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Abstract Introduction: Breast cancer chemotherapy is associated with accelerated aging and potentially
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increased risk for Alzheimer’s disease (AD).
Methods: We calculated the probability of AD diagnosis from brain network and demographic and
genetic data obtained from 47 female AD converters and 47 matched healthy controls. We then
applied this algorithm to data from 78 breast cancer survivors.
Results: The classifier discriminated between AD and healthy controls with 86% accuracy
(P , .0001). Chemotherapy-treated breast cancer survivors demonstrated significantly higher prob-
ability of AD compared to healthy controls (P , .0001) and chemotherapy-na€ıve survivors
(P 5 .007), even after stratifying for apolipoprotein e4 genotype. Chemotherapy-na€ıve survivors
also showed higher AD probability compared to healthy controls (P 5 .014).
Discussion: Chemotherapy-treated breast cancer survivors who have a particular profile of brain
structure may have a higher risk for AD, especially those who are older and have lower cognitive
reserve.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Alzheimer’s disease (AD) is the most common form of
age-related neurodegeneration [1]. Age is the most consis-
tent predictor of AD [2] and is also a primary risk factor
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for cancer. Approximately one in two adults will be
diagnosed with cancer during their lifetime with a median
age at diagnosis of 66 years. Advances in cancer treatments,
such as chemotherapy, have resulted in significantly
improved survival rates leading to a large and growing
cohort of chemotherapy-exposed older adults. Although
most cancer diagnoses originate outside the central nervous
system (CNS), cancer and its treatments have been associ-
ated with significant cognitive decline. Although estimates
vary widely due to differences in methodology, cognitive
impairment is a significant side effect of cancer and its treat-
ments that can persist for decades or more beyond treatment
cessation [3].

As suggested previously by other groups [4,5], many of
the candidate mechanisms for chemotherapy-related cogni-
tive impairment overlap those associated with aging and
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neurodegeneration, therefore chemotherapy may alter or
accelerate the brain aging trajectory. However, few have
actually evaluated these concepts empirically. Ahles et al.
[6] showed that older patients tend to have poorer cognitive
outcome after chemotherapy. Koppelmans et al. [7] demon-
strated that gray-matter atrophy after chemotherapy is
analogous to approximately 4 years of aging on the brain.
Sanoff et al. [8] showed that elevated expression of age-
related molecular markers after chemotherapy corresponds
to approximately 15 years of chronological aging. We previ-
ously demonstrated that chemotherapy-treated patients have
significantly decreased resilience to computationally simu-
lated brain aging compared to age-matched peers [9].

These results indicate that an AD-like profile of brain
injury could be present early in some breast cancer survivors,
increasing their risk for ongoing neurodegeneration and
possible AD diagnosis [4]. However, no studies to date
have directly compared AD and cancer chemotherapy in
terms of their effects on brain structure or function. Some
epidemiologic studies provide support for an increased risk
of AD after breast cancer chemotherapy while others do
not with methodological issues making definitive conclu-
sions difficult [10]. Neuroimaging biomarkers may improve
our ability to determine if cancer survivors are at higher risk
for AD. Measures of brain network connectivity are espe-
cially promising for AD detection and risk assessment. For
example, alterations in brain network connectivity have
been shown to precede hallmark molecular changes associ-
ated with AD [11] and are highly accurate predictors of
AD diagnosis and progression [12].

In this study,we applied graph theoretical analysis tomea-
sure structural brain networks. Graph theory is the study of
objects and their connections and, when applied to neuroi-
maging data, provides unique metrics of brain network orga-
nization. In this context, the brain network is also known as
the “connectome” and demonstrates a “small-world” topol-
ogy where most regions are connected to their neighbors
and can be reached by every other region via a small number
of steps [13]. Efficient information processing is assumed to
follow the shortest paths between regions; this efficiency can
be measured at the global and local levels [14].

Connectomes can be constructed using coordinated vari-
ations in gray-matter volumes. These structural covariance
networks are believed to reflect underlying axonal connec-
tions as well as common genetic, neurotropic, and neuro-
plastic processes [15]. Significant alterations in structural
covariance networks have been observed in individuals
with AD [16]. We have demonstrated that cognitive impair-
ment is also associated with disruption of gray-matter struc-
tural networks in breast cancer survivors [17].

Machine-learning analysis of anatomic neuroimaging
data can be used to discriminate between individuals with
rapidly versus slowly progressive AD, predict future cogni-
tive decline, and predict which patients with mild cognitive
impairment (MCI) will convert to AD [18,19]. These
methods are critical considering that the pathology of AD
is believed to begin many years before diagnosis [1]. Using
regional connectome efficiencies in addition to demographic
and genetic data, we aimed to identify amachine-learning al-
gorithm that would accurately discriminate between healthy
female controls and females withMCIwho later converted to
AD (i.e., had early disease).We then applied this algorithm to
data obtained from a sample of breast cancer survivors, some
with and some without a history of chemotherapy treatment.
This approach allowed us to compute a probability of AD for
each participant, which we then compared between groups.
Our hypothesis was that chemotherapy-treated patients
would have a higher probability of AD compared to chemo-
therapy-na€ıve patients.
2. Methods

2.1. Participants

Data for patients with primary breast cancer who received
no CNS-directed therapies (N 5 108) were retrospectively
obtained from a prior study conducted by our laboratory
focused on cognitive dysfunction and neuroimaging bio-
markers in long-term breast cancer survivors.

We included only those participants who had magnetic
resonance imaging (MRI) data and available apolipoprotein
(APOE) genotype (N 5 78). Of these, 40 had a history of
chemotherapy treatment and 38 were chemotherapy na€ıve.
Breast cancer survivors were enrolled only if they had
completed adjuvant therapy at least 6 months prior to allow
for neurologic and medical stabilization. The sample
excluded participants with histories of neurologic, medical,
or psychiatric conditions known to affect cognition. Breast
cancer groups (chemotherapy, chemotherapy na€ıve) were
frequency-matched for relevant treatment variables (Table 1).

Data for female AD converters were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base (http://adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by a principal inves-
tigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial MRI, positron emission to-
mography, other biological markers, and clinical and neuro-
psychological assessment can be combined to measure the
progression of MCI and early AD. We obtained all available
baseline ADNI data for females with MCI who later con-
verted to AD who had volumetric MRI acquired using a
3-Tesla MRI scanner and had APOE genotype information.
Exclusion criteria are described in Supplementary Materials
and resulted in 47 AD converters. ADNI clinical character-
ization methods are described elsewhere [20].

Healthy female controls were women with no history of
significant medical or psychological syndromes based on
self-report and screening instruments [18–20]. We
randomly selected healthy female control data taken from
each data source to create a healthy control sample of
N 5 47 with 24 from ADNI and 23 from our data set (see
Supplementary Materials). We combined healthy female
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Table 1

Demographic and medical data shown as mean (standard deviation) unless otherwise indicated

Data Chemotherapy Chemotherapy na€ıve Healthy females AD converters

Age 54.9 (7.0) 58.4 (7.4) 68.2 (7.1)*,y 68.6 (6.9)*,y

Age range 43–73 41–74 56–79 55–80

Education (years) 16.3 (3.0) 16.7 (2.3) 16.0 (2.6) 15.6 (2.4)

APOE 34 33%z 24%z 30%z 72%

Time to AD conversion (months) 21.2 (12.7), range: 6–48

Postmenopausal 89% 80%

Radiation therapy 73% 65%

Endocrine therapy 45% 54%

Stage at diagnosis (0, I, II, III)x 0%, 25%, 55%, 20% 40%, 49%, 16%, 0%

Time since treatment completion (months) 56 (60) 76 (71)

CAD total score{ 52 (11) 45 (11)

MHD# 1.48 (0.68) 1.46 (0.79)

Abbreviations: AD, Alzheimer’s disease; APOE 34, apolipoprotein 34 genotype.

*Significantly (P , .05) different from chemotherapy.
ySignificantly (P , .05) different from chemotherapy na€ıve.
zSignificantly (P , .05) different from AD converters.
xStage at diagnosis differed significantly between the breast cancer groups (P , .0001).
{Higher Clinical Assessment of Depression (CAD) score 5 greater symptoms of psychological distress/fatigue.
#Higher Mahalanobis distance (MHD) score 5 greater cognitive dysfunction.
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data from both data sets to help control for subtle differences
in neuroimaging data due to variations in MRI pulse se-
quences between the data sets. Healthy females were
frequency-matched in terms of demographic data with the
AD converter group (Table 1). This study was approved by
the institutional review board of the University of Texas
MD Anderson Cancer Center and was conducted in accor-
dance with the Declaration of Helsinki. All participants pro-
vided written informed consent.
2.2. MRI acquisition

High-resolution, 3D, fast-spoiled gradient echo or
magnetization-prepared rapid gradient echo T1-weighted
MRI data were acquired for all participants using a GE, Phil-
lips, or Siemens 3-Tesla scanner. Scan parameters for our
data set included slice thickness 5 1.5 mm, field of
view 5 24 cm, matrix 5 256 ! 256 [21,22]. For ADNI,
slice thickness 5 1.2 mm, field of view 5 24 or 26 cm,
matrix 5 240 ! 256, or 256 ! 256 [23].
2.3. Structural connectome construction

Gray-matter volumes were segmented from T1-weighted
MRI using voxel-based morphometry (VBM) via VBM8
Toolbox in Statistical Parametric Mapping 8 (SPM8) [24].
Custom templates for each group were created using a fast
diffeomorphic registration algorithm (i.e., DARTEL) [25].
Successful normalization was confirmed via visual inspec-
tion using the check registration function in SPM8 as well
as with whole-volume slice montages. Normalized image
quality was further evaluated with the check sample homo-
geneity function in VBM8 Toolbox.

Gray-matter covariance networks were constructed for
each participant using a similarity-based extraction method
[26,27] (Extract Individual GM Networks Toolbox
v20150902 https://github.com/bettytijms/Single_Subject_
Grey_Matter_Networks). Network nodes were defined as
3 ! 3 ! 3 voxel cubes spanning the entire gray-matter vol-
ume (i.e., 27 gray-matter values per cube). A correlation ma-
trix was calculated across all pairs of nodes and binarized
based on a threshold estimated from a random network and
false discovery rate [26,28]. We ensured that no binarized
matrices were disconnected (i.e., had isolated nodes).
Matrices were then submitted to graph theoretical analysis
using Brain Connectivity Toolbox [29] and our bNets Toolbox
(https://github.com/srkesler/bNets.git) implemented in MAT-
LAB v2014b (Mathworks, Inc, Natick, MA). Connectome
metrics were calculated as described previously [26,27].
Specifically, efficiency is defined as the inverse of the
average shortest path between nodes and is high when nodes
can interact directly. Degree refers to the number of
connections a node has indicating how much that node is
interacting with other nodes in the network. Size reflects the
number of nodes in the network. Nodes were assigned 1 of
90 Automated Anatomical Labeling Atlas (AAL) labels
based on the node’s voxel coordinates. Efficiency was
calculated for each node as the average efficiency across all
nodes with the same AAL label [26,27]. We have previously
demonstrated impaired connectome efficiency associated
with cancer and its treatments [9,27], and others have shown
impaired efficiency in individuals with early AD [30].
2.4. APOE genotyping

The 34 variant of the APOE gene is associated with
increased risk for AD as well as increased risk for cognitive
deficit associated with chemotherapy [31,32].

Saliva samples were obtained from participants with
breast cancer and healthy controls in our data set using the
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Oragene DNA OG-250 collection kit (DNA Genotek,
Kanata, Ontario), and APOE was genotyped by polymerase
chain reaction fragment length polymorphism analysis using
Cfo I [33]. Genotyping for ADNI participants was done from
blood samples using polymerase chain reaction followed by
HhaI restriction [34]. DNA obtained from saliva is highly
comparable to that obtained from blood [35] and less inva-
sive for the participant.
2.5. Machine-learning classification of AD converters and
healthy controls

We used random forest classification [36] using a stan-
dard approach: The square root of the number of features
was split at each node, and an ensemble of 500 trees was
grown by bootstrapping the features with replacement. The
following features were included: 90 nodal efficiencies,
age (years), education level (years), and APOE genotype
(15 presence of 34 allele, 05 no 34 allele). Total brain vol-
ume, network degree, and network sizewere also included to
control for effects of head size and graph defining properties
[26]. Brain structure feature values are presented in Table 2.

Feature selection/reduction was conducted using a nested
folds approach with the training set (A1B) consisting of a
60% random sample of the combined AD converter and
healthy control data. Recursive feature elimination was con-
ducted on this set with A 5 training data and B 5 testing
data with leave-one-out cross-validation across 100 random
partitions of A and B. Features that provided the best accu-
racy across these partitions were used to re-train a model on
A1B with out-of-bag error estimation [37]. The resulting
model was then applied to the held-out 40% sample to test
classification accuracy. Accuracy significance was evaluated
using a two-sided exact binomial test in addition to the area
under the curve of the receiver operating characteristic.
Feature importance was determined using mean decrease
in Gini index [27].
2.6. AD probability for breast cancer survivors

We used the model fit from the random forest classifica-
tion of AD converters and healthy controls to predict the
Table 2

Values for brain structure features retained by random forest classification

Brain structure feature Alzheimer’s disease converters

Total brain volume (mL) 1010 (87)

Network degree 3341 (103)

Network size 6931 (36)

Brain network efficiencies

Right middle frontal gyrus 0.852 (0.005)

Left gyrus rectus 0.845 (0.008)

Right gyrus rectus 0.853 (0.008)

Left middle temporal pole 0.852 (0.006)

Right hippocampus 0.851 (0.006)

Right putamen 0.845 (0.007)

Left anterior cingulate 0.850 (0.005)
probability of AD class for each participant in the breast
cancer group. We then conducted a pairwise Wilcoxon
signed-rank test with false discovery rate correction, after
correcting for age using linear regression, to determine the
difference in AD probability between the groups.
2.7. Host and cancer treatment factors associated with AD
probability in breast cancer survivors

Multivariate linear regression was used to explore the
specific effects of age, psychological distress, fatigue,
APOE genotype, education level, history of radiation ther-
apy (15 yes, 05 no), history of hormonal blockade therapy
(15 yes, 05 no), disease stage at diagnosis (0, 1, 2, 3), time
since treatment completion (months), menopausal status
(1 5 postmenopausal, 0 5 premenopausal), chemotherapy
class (1 5 anthracycline [68%], 0 5 nonanthracycline)
[38] and cognitive dysfunction on AD probability for breast
cancer survivors. Psychological distress and fatigue were
measured using the total score from the Clinical Assessment
of Depression [9]. Cognitive dysfunction was measured
using the Mahalanobis distance score [39] derived from a
battery of standardized neuropsychological tests (see
Supplementary Materials). Demographic and cognitive
data were measured/acquired on the same day as the MRI
scan. Treatment/medical data were obtained on the same
day as the MRI when possible and were confirmed or calcu-
lated based on theMRI date as necessary via medical records
review.

All machine-learning and other statistical analyses were
performed in the R Statistical Package (R Foundation)
including the “randomForest”, “caret”, and “area under the
curve” libraries.
3. Results

3.1. Machine-learning classification of AD converters and
healthy controls

The final random forest model retained 12 of 96 features
including, in order of descending importance, total brain vol-
ume, APOE, right middle frontal gyrus efficiency, bilateral
Chemotherapy Healthy females Chemotherapy na€ıve

1169 (98) 1100 (122) 1174 (93)

3529 (98) 3455 (97) 3541 (82)

6950 (27) 6940 (31) 6946 (22)

0.860 (0.005) 0.857 (0.005) 0.860 (0.005)

0.854 (0.007) 0.852 (0.007) 0.857 (0.007)

0.863 (0.006) 0.861 (0.007) 0.866 (0.006)

0.860 (0.006) 0.857 (0.005) 0.861 (0.005)

0.858 (0.005) 0.857 (0.005) 0.859 (0.004)

0.853 (0.005) 0.850 (0.005) 0.852 (0.006)

0.859 (0.006) 0.855 (0.005) 0.859 (0.005)
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gyrus rectus efficiency, network degree, left middle temporal
pole efficiency, right hippocampus efficiency, right putamen
efficiency, network size, left anterior cingulate efficiency,
and age (Fig. 1).

The classifier demonstrated an accuracy of 86%
(P , .0001) with sensitivity of 91% and specificity of 81%
for a receiver operating characteristic of 0.96.
3.2. AD probability for breast cancer survivors

After the AD converter group, chemotherapy-treated
breast cancer survivors had the highest AD probability,
which was significantly higher than that of both chemo-
therapy-na€ıve survivors (P 5 .007) and healthy controls
(P , .0001). The chemotherapy-na€ıve group also differed
from healthy controls (P 5 .014, Fig. 2). The difference
between chemotherapy and chemotherapy-na€ıve groups
remained even after stratifying for APOE 34 genotype
(W 5 92, P 5 .025, Fig. 2).
3.3. Host and cancer treatment factors associated with AD
probability in breast cancer survivors

The linear regression model for chemotherapy-treated
survivors demonstrated a significant adjusted R2 5 0.32,
P 5 .029. Education (P 5 .044) and APOE 34 (P 5 .006)
were the only significant factors (Supplementary Table 1).
The model for chemotherapy-na€ıve survivors was not signif-
Fig. 1. Random forest classification of Alzheimer’s disease (AD) converters and h

the final model. Higher mean decrease in Gini index indicates greater importance o

the feature with AD class, for example, lower total brain volume was associated w
icant (adjusted R2 5 0.17, P5 .74) with no significant vari-
ables (P . .110, Supplementary Table 2).
4. Discussion

In this study, we aimed to evaluate the risk of AD in
women with a history of breast cancer based on brain struc-
ture in combination with demographics and APOE geno-
type. We first determined a machine-learning algorithm
that accurately discriminated between healthy women and
women with MCI who later developed AD (AD converters).
The classifier performed with 86% accuracy, consistent with
similar previous studies of AD conversion [18,19]. We then
applied the machine-learning algorithm to a separate sample
of breast cancer survivors to predict individual probability of
developing AD. Survivors with a history of chemotherapy
treatment showed significantly higher AD probability
compared to chemotherapy-na€ıve survivors as well as
healthy female controls. Survivors without a history of
chemotherapy also demonstrated higher AD probability
compared to healthy controls. Thus, patients with breast can-
cer, especially those who received chemotherapy, may have
an increased risk for AD.

Our results do not suggest that cancer or its treatments
cause AD but point to shared risk factors including a com-
mon neural phenotype of brain structure alterations. We
have previously demonstrated that breast cancer
ealthy female controls. Mean decrease in Gini index of features retained by

f that feature in the model.1/2 indicates the direction of the relationship of

ith AD class. Abbreviation: APOE4 5 apolipoprotein 34 genotype.



Fig. 2. Alzheimer’s disease (AD) probability. The chemotherapy group demonstrated significantly higher AD probability compared to chemotherapy-na€ıve and

healthy female (HF) groups even after stratifying for apolipoprotein (APOE) 34 genotype.
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chemotherapy and AD are qualitatively associated with a
similar pattern of altered gray-matter structural network or-
ganization compared to age-matched peers [17]. Breast can-
cer and chemotherapy tend to injure brain regions that are
known to be affected by AD including hippocampus, default
mode network, prefrontal cortex, and white-matter pathways
[9,22,40]. These regions were among those that we observed
to discriminate between the AD and healthy control groups.
Apart from right putamen and left anterior cingulate, lower
regional efficiencies were associated with AD
classification (Fig. 1). Total brain volume was the most
important variable in the random forest classifier and has
been shown to be atrophic in breast cancer survivors even de-
cades after treatment completion [7]. These results suggest
that women with a history of breast cancer treatment who
demonstrate a particular profile of brain volume and regional
efficiencies may be at increased risk for AD.

Our findings also indicate that chemotherapy-treated sur-
vivors who are older and have lower cognitive reserve are at
increased risk, consistent with previous studies [6]. Interest-
ingly, although age is the most consistent predictor of AD,
our classifier results indicated that brain volume and regional
brain network efficiencies were more critical for discrimi-
nating individuals with and without early AD. In addition,
education demonstrated a positive relationship with AD
probability in the chemotherapy group. This seemingly
counterintuitive direction is well known in the cognitive
reserve literature and is interpreted to reflect the higher
threshold of brain injury required for clinical effects to be
manifested in individuals with higher education levels [9].
Our breast cancer sample was relatively young and also
highly educated, and therefore, these findings require repli-
cation in women who are older and have less cognitive
reserve.

Breast cancer and/or chemotherapy may exacerbate an
existing genetic risk for AD. Both cancer groups had higher
AD probability than healthy controls. However, patients who
had an APOE 34 genotype and were treated with chemo-
therapy were at increased risk for AD compared to patients
who had the APOE 34 genotype but were not treated with
chemotherapy. APOE 34 genotypes are associated with
increased amyloid b (Ab) protein accumulation and tau hy-
perphosphorylation, the molecular triggers of the two pri-
mary forms of neuropathology in AD [41]. Both Ab
precursor protein and tau are expressed by breast cancer cells
[42,43], and preclinical studies suggest that administration
of peripheral tau or Ab seeds results in tau or amyloid-
related CNS pathologies, respectively [44,45]. We
previously demonstrated that breast cancer chemotherapy
impairs autophagy [46], which may exacerbate normal
age-related weakening of clearance mechanisms, worsening
accumulation of toxins such as Ab and tau. However, the ef-
fect of tau and Ab expression from breast cancer cells on the
CNS is currently unknown. Novel methods for sensitively
measuring tau and Ab from blood have been recently
developed [47] making investigation of this question a
possibility.

Increased risk for breast cancer diagnosis has been asso-
ciated with the APOE 34 genotype [48]. We conducted a post
hoc, two-tailed Spearman correlation analysis that demon-
strated a small effect association between APOE 34 geno-
type and higher disease stage (r 5 0.21, P 5 .067). This is
consistent with previous work showing that Ab is more
strongly expressed by breast cancer cells lines that have
increased metastatic potential [42]. Our findings support
those of previous studies suggesting that APOE genotype
may be a valuable predictor of risk for breast cancer [48]
as well as breast cancer-related cognitive impairment
[31,32].

The main limitation of this study is the small sample size,
which can result in model overfitting. We conducted random
forest modeling using a conservative approach that included
cross-validation and careful separation of training and
testing samples. However, further evaluation of our models’
validity requires a new, unseen, and larger sample of patients
to which we can apply our algorithms. The retrospective,
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cross-sectional design prevents us from evaluating the
change in AD probability across the treatment course and
therefore limits conclusions regarding the contribution of
chemotherapy alone to our results. Although endocrine
and radiation treatment histories were not associated with
AD probability, we cannot completely rule out their roles
based on this study. There are also potential confounds due
to combination of neuroimaging data from various sites.
We attempted to reduce these confounds by selecting only
3-Tesla data and by using a balanced sample of healthy con-
trols from both retrospective data sets. In addition, ADNI has
implemented rigorous methods to standardize their proto-
cols across sites and scanner platforms [23].

However, this study provides a foundation for using
machine-learning algorithms in combination with neuroimag-
ing data to evaluate risk of progressive chemotherapy-related
brain injury. We have made our random forest model available
publicly so that others may test its application to their own data
as appropriate (https://www.dropbox.com/s/rjzpk5magq8gj3a/
ADvCNfit.RData?dl50). Although we demonstrated that
breast cancer survivors may have an increased risk for AD, it
is unknown whether a history of breast cancer treatment accel-
erates AD onset and/or worsens its progression. These are
important questions for larger studies of patients with breast
cancer and/or preclinical studies using AD mouse models.
While the parallel between AD and chemotherapy-related
cognitive impairment is not original [4,5], our approach to
examining this overlap is highly unique in the field. Future
studies will combine AD probability with biomarkers of
neurodegeneration suchas tau,Ab, andcytokine levels to better
understand the mechanisms and consequences of
chemotherapy-related cognitive impairment.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional scientific sources (e.g.,
PubMed) for research regarding cognition, neuroi-
maging, breast cancer, and Alzheimer’s disease
(AD). Although previous studies have demonstrated
evidence of accelerated brain aging associated with
breast cancer chemotherapy, the risk for AD has
not been evaluated from a neurobiologic perspective.

2. Interpretation: Using machine learning, we showed
that chemotherapy-treated patients have higher AD
probability compared to chemotherapy-na€ıve pa-
tients based on brain structure, demographics, and
genotype. We conclude that chemotherapy increases
existing genetic risk for AD.

3. Future directions: Further investigation is required to
determine if chemotherapy worsens AD onset and/or
progression, to evaluate the effects of tumor pathol-
ogy and chemotherapy on tau and Ab accumula-
tion, and to examine the potential contributions of
other adjuvant therapies such as radiation and
endocrine treatments.
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