteins in human microvascular endothelial cells and upregulated HSP27 by
this mechanism. These effects were reversed by genetic deficiency of MKK3 [116]. Further
studies revealed that heme and serum derived from human SCD serum could induce
permeability changes in human endothelial cells, and that the combined effect of SCD
serum with heme was associated with low levels of hemopexin in SCD serum [117].

Recent studies also implicate heme in the regulation of platelet activation. Heme
was found to bind directly to C-type lectin-like receptor-2 (CLEC-2) and glycoprotein
VI (GPVI) to mediate platelet activation [118]. Heme can play a pro-inflammatory role
in the context of hemolytic disorders such as SCD, malaria, and propagate neuronal
injury during intracerebral hemorrhage [25,28,119]. Heme-dependent TLR4 activation
was linked to pathological effects in SCD, including endothelial cell activation and vaso-
occlusion [25,120]. Finally, heme induced neuroinflammation may promote the pathology
of neurodegenerative disorders [121].

5.3. Heme in the Initiation of Regulated Cell Death Pathways

Data from diverse experimental model systems implicate the pathological accumu-
lation of heme in cytotoxicity, associated with the regulation and/or activation of pro-
grammed cell death pathways. Although the regulatory mechanisms by which heme
can trigger programed cell death pathways remain incompletely defined, heme has been
implicated in model systems as an activator of apoptosis, necroptosis, and ferroptosis.

Apoptosis is a type of programmed cell death (PCD) that is associated with DNA frag-
mentation and activation of caspases. In contrast, necrosis is defined as an accidental non-
regulated lytic form of cell death [122,123]. Necroptosis is defined as a genetically-regulated
form of cell death, also distinct from apoptosis [124]. Similar to necrosis, necroptosis is
associated with organelle swelling, plasma membrane rupture, and cell lysis. Necroptotic
cells may propagate inflammatory responses via release of DAMPs. The necroptosis path-
way can be activated by stimulation with death-receptor ligands. Necroptosis is regulated
by receptor-interacting protein kinases-1 and -3 (RIPK1, RIPK3), and mixed lineage kinase
domain-like pseudokinase (MLKL), which assemble to form a multimeric complex termed
the “necrosome”. The phosphorylation of MLKL by RIPK3 is considered as a primary trigger
for necroptosis activation [125]. In contrast to necroptosis, an iron dependent form of
regulated cell death termed “ferroptosis”, is triggered by iron-dependent membrane lipid
peroxidation [126].

In a mouse model of malaria, heme was implicated as a sensitizer of TNF-α-mediated
apoptosis in the liver, the removal of which by hepatic HO-1 downregulated hepatic apop-
tosis [14]. Heme dose-dependently killed HT22 neuronal cell cultures by necroptosis, as
demonstrated by inhibition with antioxidants the RIPK1 inhibitor necrostatin-1 and by
RIPK3-targetted siRNA [15]. Heme was also found to trigger necroptosis in astrocytes,
associated with NF-κB-dependent activation of inflammatory responses, and severe de-
pletion of reduced glutathione (GSH) [16]. In a model of cerebral hemorrhage, heme
induced ultrastructural changes in cultured neurons consistent with necrosis. Heme and
hemoglobin-induced cell death could be inhibited in part with necroptosis inhibitors, and
in part with ferroptosis inhibitors [17].

In macrophages, treatment with heme was observed to cause cell death associated
with loss of plasma membrane integrity and exhibiting features of necrosis. Heme-induced
macrophage cell death required TLR4/MyD88-dependent TNF-α production. The RIPK1
inhibitor necrostatin, or genetic deficiency in RIPK1 and RIPK3 reversed heme-induced
macrophage cell death. Heme induced cell death was also reversed by JNK inhibitors and
antioxidants and augmented by HO-1 deficiency [18].

HO-1, which degrades heme in exchange for free iron, has a complex relationship
with ferroptosis, as both heme and iron can potentially catalyze lipid peroxidation and
membrane damage. HO-1 was found to mediate erastin-induced ferroptosis in cancer
cells [127]. ZnPPIX, a competitive HO-1 inhibitor, inhibited erastin-induced ferroptosis,
while HO-1 induction in response to heme or CORM treatment, promoted cell death
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in cancer cells [127]. In a model of cancer cell ferroptosis caused by treatment with an
IκBα inhibitor, cell death was associated with increased HO-1 expression, mitochondrial
and nuclear translocation of HO-1 and increased mitochondrial dysfunction and elevated
mitophagy [128]. In contrast to these observations, HO-1 has also been described as a
protective factor against ferroptosis, following its induction by pre-conditioning agents.
For example, kidney injury during rhabdomyolysis was associated with ferroptosis as
shown by inhibition with ferrostatin but not RIPK3 deletion, whereas ferroptosis was
reversed by induction of HO-1 with natural antioxidants [129]. HO-1 was also implicated
in cellular protection against ferroptosis of kidney epithelial cells induced with erastin.
Kidney proximal tubule epithelial cells derived from Hmox1−/− mice were sensitized to
erastin-mediated ferroptosis [130]. These studies, taken together, suggest that HO-1 and
HO-dependent heme degradation have been implicated the regulation of ferroptosis, in a
context dependent manner.

6. Link between HO-1 Dependent Heme Degradation and Cellular Function
6.1. Iron and Redox Homeostasis

The degradation of heme is intimately linked to cellular defense mechanisms, in
particular via the activity of the inducible form HO-1 [12,40,41]. The primary removal
of labile heme, if accumulated intracellularly, likely represents a primary antioxidative
function of HO-1, in order to restrict the potential of heme for participating in harmful
reactions [26]. Cellular protection conferred by HO-1 is linked to modulation of the cellular
composition of redox active components (i.e., biliverdin, and iron) as well as the generation
of CO (see section below) [12,131]. By degrading heme, HO releases heme iron, which itself
can present harmful sequelae unless detoxified, including potential catalysis of Fenton
chemistry, and associated production of ROS and lipid peroxides [132,133]. The release of
iron by HO-1, when contributing significantly to the labile iron pool, has been proposed as
a trigger for the regulation of de novo ferritin synthesis. Ferritin, a multimeric complex of H
and L chains is linked to cellular defense against oxidative stress, by scavenging labile redox-
active iron [134–136]. In this regard, ferritin has been identified as a cytoprotective molecule
in the vascular endothelium [137–139]. Seminal studies have also linked intracellular iron
accumulation to HO-deficiency, and have thus associated HO-1 activity to iron efflux
mechanisms [140]. Pathological roles for HO-dependent heme iron release have also been
proposed, including the context-specific promotion of ferroptotic cell death, and neuronal
injury in the case of neurodegenerative disorders [141–143]. Additionally, HO-1 may serve
as a modulator of cellular functions, via non-canonical mechanisms, independent of its
enzyme activity. These include the generation of a nuclear truncated form (NHO-1), an
activity-deficient isoform that can modulate transcription factor activities [144,145].

6.2. Bile Pigment Generation

Both BV and BR generated by HO-dependent heme degradation have been exten-
sively characterized as antioxidants, which can attenuate free radical generating reactions
in vitro, and in serum and bile. Initial characterizations implicated BR as a chain-breaking
antioxidant in model systems of lipid peroxidation [146]. BR can attenuate radical damage
to proteins, act as a serum antioxidant in albumin-bound form and modify redox balance
in the bile [147–149]. Pharmacological application of BV showed benefit in murine mod-
els of organ transplant. Mild elevation of serum BR is associated with protection from
CVD risk, whereas low bilirubin is associated with increased CVD risk and risk of graft
rejection [71,150,151]. In addition to the enzymatic role in BV to BR conversion, biliverdin
reductase has non-canonical (activity-independent) roles in cellular regulation. These
attributes of BVR include Ser/Thr/Tyr kinase activity, anti-inflammatory effects via the
PI3K/Akt pathway, and a nuclear form implicated in transcriptional regulation [152–154].
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6.3. Heme-Derived Carbon Monoxide Production

CO released from the HO reaction has been implicated as a pleiotropic modulator
of cellular functions. CO has limited biological reactivity, except for its high affinity
for binding to heme iron centers. The potential targets of CO binding are, in principle,
represented by cellular hemoproteins that utilize heme for catalytic activity. In this regard,
CO may compete for oxygen binding to hemoglobin (with an affinity ~245 times that of
oxygen), inhibit cytochrome c oxidase activity, and modulate the enzymatic activity of
select hemoproteins, with sGC being the classic example [51–53]. CO was implicated as
an anti-inflammatory effector molecule in macrophages based on p38 MAPK-dependent
downregulation of pro-inflammatory cytokines and upregulation of the anti-inflammatory
cytokine IL-10 [48]. CO was also characterized as an antiapoptotic molecule based on initial
observations of inhibition of TNF-α-mediated endothelial cell apoptosis [50]. Further,
evidence has accumulated that CO, when applied exogenously at low concentrations in
the ppm range (i.e., 250 ppm), can confer cyto- and tissue protection in inflammatory
disease models in effect by influencing inflammation, apoptosis, and cell proliferation
programs [51–53]. The molecular and cellular effects of exogenous CO application as a
therapeutic agent in animal models of injury and disease have been reviewed extensively
elsewhere [51–53].

7. Regulation of HO-1 Gene Expression

The transcriptional regulation of the Hmox1 gene encoding HO-1 is primarily operated
by nuclear factor erythroid 2-related factor-2 (Nrf2) [155]. Nrf2 is a master regulator of
the antioxidant response and regulates other genes involved in antioxidation and cellular
detoxification, including glutathione peroxidase-2, thioredoxin, thioredoxin reductase,
glutathione-S-transferases, NADPH quinone dehydrogenase 1, ferritin heavy and light
chains, and other targets [156]. A member of the Cap’n’collar/basic-leucine zipper family,
Nrf2 that can form heterodimers with small Maf proteins Kelch-like ECH-associated protein
(Keap1) binds to Nrf2 in the cytoplasm under basal conditions [157,158]. Keap1 enables
the targeting of Nrf2 by Cullin 3-based E3 ubiquitin ligase complex, which tags Nrf2 for
continuous degradation by the proteasome [159,160]. In response to inducing stimuli, such
as exposure of cells to polyphenolic antioxidants, Keap1 dissociates from Nrf2, which then
permits Nrf2 to translocate to the nucleus, where it can transactivate Hmox1 and other
Nrf2 target genes. Heme can also inhibit the proteasomal degradation of Nrf2, thereby
providing another mechanism by which heme can induce Hmox1 gene regulation [161].

Transcription factor BTB and CNC homology 1 (Bach1) serves as a transcriptional
repressor of HO-1 gene expression via competition with Nrf2 [162,163]. Heme forms a
complex with Bach1 at its carboxy-terminal region which bears four dipeptide cysteine-
proline (CP) motifs [164]. Heme binding results in inhibition of Bach1 DNA-binding
activity and can also promote the nuclear export of Bach-1 thereby derepressing HO-1
expression [165,166]. Cytoplasmic Bach1 is degraded by the proteosome. Both Nrf2 and
Bach1 target conserved sites located in the promoter regions of Hmox1 genes. Nrf2 binds
to consensus antioxidant response elements (ARE), and Bach1 competes with Nrf2 for
occupancy at these sites. These ARE elements are found in distinct enhancer regions that
occur at −4 kb and −10 kb upstream of the Hmox1 transcriptional start site [167,168]. In
addition to Nrf2, other diverse factors have been implicated in Hmox1 regulation in a wide
variety of contexts. For example, hypoxia-inducible factor-1 (HIF-1), regulates the Hmox1
gene under conditions of cellular hypoxia [44]. Other participating transcription factors
have been discussed elsewhere, and potentially include NF-κB, AP-1 and others [169–171].
Recent studies also implicate mIR networks in the regulation of Nrf2 and HO-1, as well as
in the downstream effects of these proteins, and these mechanisms have been reviewed
elsewhere [172,173].
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8. Role of Heme Oxygenase in Mediating Acute Inflammation
8.1. Acute Lung Injury

HO-1 has emerged as a pleiotropic and multi-faceted regulator of
inflammation [40,48,173,174]. Early studies have suggested a role for HO-1 in the res-
olution of acute inflammation. In a mouse model of acute inflammation of the pleural
cavity associated with neutrophil influx, the expression of HO-1 in pleural macrophages
peaked at the time of resolution. Inhibition of HO activity using Sn-protoporphyrin-IX
(SnPPIX) increased inflammatory exudates in this model whereas hemin-dependent upreg-
ulation of HO-1 was observed to dampen inflammation [175].

In rodent inflammation models, LPS application induces an inflammatory response
associated with ALI, pro-inflammatory cytokines production, and apoptosis of lung
cells [176,177]. Intratracheal application of LPS to rats was found to elevate HO-1 ex-
pression in alveolar epithelial and lung inflammatory cells [178,179]. Preconditioning
rodents with hemoglobin, as a strategy to induce HO-1, conferred lung protection and
prolonged survival during LPS challenge [179]. Systemic LPS injection in rats also induced
HO-1 expression in the lung and other distal organs such as intestine and heart [179]. Appli-
cation of heme prior to systemic LPS challenge, which induced HO-1 in the lung, conferred
anti-inflammatory protection associated with decreased circulating TNF-α levels, increased
IL-10 levels, and delayed LPS-induced mortality. Conversely, inhibition of HO activity
using Zn-protoporphyrin-IX (ZnPPIX) abolished the protective effect of heme-pretreatment
in this model [180].

Adenoviral-directed Hmox1 gene transfer was shown to protect against LPS-induced
ALI in mice by increasing anti-inflammatory IL-10 production [181]. Overexpression of
HO-1 in RAW 264.7 macrophages inhibited LPS-inducible production of pro-inflammatory
cytokines in vitro [48]. Hmox1−/− mice displayed a comparable pulmonary inflammatory
response to nebulized LPS challenge relative to wild-type mice but displayed increased
lung dysfunction and diminished surfactant protein-B expression [182].

Akin to observations made with HO-1 modulation, application of HO-activity end
products also showed therapeutic potential in LPS-induced inflammation models. Anti-
inflammatory effects of low-dose inhaled CO (i.e., 250 ppm) were demonstrated in a
mouse model of endotoxin shock [48]. CO preconditioning reduced the production of
serum TNF-α, IL-1β whereas increased the production of IL-10; reduced organ injury and
prolonged survival following LPS challenge [48]. Additionally, marked anti-inflammatory
effects of CO application (250 ppm) were observed LPS-stimulated macrophages, involving
downregulation of TNF-α, IL-1β, and macrophage inflammatory protein-1β (MIP-1β).
These effects were attributed primarily to modulation of mitogen activated protein kinase
kinase-3 (MKK3)/p38 mitogen activated protein kinase (MAPK) pathway, and other diverse
signaling mechanisms [48].

The anti-inflammatory protection against LPS-induced organ injury conferred by CO
was also attributed to inhibition of iNOS expression and activity in the lung, and elevation
of iNOS expression and activity in the liver [183]. Pharmacological application of BV
decreased pro-inflammatory cytokine production, upregulated IL-10 levels, and reduced
markers of acute lung injury in LPS-treated rats [184].

High oxygen therapy (hyperoxia, >95% O2) is frequently used in the clinic as a therapy
for acute, severe respiratory failure. In rodent models, hyperoxia (>95% O2) can cause ALI,
associated with increased oxidative stress and lung inflammatory responses, leading to
injury to respiratory endothelium and epithelium [185,186]. Hyperoxia induced ALI is
characterized by neutrophil influx in the airways, pulmonary edema, pleural effusion, and
increased lung cell apoptosis. In rats exposed to hyperoxia, HO-1 is markedly upregulated
in lung epithelial, interstitial and inflammatory cells [43]. Gene transfer of Hmox1 in rat
lungs by intratracheal application of adenovirus, which increased HO-1 expression in the
bronchiolar epithelium, protected against ALI and increased survival during hyperoxia
exposure [187]. Consistently, adenoviral-directed HO-1 overexpression can protect A549
alveolar epithelial cells against hyperoxia-induced cell death [188].
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Similar anti-inflammatory effects against hyperoxia-induced ALI, were observed in
mice treated with iCO [189,190]. The administration of iCO (250 ppm) during hyperoxia
exposure prolonged the survival of rats and mice subjected to a lethal exposure to hyperoxia,
and reduced histological markers of lung injury, including airway neutrophil infiltration,
fibrin deposition, alveolar proteinosis, pulmonary edema, and apoptosis, as compared to
animals exposed to hyperoxia alone [189,190]. In mice, hyperoxia was shown to induce
the expression of pro-inflammatory cytokines (i.e., TNF-α, IL-1β, IL-6) and activate major
MAPK pathways in lung tissue. The protection afforded by CO treatment against the lethal
effects of hyperoxia correlated with the inhibited release of pro-inflammatory cytokines in
bronchioalveolar lavage (BAL). The protective effects of CO in the hyperoxia-induced ALI
model required the MKK3/p38β MAPK pathway [190].

Mechanical ventilation can cause a type of ALI, termed ventilator-induced lung injury
(VILI) in rodents associated with inflammation and airway neutrophil migration [191]. Rats
ventilated with injurious (high tidal volume) ventilation in the presence of intraperitoneal
LPS exhibited increased expression of HO-1 in the lung [192]. Mechanical ventilation at
moderate tidal volume (12 mL/kg), in the absence of LPS, can also promote VILI in mice,
and induce HO-1 protein expression in the lung [193]. CO application (e.g., 250 ppm)
conferred protection in mouse VILI models by a mechanism primarily involving inhibition
of neutrophil influx [193,194].

8.2. Sepsis

HO-1 has been implicated in host defense mechanisms during microbial sepsis, by mech-
anisms involving heme removal [30], and also by promoting bacterial clearance [195–197].
The HO-1 genetically deficient mice (Hmox1−/−) displayed a phenotype of sensitivity to
polymicrobial sepsis, relative to wild-type mice. Transgenic mice overexpressing HO-1
in vascular smooth muscle cells and myofibroblasts protected against Enterococcus faecalis
induced sepsis. The targeted increase in HO-1 expression did not inhibit influx of circulat-
ing inflammatory cells but augmented bacterial clearance by increasing phagocytosis and
endogenous antimicrobial responses. Application of CO via CORM-2 improved mouse
survival in this model [195].

Endogenous HO-1 may play a protective role in mitigating the systemic inflamma-
tory response to sepsis [196]. Circulating levels of high mobility group box 1 (HMGB1)
are increased as a late component of the systemic inflammatory response and have been
implicated in sepsis-associated mortality. Lung inflammation, HMGB1 protein levels, and
HMGB1 expression in inflammatory cells were increased in Hmox1−/− mice relative to
wild type mice. After LPS challenge, circulating levels of HMGB1 in Hmox1−/− mice
were higher relative to wild type mice; and these could be inhibited by pharmacological
application of CO via CORM2 or BV. Furthermore, treatment with CO or BV, or with a
HMGB1-neutralizing antibody improved survival of Hmox1−/− mice subjected to LPS chal-
lenge. Thus, increased HMGB1 levels can aggravate LPS-induced mortality in Hmox1−/−

mice [196]. Heme treatment or application of CORM-2 significantly reduced plasma levels
of HMGB1 in mice challenged with LPS or subjected to cecal-ligation and puncture (CLP)-
induced polymicrobial sepsis, reduced serum TNF-α, and IL-1β levels, and increased
survival [197]. Pretreatment with hemin or overexpression of HO-1 significantly inhibited
HMGB1 release, translocation of HMGB1, and production of pro-inflammatory cytokines
(i.e., TNF-α, IL-1β, and IFN-β) in RAW 264.7 cells stimulated with LPS. These effects were
also achieved by administration of CO donor compounds and reversed by CO scavenging
molecules (i.e., oxyhemoglobin). The authors concluded that HO-1-derived CO reduces
HMGB1 release in LPS-activated cells [197].

Application of iCO (250 ppm) either prior to or after CLP improved mouse survival.
The protective effects of CO in CLP were related to activation of Beclin-1-dependent au-
tophagy and phagocytosis, reduced inflammation, and enhanced bacterial clearance from
liver, lung, and blood [198]. In an E. coli infection model, endogenous HO-derived CO
was associated with increased macrophage phagocytosis by a mechanism that involved
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inflammasome-dependent immune responses [199]. CO derived from CORM-3 was also
demonstrated to confer cardioprotection in CLP-induced polymicrobial sepsis by downreg-
ulating NLRP3-dependent inflammasome activation [200].

8.3. Acute Kidney Injury (Sepsis and Ischemia/Reperfusion)

HO-1 expression has been associated with tissue protection in models of acute kidney
injury (AKI) induced by sepsis and other insults such ischemia/reperfusion (I/R) and
exposure to cisplatin [35,201]. Early studies recognized the potential of heme both as a
mediator of kidney injury and as a means for therapeutic preconditioning to induce HO-
1 [202]. Hmox1−/− mice, which exhibit renal iron deposition, were sensitive to cisplatin-
induced and glycerol-induced AKI [203,204]. Recent studies using myeloid-specific HO-1
deleted mice, demonstrated that these mice were susceptible to I/R-induced AKI with
increased renal inflammation and apoptosis [205]. Protection from I/R derived by heme
preconditioning was associated with increased HO-1 in CD11b+ F4/80lo renal myeloid cells.
Mitochondria-specific HO-1 targeting also protected cultured renal proximal epithelial cells
against hypoxia-induced cytotoxicity and oxidative stress in vitro [206]. CO derived from
CORM-2 can exert protection in sepsis-induced acute AKI in rats subjected to CLP [206], as
evidenced by reduced serum creatinine and blood urea nitrogen levels, reduced kidney cell
apoptosis, increased survival, and decreased renal injury scores. Treatment with CORM-
2 reduced TNF-α and IL-1β levels and oxidative stress, and inhibited inflammasome-
associated caspase-1 activation [207]. The therapeutic potential of CO and CO-releasing
molecules for AKI has recently been summarized elsewhere [208].

8.4. Malaria

Malaria is a serious disease associated with Plasmodium infection. Malaria associated
(MA)-ALI/ARDS is a major clinical complication of severe malaria, which is characterized
by a high mortality rate and resistance to therapy. HO-1 expression occurs in inflammatory
cells in severe human malaria and may represent a therapeutic target in animal models of
experimental malaria [209]. DBA/2 mice infected with Plasmodium berghei ANKA (PbA)
develop signs of ALI/ARDS that resemble the human disease, which include pulmonary
edema, hemorrhage, pleural effusion, and hypoxemia. Increased pulmonary HO-1 ex-
pression was observed in mouse models of MA-ALI/ARDS [14,210]. These protective
effects were attributed to HO-1 dependent degradation of free heme, a pro-inflammatory
mediator in malaria [14,210]. Pharmacological heme treatment to induce HO-1 reduced MA-
ALI/ARDS, improved respiratory function, reduced serum vascular endothelial growth
factor (VEGF) levels, and improved vascular permeability in this model [210]. Furthermore,
application of iCO (250 ppm, 72 h) prevented death of PbA-infected DBA/2 mice by ALI,
associated with reduction of circulating VEGF. iCO administration (250 ppm) also reduced
hemorrhage and pulmonary inflammation in this model [211].

In a mouse model of experimental cerebral malaria (ECM) resulting from infection
with PbA, Balb/c mice express high levels of HO-1 in the brain after infection. Hmox1−/−

mice were sensitized to the lethal effects of ECM. HO-1 mediated protection in this model
was associated with heme removal and anti-inflammatory effects due to the endogenous
production of HO-derived CO [212]. Pharmacological upregulation of HO-1 in this model
reduced blood-brain barrier disruption, brain microvasculature congestion and neuroin-
flammation including CD8(+) T-cell brain sequestration. Furthermore, iCO treatment
(250 ppm) also conferred protection in PBA-induced ECM by similar mechanisms [29].
Pharmacological application of CO with experimental CORM (ALF492) also reduced neu-
roinflammation in ECM [212]. These studies, taken together, suggest that modulation iCO
and/or pharmacological application of CORMs, may represent a potential therapeutic
strategy for MA-ALI and ECM associated with Plasmodium infection.
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9. Therapeutic Implications

Disorders of heme synthesis and degradation may lead to human diseases, which
can include porphyrias, anemias, and hyperbilirubinemia. Treatments for acute por-
phyrias may include glucose or hematin infusions. Synthetic α-melanocyte stimulating
hormone (α-MSH) (afamelanotide) is used for cutaneous porphyria to decrease skin pho-
tosensitivity [213]. Oral β-carotene is also used to decrease phototoxicity in cutaneous
porphyria [214]. With respect to excess HO activity, phototherapy is commonly used for
hyperbilirubinemia to oxidize excess BR.

Targeting the heme/heme oxygenase system may have therapeutic benefit in select
human diseases in a context-specific fashion [1,40]. Unbound heme, a pro-oxidant molecule,
has been implicated in the pathogenesis of diverse diseases, such as sepsis, malaria, SCD,
and other hemolytic or inflammatory diseases, inclusive of cerebral hemorrhage and neu-
rodegenerative disorders [1,13,30,119]. Nevertheless, pharmacological application of heme
as a preconditioning agent to induce the HO-1 mediated stress response and other cellular
responses, has been proposed experimentally for sepsis and I/R injury [1,40]. Therapeutic
strategies targeting enhanced heme degradation may include the design or implementation
of non-toxic inducers of HO-1 for therapeutic benefit, as well as compounds that may
target the antioxidant response more broadly via activation of Nrf2 [215]. Application of
HO-1 inhibitors has therapeutic potential under conditions where excess HO activity may
present a threat, such as hyperbilirubinemia [73] or neurodegenerative disorders [141]. The
therapeutic administration of HO-1 activity end-products continues to show promise as an
experimental strategy to alleviate inflammation-mediated organ injuries. In this regard,
application of gaseous CO and or bile pigments can show benefit in sepsis and organ I/R
injury models. As an alternative to therapies based on gaseous CO, worldwide efforts
continue to harness the therapeutic benefit of CO via the design, synthesis and testing of
novel CO-releasing molecules (i.e., those with transition metal centers) or organic CO donor
compounds [54,55]. Pilot clinical trials in iCO therapy to date have been largely focused
on safety of human administration, for pulmonary indications such as sepsis-induced
acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and
chronic obstructive pulmonary disease [216–218]. To date, these efforts have been mainly
directed toward safety of dose application, and await further expanded clinical trials to
establish efficacy. Whether iCO or CORMs will provide safe and effective modalities for
the treatment of human disease requires further research directed at understanding the
pharmacokinetics and toxicology of CO application in humans, and further clinical efficacy
trials for select indications.
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