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Abstract The global energy market is in a transition
towards low carbon fuel systems to ensure the sustainable
development of our society and economy. This can be
achieved by converting the surplus renewable energy into
hydrogen gas. The injection of hydrogen (£10% v/v) in
the existing natural gas pipelines is demonstrated to have
negligible effects on the pipelines and is a promising
solution for hydrogen transportation and storage if the end-
user purification technologies for hydrogen recovery from
hydrogen enriched natural gas (HENG) are in place. In this
review, promising membrane technologies for hydrogen
separation is revisited and presented. Dense metallic
membranes are highlighted with the ability of producing
99.9999999% (v/v) purity hydrogen product. However,
high operating temperature (≥300 °C) incurs high energy
penalty, thus, limits its application to hydrogen purification
in the power to hydrogen roadmap. Polymeric membranes
are a promising candidate for hydrogen separation with its
commercial readiness. However, further investigation in
the enhancement of H2/CH4 selectivity is crucial to
improve the separation performance. The potential impacts
of impurities in HENG on membrane performance are also
discussed. The research and development outlook are
presented, highlighting the essence of upscaling the
membrane separation processes and the integration of
membrane technology with pressure swing adsorption
technology.

Keywords power to hydrogen, membrane technology,
hydrogen, energy

1 Introduction

1.1 Energy outlook to 2040

Energy plays a crucial role in the global economy growth.
From the BP Energy Outlook [1], world population will
reach 9.2 billion in 2040 and the global gross product is
proposed to grow 3.2% per annum in the 2017–2040
period assuming that government policies, technology
development and social preferences will remain at the
current pace and manner of evolution. The expansion of
world economy will drive the global energy demand by an
increase of 0.8%–1.2% per annum with 16.4–17.9 Gtoe
(gigatonnes of oil equivalent) of primary energy consump-
tion in 2040 [1].
Although energy demand fluctuates with major changes

in global economy or our society [2], it is clear that the
overall global energy demand tends to increase from a long
term perspective. The global energy consumption showed
recovery from the 2008 global economy crisis [2],
however, the outbreak of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) in 2019–2020
added extra uncertainty to the fuel demand. The recent
Global Oil Demand Report published by International
Energy Agency (IEA) predicts that the global oil demand
will drop by 90000 barrels per day in 2020 in comparison
with that in 2019 [3]. However, with the SARS-CoV-2
being under control in China, which accounts for more
than 80% of the global oil demand growth in 2019, the
global oil demand will rebound in 2021 and grow by 5.7
million barrels per day over 2019–2025 [3].
One of the greatest challenges for the energy system is to

meet the fast-growing energy demand simultaneously with
less or no greenhouse gas emissions, which is the major
driver for climate change. The breakdown of primary
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energy consumption in 2017 (Fig. 1) shows that traditional
energy sources such as coal, oil and gas remain to be the
major fuels in the global energy market [1]. The production
and consumption of fossil fuels produce anthropogenic
greenhouse gas. The global plans set out in the 2015 at the
United Nations Conference of the Parties targeted at an
increase of global average temperature to be well below
1.5 °C by 2050 via effective carbon mitigation approaches
etc. [4]. One major approach is carbon capture, utilization
and storage (CCUS), which utilises gas separation
technologies, such as solvent absorption, membrane
separation and adsorption, to capture the CO2 from the
processing gas streams and then either converts the
captured CO2 into fuels or chemicals [5,6], or stores it
underground in geological reservoirs safely and perma-
nently [7]. Globally, 37 large-scale CCUS projects are
operating, commissioning or in progress with a total CO2

capture capacity of 65 Mt per annum (mega tons per
annum) [5,8]. Another approach for carbon removal and
storage is bioenergy with carbon capture and storage,
which uses biomass to produce energy for CCUS facilities
and the whole process results in negative net CO2 emission
[6]. However, both technologies require extremely high
capital investment, land footprint and energy consumption
[9]. Hence, many other proposals have been made to
decarbonise the energy sector such as implementing more
renewables, developing better energy storage systems and
enhancing energy usage efficiency [1].

1.2 Renewables

Renewables, such as wind, solar, hydro, biomass and
geothermal energy, is expected to play a key role in the
clean energy transition process [1,10,11]. The IEA
estimated that the share of renewables in primary energy
consumption would be 12.4% by 2023 (Fig. 2) [11].
Generally, the renewables are abundant to meet the global

energy demand, however, their deployment highly relies
on the readiness of energy generation, transportation and
storage infrastructures and technologies. For instance, the
net global wave energy is around 2–3 terawatt [12] which
approximates to the global electricity consumption in 2018
[13]. However, the fluid corrosion and the voltage limit in
electricity grid (i.e., �10% of the nominal value) [14] to
resist the fluctuation of renewable energy supply in
accordance with weather change are some of the
challenges to overcome for deploying the wave energy in
large scale. Similarly, wind and solar energy are experien-
cing a gap in electricity supply between daytime and
nighttime and among seasons resulting in the waste of
surplus electricity due to the lack of energy storage
solutions [15].

1.3 Power to hydrogen (P2H)

One approach to enhance the storage and reserve the
production capacity of renewable energy is the power to
hydrogen (P2H) process chain, in which surplus electricity
is used to convert water to H2 via technologies such as
alkaline electrolysis [16], proton exchange membrane
electrolysis [17] and solid oxide electrolysis [18], there-
after, hydrogen can be transported and consumed by end-
users for combustion, carbon hydrogenation or methana-
tion etc. [19]. Hydrogen is preferable for renewable energy
storage due to its higher mass energy density (142 MJ∙kg–
1) in comparison with other fuels such as natural gas and
gasoline (energy density at around 40–60 MJ∙kg–1) [20].
Hydrogen can also be used in several industries such as
hydrocarbon reforming and ammonia synthesis [21]. The
minimum hydrogen purity requirements in fuel gas,
polymer electrolyte fuel cells and rocket engine fuel
industries are 54%–60% (v/v), 99.97% (v/v) and
99.999999% (v/v), respectively [22,23]. The major
challenge for hydrogen transportation and storage is its
low volumetric density and the possibility of hydrogen-
induced fracture on the pipelines and storage facilities

Fig. 1 The breakdown of primary energy consumption by fuel in
1995, 2017 and an outlook to 2040 based on the Evolving
transition scenario (Renewable includes wind, biomass, solar,
biofuels and geothermal) [1]. Source: BP Energy Outlook 2019.
Adapted with permission.

Fig. 2 The consumption of renewable energy categorised by
technology in 2017 and an outlook to 2023 [11]. Source: IEA
(2018). Market Report Series: Renewables 2018: Analysis and
Forecasts to 2023, All rights reserved. As modified by Lu et al.
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[24,25]. Around 88% of reported hydrogen projects
utilised compressed gas tanks for storage and a minority
utilised metal hydrides storage [24].
The recent cost assessment for hydrogen delivery

pathways suggested that the pipeline networks is the
most cost effective and environmental-friendly approach
for large scale hydrogen stations (around 80000 kg
hydrogen capacity required per day) [26]. However, the
construction of hydrogen distribution pipelines can cost
USD 320–1000 per metre for the 20–61 cm pipelines at 68
bars [27,28], which is at least 10% more expensive than
natural gas pipelines [27,29].
A more cost-effective option for hydrogen transport,

especially in the market development phase, is to inject
hydrogen into the existing natural gas pipelines [30] as the
global natural gas pipelines are well built and distributed
(> 2.7 million kilometres in 2016) [31]. However, since
the traditional natural gas pipelines are commonly made of
ferritic stainless steel (SS) [32], plastic and cast iron [33],
the suggested hydrogen injection concentration in natural
gas pipelines is 6%–10% (v/v) at up to 40 bar pipeline
pressure [34,35] to minimise the ignition risks, leakage
issues and pipeline fatigues [30,36].
The hydrogen/natural gas mixture, also called hydrogen

enriched natural gas (HENG), can be utilised directly for
power generation [30] and household appliances [37].
However, the increasing displacement of hydrogen in
natural gas stream will lower the heating value of gas
mixture [38]. In fact, HENG could be used as a carrier to
transport hydrogen from production sites to the renewable
energy end users if the technologies for purifying hydrogen
from HENG are in place.
Studies on hydrogen separation from methane reformed

off gas and syngas have been reported extensively in
literature [15,30,39,40]. These gas streams, however,
commonly have 10%–80% (v/v) H2, 2%–30% (v/v) CO2

and up to 60% (v/v) N2 in balance of methane
[15,30,39,41] while the HENG is a H2/CH4 mixture with
up to 15% (v/v) H2 and less than 2%–4% (v/v) CO2 [30].
There are very few investigations on hydrogen recovery
from HENG at low temperature (e.g., ambient tempera-
ture). Therefore, the development of high efficiency and
cost-effective technologies for the recovery of H2 from its
low concentration streams is a key to extend the P2H
technology.
Membrane technology is one of the most proven

economically viable approach for gas separation and has
been commercialised in natural gas sweetening [42] and
hydrogen recovery from ammonia purge gas [43] since
1980s. Recently, membrane technology is also implemen-
ted in carbon capture studies [44,45] and plasma
technology to convert N2 and CO2 into value-added
chemicals [46,47]. The advantages of membrane technol-
ogy in comparison with other hydrogen separation
technologies such as cryogenic distillation and pressure
swing adsorption (PSA) processes are having high energy

efficiency, high surface area-to-volume ratio [41], low
environmental impact [41,48,49] and potential to achieve
high purity hydrogen (> 99.5% (v/v)) [30,40,48,50].
Several review articles have been published to assess the

role of membrane separation technology in hydrogen
purification. For instance, Adhikari and Fernando
reviewed the use of different membrane types, mainly
focusing on inorganic membranes, in hydrogen separation
from hydrogen-rich gas streams [40]. The relationships of
structure and property of membranes and hydrogen
separation ability was also reported by Ockwig and Nenoff
[51]. In addition, a book chapter about the advances in
hydrogen separation and purification using membrane
technology was also presented by Zornoza et al. that
summarised the hydrogen separation performance of
different membrane materials and membrane reactors
[50]. A comparison between H2-selective membranes
and CO2-selective membranes for hydrogen purification
was also reported [49]. However, most of these reviews
targeted at steam reforming of hydrocarbons that contained
high hydrogen concentration (up to 80% (v/v) in the
balance of CO2 and minor CH4) at high temperature
(> 350 °C) [50,51]. Hence, the scope of this review is to
critically assess the role of membrane technologies for
hydrogen recovery from HENG and highlight its potential
in the P2H pathway.

2 Membrane for hydrogen separation

2.1 Fundamental of hydrogen transport in membranes

A membrane is a barrier that selectively separates some
components from a mixture based on the physical nature of
penetrants and the interactions between penetrants and
penetrant-membrane [49,50]. The transport mechanism of
H2 and CH4 through membranes varies depending upon
the membrane types and generally follows one or a
combination of the following 4 mechanisms: Knudsen
diffusion, surface diffusion, molecular sieving and solu-
tion-diffusion model (Fig. 3) [40,49,50,52,53]. Knudsen
diffusion applies when the mean free path of penetrant (i.e.,
the average travelling distance of a penetrant molecule
inside the pores) is larger than the pore diameter [52,54].
The gas selectivity via the Knudsen mechanism is
proportional to the inverse square root ratio of the molecular
weight of transported gases (i.e., Selectivity A/B

/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Molecular weight  of   component  B

Molecular weight  of   component A

r

) [54]. This ratio

for H2/CH4 systems is 2.8 that is not attractive in
commercial scale due to the low gas selectivity [52].
The diffusion of hydrogen through the membrane could

be enhanced if the gas molecules absorbed on the pore
surface, which is defined as surface diffusion [55]. This
mechanism is mainly applied in porous membranes
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[40,56]. When the pore size of membranes and kinetic
diameter of penetrants are similar, the gas transport
primarily follows the molecular sieving mechanism.
According to the kinetic diameters of H2 and CH4

(Table 1), the preferred pore diameter for the separation
of H2 from HENG is between 2.89 and 3.80 Å such as
ultra-microporous membranes [52].

The widely-accepted mechanism of gas transport in
polymeric and dense metallic membranes is solution-
diffusion. This mechanism typically involves three steps:
1) the penetrants dissolve into the membrane on the feed
side; 2) diffuse through the membrane; 3) desorb on the
permeate side of the membrane [41,52]. The permeation
and selectivity of H2/CH4 by solution-diffusion mechan-
ism rely on the solubility and diffusivity of penetrants in
the membrane [43].
The driving force for gas permeation through mem-

branes is the chemical potential difference of H2 and CH4

on the two sides of the membrane, which is mainly in the
form of gas partial pressure. The performance of H2/CH4

separation membrane can be expressed in term of
permeance (Q) or permeability (P) of hydrogen and
selectivity (a) of H2 versus CH4 (Eqs. (1) and (2)). The
hydrogen permeability in metallic membrane follows the
Sievert’s law (Eq. (3)) with the flux being dependent on
pressure exponent ‘n’ at around 0.5 [58]. The hydrogen
separation efficiency is often limited by the pressure ratio
across the membrane as shown in Eq. (4) [59], which is not
a barrier for hydrogen purification from HENG stream as
its operation pressure can be as high as 68 bar [30].

Pi ¼ Qil ¼
Jil

ðpi,feed – pi,permeateÞ
, (1)

αH2=CH4
¼ PH2

PCH4

, (2)

where Q is the gas permeance of gas component i (e.g., H2

or CH4); l is the membrane thickness; J is the gas flux
(flowrate per membrane area); pi,feed and pi,permeate are
partial pressure of gas component i in the feed and
permeate sides of the membrane, respectively.

PH2
¼ JH2

⋅l

ðpnH2,feed
– pnH2,permeateÞ

, (3)

Feed  pressure

Permeate  pressure
³

H2concentration  in  permeate

H2concentration  in  feed
: (4)

2.2 Dense metallic membranes

Several types of membranes have been extensively studied
for hydrogen separation including dense metallic mem-
branes, porous inorganic membranes, metal organic
membranes and polymeric membranes. Among these,
dense metallic membranes have attracted great interests
due to their high hydrogen selectivity and commercial
availability [50,60]. In the presence of catalytic membrane
surfaces, hydrogen is transported through the membrane in
form of proton, hydride ion or neutral atoms [50]. This
mechanism is unique for hydrogen and cannot occur for
other gas components in HENG like CH4 and CO2,
therefore, the hydrogen purity in metallic membranes can
reach up to 99.9999999% (v/v) [30].
Pd membranes are the most common metallic mem-

branes for hydrogen separation with hydrogen perme-
ability on the order of 1000 times greater than other metals
such as Fe, Ni and Pt [61]. Several studies (Table 2) on the
Pd membranes showed that the H2/CH4 selectivity could
be extremely high (≥1000). However, there are some
challenges for using the Pd membranes such as low
mechanical resistance of the membrane in high pressure
and the poison effects of impurities such as H2S and CO in
the feed gas [50,62,63]. An effective method to increase
the hydrogen recovery is depositing thin Pd membranes on
the supports such as Vycor glass [64,65], ceramics [66,67],
porous alumina [68,69] or SS [69–71]. This is because
thinner membrane enhances the hydrogen flux (Eq. (3))
while the support increases the mechanical strength of

Fig. 3 The penetration mechanism of penetrants through membranes. Photo courtesy of CO2CRC.

Table 1 Physical properties of hydrogen and methane gas molecules [57]

Item
Molecular weight

/(g∙mol–1)
Kinetic diameter

/Å
Critical temperature

/K

H2 2 2.89 33.24

CH4 16 3.80 191.05
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membranes. In addition, the mechanical strength of the
membrane has been successfully increased by incorporat-
ing Pd with other metals in group IB, IVB, VB and VIB of
the periodic table to form alloy membranes without
affecting the H2 selectivity of the membrane [72–78].
It should be noted that low operating temperatures

(£300 °C) lead to hydrogen-induced embrittlement
phenomenon in Pd membranes [49,79], which limits its
application significantly. Another barrier restricting the
application of metallic membranes is the high cost of
membrane materials [51,80]. Although several palladium
membrane modules have been introduced in industrial
scale, premium in steam methane reforming and water-gas
shift industry (e.g., the Pd alloy Micro-ChannelTM Technol-
ogy (Power & Energy Inc., USA [81]), the Hysep® module
(Energy Research Centre of Netherland [82]) and the two-
step process of Pd-based membrane module (SINTEF,
Norway [82])), dense metallic membranes are not particu-
larly suitable for the purpose of separating hydrogen from
HENG pipelines at low temperatures.

2.3 Ceramic mixed protonic-electronic conducting mem-
branes

Dense ceramic mixed protonic-electronic conducting
membranes have been intensively studied for hydrogen
separation with advantages including high mechanical
stability and lower manufacturing cost than dense metallic
membranes [83,84]. The H2 transport through dense
ceramic proton conducting membranes follows solution-
diffusion mechanism [85,86], in which H2 in the feed gas
diffuses through the membrane in form of H+ along with
the electrons. The flux of hydrogen can be described by the
Wagner theory as shown in Eq. (5) [87].

JH2
¼ –

RT

2F2l
!

Permeate

Feed
�Hþ � te –ð ÞdlnpH2

, (5)

where JH2
is the H2 flux; R is the universal gas constant; T

is the absolute temperature; F is the Faraday constant; l is
the membrane thickness; �Hþ is the proton conductivity;
te – is the electronic transport number and pH2

is partial
pressure of H2.
These ceramic materials, such as perovskite-type oxides,

pyrochlores, niobates, tantalates and tungstates, often have
a large number of protons and high electronic conductivity
[88]. The crystal structures of these ceramic materials have
been well studied in the literature [88,89]. Perovskites
based oxides (e.g., BaCeO3, SrZrO3 and SrCeO3) are the
most common proton conducting materials with proton
conductivity in range of 10–3–10–2 S∙cm–1 (400 °C–
1000 °C) [90]. Various methods have been applied to
enhance the proton conductivity to achieve high H2 flux,
for instance, the doping of trivalent ions (i.e., Yb and Y)
into perovskites to partially replace tetravalent ions (i.e.,
Ce and Zr) [91–93] and the doping of Ca(II) into
La2Zr2O7 – δ pyrochlores [94]. Another approach is disper-
sing metallic materials (i.e., Pd, Pt and Ni) into ceramic
matrix (called cermet) or combining two ceramic proton
conducting materials to form a composite membrane
(called cercer) [86,88].
A range of ceramic mixed protonic-electronic conduct-

ing membranes has been highlighted in Table 3 to address
their performance for hydrogen separation. The fabrication
techniques of these membranes are similar to metallic
membranes, with≥20 mm in membrane thickness and
10–8–10–9 mol∙m–2∙Pa–1∙s–1 in hydrogen permeance
[83,95]. However, the major drawback of this type of
membranes is the requirement of high temperature for
hydrogen separation. The hydrogen conductivities of most

Table 2 A shortlist of palladium membranes for hydrogen separation

Membrane material
/support

Preparation
method a)

Thickness of
active layer/mm

Experiment
conditions

Hydrogen permeance
/(mol∙m–2∙s–1∙Pa–1)

Hydrogen
selectivity b)

Ref.

Pd/SS a) ELP 3.5 3.5 bar
500 °C–550 °C

1.7–9.4 � 10–7 1 [71]

Pd/PPO polymer a) ELP 5 1 bar
500 °C

1 � 10–6 1 [96]

Pd/α-Al2O3 MOCVD 2 1–2 bar
300 °C–500 °C

1 � 10–6 1000 [68]

Pd/α-Al2O3 ELP 0.9 1.1 bar
500 °C

4 � 10–6 9200 [69]

Pd/YSZ/SS ELP 27.7 4 bar
350 °C–450 °C

1.5 � 10–7 1 [78]

Pd-Ag alloy/α-Al2O3 ELP 11 4 bar
550 °C

1.3 � 10–6 1000–10000 [76]

Pd-Cu alloy ELP 7.2 2.2 bar
400 °C

1.4 � 10–6 40000 [77]

a) Metal-organic chemical vapor deposition (MOCVD), Electroless plating (ELP), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO); b) due to the limited application of
metallic membrane in literature, the hydrogen selectivity is based on H2/N2 system. However, in the solution-diffusion mechanism, the transportation behaviour of N2
and CH4 through the membrane are proved to be identical [57]. Hence, the trends of H2/N2 and H2/CH4 selectivity are proposed to be identical.
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ceramic proton conducting materials were reported to
decrease by 100–1000 times (i.e.,< 10–5 S∙cm–1) at low
temperature (< 250 °C) [88]. To the best knowledge of
authors, the study on H2/CH4 separation using this type of
membranes is very rarely seen. In addition, CH4 can be
dimerised on the surface of ceramic proton conducting
membranes such as SrCe0.95Yb0.05O3 – α-Pt [89]. Hence,
ceramic mixed protonic-electronic conducting membranes
are not suitable for hydrogen separation from HENG.

2.4 Inorganic microporous membranes

Inorganic microporous membranes are commonly used for
separating light gas in the mixed gas such as H2 from H2/
CH4 gas mixtures. In comparison with dense metallic
membranes, inorganic microporous membranes can resist
broader temperatures (25 °C–900 °C) and are more cost
effective [40,50]. The flux of hydrogen (JH2

) in dense
metallic membranes is proportional to the square root of
partial pressure of hydrogen (Eq. (3)) while JH2

is
proportional to partial pressure of hydrogen directly for
other membrane materials (Eq. (1)). Therefore, inorganic
microporous membranes are preferred to operate at high
pressure of hydrogen. The H2 transport mechanism in
inorganic microporous membranes is mainly molecular
sieving which separates H2, the smaller kinetic diameter
component, from CH4, the larger component in the mixture
(Table 1). Thus, the pore diameter of porous membranes
must be under 2 nm (e.g., microporous) to separate
hydrogen effectively [50]. However, H2 may also transport
through the membranes by the Knudsen diffusion
mechanism in presence of defects [103]. This mechanism
is less effective in H2 separation as discussed in Section 2.1
[49,50,52]. Therefore, the inevitable challenge for micro-
porous membrane is to form a defect-free membrane to
gain high purity hydrogen product.

2.4.1 Zeolite membranes

Zeolite membranes are well studied due to their strong
chemical, thermal and mechanical stability. A typical
zeolite membrane is built with a crystallised microporous
zeolite (e.g., aluminosilicates) deposited on a porous
support such as alumina, porous ceramic, SS or polymeric
membranes [49]. Recent studies showed that zeolite
membranes can separate H2 at various temperatures
(25 °C–700 °C), however, with much lower H2/CH4

selectivity than dense metallic membranes (Table 4). The
low hydrogen selectivity might be due to the presence of
inter-crystalline mesopores on the zeolite layer that were
formed during the aggregation of nanocrystals [104,105].
These mesopores (2–50 nm) drive the gas separation
towards Knudsen diffusion mechanism. Recently, some
advanced fabrication techniques were studied which
successfully reduced the defects in zeolite membranes in
particular layer-by-layer seeding free hydrothermal synth-
esis [106,107], catalyst cracking deposition hydrothermal
synthesis [108] and functionalising the zeolite pores by
amorphous materials [109]. However, these studies on
zeolite membranes remain mainly in laboratory scale
that will require a lot of efforts to scale up and
commercialize.

2.4.2 Silica membranes

Silica membranes is favoured as they are often cost
effective and easy to fabricate [49,82]. Most study on silica
membrane showed high H2 permeance and selectivity
(Table 5). This is due to the amorphous property of ceramic
that makes it easy to form nano-scale membrane thickness
and pore diameter [49,82]. Particularly, a silica modified
membrane deposited on Vycor glass called Nanosil
exhibited an outstanding H2/CH4 selectivity at up to

Table 3 A shortlist of ceramic mixed protonic-electronic conducting membranes for hydrogen separation

Membrane Type
Thickness of active

layer/mm
Temperature/°C Feed gas

Sweep
gas

Hydrogen flux
/(10–4 mol∙m–2∙s–1)

Ref.

BaCe0.8Y0.2O3 – α Perovskites 0.20 1050 25% H2/He N2 28.30 [91]

Sr(Ce0.6Zr0.4)0.85Y0.15O3 – δ Perovskites 0.17 800 Pure H2 Ar 130 [92]

Sr0.97Ce0.9Yb0.05O3 – δ Perovskites 1.16 804 10% H2/N2 Ar 3.30 [93]

Nd5.5W0.5Mo0.5O11.25 – δ Tungstates 0.90 1000 50% H2/He Ar 22.30 [97]

La26.78W5.22O55.83 Tungstates 0.03 1000
10% H2/Ar
2.5% H2O

Ar 10.40 [98]

La0.5Ce0.5O2 – δ (P)/Ni (E)
a) Cermets 0.05 900

20% H2/Ar
3% H2O

Ar 6.83 [99]

Pd(Zr0.9Y0.1O2 – δ) (P)/Pd (E) Cermets 0.02 900 Pure H2 N2 1410 [100]

BaCe0.95Tb0.05O3 – δ (P)/Ni (E) Cermets 0.09 850 50% H2/N2 He 67.90 [101]

BaCe0.65Zr0.2Y0.15O3 – δ (P)/
Ce0.85Gd0.15O2 – δ (E)

Cercers 0.65 755 50% H2/He Ar 21.00 [102]

a) P/E: protonic phase/electronic phase.
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23000–27000 [110]. The drawback of silica membranes
is its low resistance to water [49,82]. This challenge
could be resolved by introducing metallic oxides such
as oxides of cobalt [111] and zirconia [111,112] into
the membrane fabrication stage as the metal ions may
reduce the interactions between water-silica matrix and
minimise the movement of silanol groups [111]. Certainly,
due to the low content of water in natural gas (< 0.012%
(v/v) [42,59]), the impact of water on silica membranes
in H2 separation from HENG is less significant than
that in syngas industry, which contains up to 40%
(v/v) H2O [15,30,39,41]. To the best of our knowledge,
investigation on the large scale H2/CH4 separation
using silica membranes, especially from HENG streams,
has been very limited. Thus, more investigations on
mixed gas measurement and pilot scale study on
H2/CH4 separation are needed to verify its performance
in industry.

2.4.3 Carbon molecular sieve (CMS) membranes

CMS membranes have also been widely studied (Table 6)
for H2 separation. The gas transport in CMS membranes
mostly follows the molecular sieving mechanism. How-
ever, some large pores (0.6–2 nm in diameter) could more
preferably adsorb CH4 than H2 that leads to a reduction in
H2 permeability and H2/CH4 selectivity [49,113,114].
Thus, it is critical to control the pore size in CMS
membranes to be less than 0.6 nm in diameter. The CMS
membranes is fabricated via the pyrolysis process of
carbonaceous precursors [49,50,115]. The pore dimen-
sions of CMSmembranes can be controlled via the types of
precursors, pyrolysis conditions and pre- and post-treat-
ment processes [51,113]. It can be seen from Table 6 that
the hydrogen permeance and H2/CH4 selectivity at ambient
pressure may reach 10–7 mol∙m–2∙s–1∙Pa–1 and 1200,
respectively. The CMS membranes were also proven to

Table 4 A shortlist of zeolite membranes for hydrogen separation

Zeolite type/support Synthesis method
Thickness of

active layer/μm
Experiment
conditions

Hydrogen permeance
/(mol∙m–2∙s–1∙Pa–1)

Hydrogen
selectivity a) Ref.

MFI/ceramic Hydrothermal 3 1–4 bar
25 °C–500 °C

5 � 10–8 4.9–7.9 [126]

LTA/α-Al2O3 Seeding free
hydrothermal

3.5 1 bar
100 °C

2 � 10–7 5–6.5 [106]

FAU/α-Al2O3 Seeding free
hydrothermal

3 1 bar
100 °C

8 � 10–7 3.5–5.6 [107]

CHA/α-Al2O3 Hydrothermal 3–4 2.7 bar
27 °C–200 °C

2.4 � 10–8 25–10 [127]

La2NiO4 MFI/α-Al2O3 Hydrothermal 60 400 °C–700 °C 5.5 � 10–7 9.2 [128]

MFI/α-Al2O3 Hydrothermal 2–3 2 bar
500 °C

5.3 � 10–7 4 [108]

Hydrothermal
with CCD b) 2–3

2 bar
500 °C

3.9 � 10–7 180

a) H2/CH4 ideal selectivity; b) CCD: catalyst cracking deposition.

Table 5 A shortlist of silica membranes for hydrogen separation

Silica type/support
Synthesis
method

Thickness of active
layer/nm

Experiment
conditions

Hydrogen permeance
/(mol∙m–2∙s–1∙Pa–1)

Hydrogen
selectivity a) Ref.

SiO2/ceramic Sol-gel 20–30
1 bar

100 °C–600 °C
10–7 2800 [129]

CoSiO2/ZrO2SiO2/α-Al2O3 Sol-gel 20
1–3 bar

200 °C–500 °C
1.8 � 10–7 480–730 [111]

ZrO2Y2OSiO2/ceramic Sol-gel –
1–1.5 bar
150 °C

1 � 10–8 4 [112]

MTES-SiO2/α-Al2O3
b) Sol-gel –

1–6 bar
50 °C–200 °C

3.4 � 10–9 24–46 [130]

SiO2/γ-Al2O3/α-Al2O3 Sol-gel 20–30
2 bar
600 °C

5 � 10–7 5900 [131]

SiO2 modified/Vycor glass
(called Nanosil)

High temperature
atmosphere CVD c) –

1.2 bar
200 °C–700 °C

1.8 � 10–8 23000–27000 [110]

a) H2/CH4 ideal selectivity; b) MTES: methyltriethoxysilane; c) CVD: chemical vapour deposition.
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separate H2 effectively (e.g., achieving 98% recovery)
from 50% H2–50% CH4 (v/v) mixed gas feeding condition
[30]. The challenges for commercialising the CMS
membranes are the membrane brittleness and high
fabrication costs [40,50] which require further improve-
ment.

2.4.4 Other inorganic microporous membranes

Recently, two-dimensional nanomaterials have been inte-
grated into membrane technology and showed the
promising H2/CH4 separation performance. For instance,
the study on graphene-based membranes, which could
theoretically achieve single-atom thickness, showed high
mechanical and chemical stability and high H2 separation
performance (e.g., 1 mol∙m–2∙s–1∙Pa–1 H2 permeance and
108 H2/CH4 selectivity) [116]. The studies on hydrogen
purification by layered double hydroxides (LDHs)-based
membranes, which is formed by positively charged
brucite-like layers and an interlayer region containing
charge compensating molecules [117,118], also
reached 10–7–10–8 mol∙m–2∙s–1∙Pa–1 H2 permeance and
~80 H2/CH4 selectivity, respectively [119,120]. Although
the two-dimensional membrane materials are a promising
breakthrough in H2 separation, the major challenges for
these membranes are to control the microstructures and to
scale up the process [118].

2.5 Metal organic framework (MOF) membranes

Over recent decades, several studies focused on MOF
membranes due to their ultrahigh porosity in comparison
with other porous membranes [49,121,122], which
enhances the gas sorption capacity and gas transport as a
sequence. Some highlighted MOF membranes for hydro-
gen separation are summarised in Table 7, which indicates
that H2 permeance in the MOFmembranes is averagely 10–
100 times higher than other porous membranes (e.g., 10–6

mol∙m–2∙s–1∙Pa–1 versus 10–7–10–8 mol∙m–2∙s–1∙Pa–1). As
organic linkers in MOF membranes cannot provide an
additional linkage to surrounding MOF crystals and the
membrane support, the major challenge is the fabrication of
continuous and defect-free membranes [49,122,123]. This
can be achieved via better pore shape and size control in the
membrane fabrication process. For instance, Huang et al.
fabricated a continuous defect-free ZIF-90 membrane on
Al2O3 support by using 3-aminopropyltriethoxysilane as
covalent linkers between ZIF-90 and Al2O3 support [122].
In a different approach, Liu et al. used the ZnAl-LDHs as a
buffer for connecting the zeolitic-imidazolate framework-8
(ZIF-8) seed layer onto the Al2O3 support and the well-
intergrown ZIF-8 membrane was formed during the
secondary growth [120]. Recently, ZIF-8 is incorporated
on hollow fibre membrane in a laboratory scale continuous
process [124,125], which shows a promising signal for
commercial scale application of MOF membranes in the
future.

2.6 Polymeric membranes

Polymeric membranes are the most mature membranes for
hydrogen separation with the first industrial application
reported in 1980s [42]. Some commercial membrane
modules such as Prism® (Air products and Chemicals, Inc.)
[142] and polyaramid module (Dupont) [143] could
achieve up to 97% hydrogen recovery. The low costs,
ease of fabricating a large area/volume ratio hollow fibre or
spiral wound module makes polymeric membranes very
competitive. Recently, polyimide-based membranes such
as 6FDA and Matrimid® introduced on an industrial scale
showed even better H2 transport than conventional
polysulfone and cellulose acetate membranes [42,50].
A critical limitation in polymer membrane performance

is the trade-off between gas permeability and selectivity,
also known as Robeson’s upper bound (Fig. 4) [144,145].
However, the empirical upper bound relationship between

Table 6 A shortlist of carbon-based membranes for hydrogen separation

Precursor
Synthesis
method

Thickness of active
layer/μm

Experiment
conditions

Hydrogen permeance
/(mol∙m–2∙s–1∙Pa–1)

Hydrogen
selectivity

Ref.

6FDA/BPDA-TMPDAa) Pyrolysis 30–35
1–8.3 bar
25 °C

3.4–7.5 � 10–8 400–500 b) [132]

Kapton polyimide Pyrolysis 0.3–0.5
Up to 6 bar

30 °C–250 °C
3.1 � 10–10 150 c) [133]

Phenol-formaldehyde
novolac resin

Pyrolysis 45
2 bar
25 °C

1.7 � 10–9–1.2 � 10–7 5–558 b) [134]

Polyimide Pyrolysis –
10.8 bar

30 °C–120 °C
3.4 � 10–7–6.0 � 10–8 132–631b) [135]

Polyimide Pyrolysis –
10 bar
80 oC

1.4 � 10–7 540 b) [136]

Polypyrrolone Pyrolysis 40–50
1 bar
35 oC

1.3–4.9 �10–8 270–1200 b) [137]

a) 6FDA: 5,5-[2,2,2-trifluoro-1-(trifluoromethyl) ethylidene-1,3-isobenzofurandione; BPDA: 3,3′,4,4′-biphenyl tetra carboxylic acid dianhydride; TMPDA: 2,4,6-
trimethyl-1,3-phenylenediamine; b) H2/CH4 mixed gas selectivity; c) H2/N2 ideal selectivity.
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H2 permeability and H2/CH4 selectivity is a temporary
figure that will be shifted to the higher limit with more
advanced membrane structures and properties discovered
[144,145]. In fact, several approaches have been investi-
gated to crossover the upper bound. In last decades, many
laboratory scale membranes have been reported to cross
the upper bound such as polymer of intrinsic microporosity
(PIM) membrane [146–148] and thermally rearranged
(TR) polymer membranes [149–153]. The incorporation of
CMS [154], ZIF [155,156], UiO-66 [156] and multi-
walled carbon nanotube [157] into polymeric membranes,
which is called mixed matrix membrane (MMM),
also demonstrated the potential to enhance the H2

permeability without reducing or even increasing the

H2/CH4 selectivity. Simultaneously, researchers have
fabricated the defect-free ultra-thin polymeric membranes
(~30 nm) by continuously assembly of polymer (CAP)
technique [158] that showed a breakthrough in gas
permeance. Certainly, most of the advanced H2 selective
membranes and fabrication techniques are on laboratory
scales that require more investigations and efforts to
convert them into industry.

2.7 Impact of minor impurities in natural gas grid on
membrane performance

The typical gas standard regulations in many areas still
allow the presence of minor impurities such as CO2, H2S,

Table 7 A shortlist of MOF membranes for hydrogen separation

MOF type/support Synthesis method
Thickness of active

layer/mm
Experiment
conditions

Hydrogen permeance
/(mol∙m–2∙s–1∙Pa–1)

Hydrogen
selectivity a) Ref.

Cu3(BTC)2/Cu net Hydrothermal 60 1 bar
25 °C

10–6 5.9 [138]

ZIF-90/a-Al2O3 Hydrothermal 20 1 bar
25 °C–200 °C

1.4 � 10–7

–2.5 � 10–7
7–16 [122]

ZIF-8/Titania Hydrothermal and microwave
heating

30–50 1.1–2 bar
25 °C

6 � 10–8 11.2 [139]

ZIF-8/ZnAl-NO3

LDHs/g-Al2O3

Hydrothermal (in-situ growth) 1.3 1 bar
25 °C

1.4 � 10–7 12.5 [119]

ZIF-95/a-Al2O3 Hydrothermal (in-situ growth) 30 1 bar
325 °C

1.9 � 10–6 11.0 [140]

Ni-MOF-74 Hydrothermal (in-situ growth) 10–25 1 bar
25 °C

10–6 2.9 [141]

NH2-MIL-53(Al)
/Glass frit

Colloidal assembly of
MOF seeds

15 1 bar
15 °C–80 °C

1.5 � 10–6 20.7 [123]

a) H2/CH4 mixed gas selectivity.

Fig. 4 Robeson’s upper bound for H2/CH4 separation of polymeric membranes. Data from [142,144,145,149–157]. Updated based on
Ref. [159], with permission. Copyright 2020, Chinese Academy of Engineering and Higher Education Press.
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water, C3+ hydrocarbons and inert gases in the natural gas
pipeline grids [59,160]. Organosulfur compounds such as
dimethyl sulphide and tetrahydrothiophene are also
injected into the commercial natural gas stream at
concentrations around 0.00002% (v/v) as a legislative
practice for detecting natural gas leakage [161,162]. These
compounds are commonly removed via the hydrodesulfur-
ization process prior to entering the methane reforming
reactors [163]. However, such desulfurization process
requires high energy inputs to maintain high reaction
pressure and temperature [30]. Hence, an essential factor in
selecting the membrane materials for hydrogen recovery
from HENG is to consider their resistance to potential
minor impurities in natural gas. Generally, the presence of
these impurities could alter the membrane performance by
following four ways: 1) competing with hydrogen to
permeate through the membrane; 2) occupying and
blocking the membrane free volume; 3) plasticising the
membrane; 4) degrading or poisoning the membrane
materials [41].

2.7.1 Dense metallic membranes

Due to the special hydrogen transport mechanism,
hydrogen permeation through dense metallic membranes
is not affected by most of impurities except H2S. It was
reported that H2S at concentrations ~0.0002% (v/v) can
react with conventional Pd and Pt membranes to form the
metal sulphide on the membrane surface, which then
completely inhibit the H2 permeation through the mem-
brane [63,164,165]. Such limitation can be minimised by
fabricating the Pd alloy membranes with metals in group
IB, IVB, VB and VIB of the periodic table. Peters et al.
[164] observed only 20%–30% loss in H2 flux when
exposing a Pd77Ag23 membrane (thickness 10 µm) to 5 �
10–7–0.002% (v/v) H2S/H2 mixed gas for 265 h. Recent
studies further demonstrated that the close to full recovery
of H2 flux through Pd alloy membranes were obtained
when removing the H2S in the feed gas [164,165]. This
suggested that the dominant interaction of H2S and alloy

membranes was reversible adsorption rather than sulfida-
tion reaction.

2.7.2 Molecular sieve membranes

Figure 5 showed that the kinetic diameter of H2 is much
smaller than most of potential impurities. Thus, these
impurities retain in the retentate side of the molecular
sieving mechanism driving membranes, along with CH4.
Figure 5 also showed that H2O is more permeable than H2

that could reduce the purity of hydrogen product stream.
H2O was also reported to densify the silica membrane at
temperature above 500 °C [88,166]. However, the impact
of H2O on the purity of H2 product stream is often
negligible due to the strict control of H2O content in
natural gas grids (e.g., commonly in 10–7–10–4 % (v/v)
level [59,160]) to avoid the formation of hydrates. The
water-resistance of silica membrane could also be over-
come by doping the metal oxides into silica matrix
[166,167] or replacing hydroxyl functional group (–OH)
on the pore surfaces by methyl (–CH3) [168] or
perfluorodecyl functional groups [169].
In addition, impurities with high condensation tempera-

ture such as C3+ hydrocarbon, sulfur compounds and water
on microporous membranes may condense and block the
membrane pores, which can potentially reduce the
hydrogen permeability but enhance the H2/CH4 selectivity
[88,170–172].

2.7.3 Dense polymeric membranes

The effects of impurities on hydrogen separation depend
on their solubility and diffusivity in the materials for those
membranes relying on solution-diffusion gas transport
mechanism. In comparison with H2, most impurities have
larger kinetic diameter (lower gas diffusivity) and higher
condensation temperature (higher gas solubility) (Fig. 5).
As the preferred membrane materials (Section 2.6) for H2

recovery from HENG are mostly relying on diffusivity
selection such as glassy polymer (e.g., cellulose acetate

Fig. 5 The kinetic diameter and critical temperature of some potential components in natural gas [59,173] (data for dimethyl sulphide
and tetrahydrothiophene obtained from [174] and conductor like screening model, respectively). Updated based on Ref. [59], with
permission. Copyright 2008, American Chemical Society.
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[173] and polysulfone [51]), impurities with high con-
densation temperature may condense and block the
membrane free volume. Schell et al. [172] reported that
the presence of 0.12% (v/v) water vapour (80/20 (v/v) H2/
CH4 feed gas at 60 °C and 2410 kPa) supressed the H2 flux
through cellulose acetate membranes by 6% and enhanced
the H2/CH4 selectivity by 4%. The researchers also
observed the similar phenomenon (i.e., 15% decrease in
H2 flux and 10% increase in H2/CH4 selectivity) when
introducing aromatic hydrocarbons into H2/CH4 mixed
gas.
The condensates inside the membrane may also

plasticise the membrane matrix and lead to an increase in
permeation of all penetrants and decrease in gas selectivity
[59]. However, most studies have shown that polymeric
membranes have strong resistance to impurities such as
H2S, C3+, etc. in crude natural gas [51,172,173], which is
beneficial for the H2 separation from HENG. Nevertheless,
the impacts of impurities in commercial natural gas,
specially added odorants, on this membrane materials are
not yet clear and need further investigation.

3 Discussion and outlook

3.1 Discussion

Overall, the pathway of converting P2H is a prospective
solution for storing and redistributing surplus renewable
energy to ensure a clean, secure and sustainable energy
supply future. Recent techno-economic analysis estimated
that the bulk energy storage cost (USD per kW) of P2H
technology can be 1.5–4.3 times less than other energy
storage technologies such as batteries, supercapacitors,
pumped hydro and flywheels [175]. Although the delivery
and temporary storage of hydrogen in natural gas pipelines
inherit the advantages of the existing natural gas distribu-
tion network, efficient and cost-effective technologies that
purifies hydrogen from HENG is the key to push P2H into
practice. Hydrogen separation has been well investigated
in syngas and methane reformed off gas industries
[15,30,39,40], however, very few studies were conducted
for H2 separation from HENG.
The hydrogen separation performance of different

membrane materials has been discussed and summarised
in Table 8 and Fig. 6. Although dense metallic membranes
are promising to achieve an extremely high hydrogen
purity and comparative hydrogen permeance or recovery in
comparison with other membrane materials, the high
operating temperature (≥300 °C) hinders its application in
hydrogen recovery from HENG. Ceramic mixed protonic-
electronic conducting membranes are not suitable for
hydrogen purification from HENG due to high operating
temperature (≥400 °C) requirement and the ability to
dimerising CH4. Polymeric membranes are leading in the

commercially readiness compared to other hydrogen
separation membranes with only low operating tempera-
ture required. The challenges for these membranes are the
moderate H2 selectivity which limits the hydrogen purity
in product stream. In addition, inorganic microporous and
metal organic framework membranes are also promising
for hydrogen separation at low operating temperatures
such as ambient temperature. The key to these membranes
is to improve the reproductivity in membrane fabrication
and performance, especially on pilot- and industrial-scale.

3.2 Research and development (R&D) outlook

Many promising membrane materials for hydrogen
recovery from HENG, including their fabrications and
separation performance, have been highlighted and
discussed. On this basis, we would like to address the
R&D outlook to achieve the high hydrogen purification
membranes and drive membrane separation into HENG
industry.

3.2.1 Development of novel membrane materials and
membrane fabrication technologies

To the greatest extent, the development of hydrogen
purification membranes will remain focusing on the
following key approaches: 1) design and synthesis of
novel membrane materials with high H2/CH4 selectivity
and permeability; 2) modification of the structure and
morphology of existing membranes; 3) incorporation of
different membranes into a copolymer, composite or
MMM to combine the best features of each membrane
material; 4) development of advanced membrane fabrica-
tion technologies to produce ultrathin membranes.
The gas transport mechanisms for H2/CH4 separation

membranes are dominant by molecular sieving and
solution-diffusion (with diffusion selectivity). Both
mechanisms require the well control of membrane
morphology such as pore sizes and shapes, fractional
free volume distribution etc., to enhance H2/CH4 selectiv-
ity. Thus, the R&D is expected to shift towards membrane
materials that either have uniform pore size such as MOF
and two-dimensional membranes (i.e., graphene-based
membranes, LDHs membranes, etc.) or the ability to
tune or crosslink the membrane free volume such as TR
polymers and PIMs membranes. Simultaneously, the
incorporation of advanced membrane materials with
commercialised membrane materials will also attract
great interests. The incorporation could combine the best
features of each membrane material and overcome current
challenges in fabricating large defect-free membranes. The
commercial readiness of conventional membranes could
also potentially reduce the time consumption for scaling up
the incorporated membranes.
Another crucial approach for enhancing the hydrogen
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recovery is to reduce the thickness of active membrane
layer but maintain its selectivity and mechanical strength.
Along with the conventional thin film composite mem-
branes, the ultra-thin film coating techniques such as CAP
and metal-induced ordered microporous polymer thin film
composite membranes are able to reduce the membrane
thickness to nanometre scale without affecting the gas
selectivity. Therefore, it is worthwhile to drive the R&D in
H2 selective membrane fabrication towards this field,
starting with investigations on precursor selection for CAP
processes of advanced membrane materials.

3.2.2 Pilot scale and economic assessment studies

The development of membrane technologies in hydrogen
purification has been relying on conventional polymeric
membrane materials and palladium membranes (Table 8).
Although several membrane materials have been intro-
duced for H2/CH4 separation, there are very few membrane
modules introduced into practice such as Vaporsep-H2™
solution developed by Membrane Technology and
Research (USA) [177] and Micro-Channel™ Technology
developed by Power and Energy Inc. (USA) [81]. Beside
the lack of technology to support the fabrication of large
defect-free membranes as addressed above, the lack of
pilot scale studies is another major obstacle for commer-
cialising advanced membrane materials. Therefore, more
investigations on pilot-scale membranes studies are
recommended.
The cost of H2 separation from 10/90 (v/v) H2/CH4 at 20

bar and 80% recovery was estimated to be 3.3–8.3
USD∙kg–1 H2 using the PSA [30]. The target of H2 cost
is proposed to be 1.5 USD∙kg–1 H2 [84]. However, there is
lack of techno-economic study on hydrogen recovery from
HENG using membrane technologies. Data collected from
pilot scale studies will also be valuable for economic
assessments and further upscale of these membranes.
The majority of laboratory studies on hydrogen

purification membranes focused on pure H2 and CH4

separation performance at low operating pressures and a

few on H2/CH4 mixtures. In the real world, membranes for
hydrogen recovery from HENG may expose to several
impurities (section 2.7) and high pressures (68 bar and
ambient temperature). Thus, it is worthwhile to investigate
the performance of candidate membranes in real HENG
conditions, particularly for pilot studies.

3.2.3 Membrane modelling

The transition of technology from laboratory to industry
requires extraordinary efforts and resources, especially for
membranes in the new P2H energy sector. Hence,
developing robust membrane models validated with
experiments is essential to minimise the R&D costs and
accelerate the technology transition. Several mathematical
models have been developed for CO2/H2 separation in
integrated gasification combined cycle process [178–181].
By counting that CH4 behaving more inert than CO2 in
membrane separation [57], these models will be the
valuable resources for the process development of
hydrogen purification from HENG.

3.2.4 Technology integration

While membrane technology has advantages of cost
effectiveness and small facility footprint, purify H2 stream
up to 99.99% (v/v) from HENG at low temperatures is a
critical challenge. Another technology that can achieve
99.99% (v/v) H2 purity is the PSA, which is a mature
technology for hydrogen separation [182]. However, PSA
requires large land footprint to accommodate the adsorp-
tion and frequent regeneration cycles for hydrogen
separation from its low concentration mixtures [50].
Therefore, an integrated membrane-adsorption process
(Fig. 7) is a promising approach to combine the best of
both technologies [23,159,183]. Recently, Liemberger et
al. reported an integrated process of an aromatic polyimide
hollow fibre membrane module with a PSA that could
recover at least 60% H2 at purity 98.0%–99.3% (v/v) from
1/99–10/90 (v/v) H2/CH4 feed gas at 21–51 bar and

Table 8 Summary of hydrogen separation performance of some common membrane materials [40,49–51,88,159,176]

Item
Dense metallic
membranes

Ceramic mixed
protonic-electronic

conducting membranes

Inorganic microporous membranes a)

MOF
membranes

Polymeric
membranesZeolite Silica Carbon based

Temperature/°C 300–600 400–1000 25–700 50–700 25–900 15–325 25–200

H2/CH4 selectivity 1000–1 b) – c) 4–25 d) Up to 5900 e) Up to 1200 3–21 Up to 730

Hydrogen permeance
/(mol∙m–2∙s–1∙Pa–1)

2 � 10–7

–4 � 10–6
10–8–10–9

2 � 10–8

–8 � 10–7
3 � 10–9

–5 � 10–7
2 � 10–9

–3 � 10–7
6 � 10–8

–2 � 10–6
~ 10–9

–3 � 10–7

Development stage Small
commercial

scale

Lab-scale
membrane
modules

Lab-scale
membrane
modules

Lab-scale
membrane
modules

Lab-scale
membrane
modules

Lab-scale
membrane
modules

Large
commercial

scale

a) The summary excludes some advanced membrane materials that require more database to make the conclusion; b) H2/N2 selectivity with assumption that selectivity
of H2/N2 and H2/CH4 being identical [57]; c) the selectivity of H2 in ceramic mixed protonic-electronic conducting membrane is proposed to similar to dense metallic
membrane. However, there is limited data reported in literature [88]; d) MFI type zeolite membrane prepared by catalyst cracking deposition hydrothermal synthesis
could achieve up to 180 H2/CH4 selectivity [108]; e) nanosil membrane could achieve 23000–27000 H2/CH4 selectivity [110].
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ambient temperature [23]. Certainly, the technology
integration opportunity will also be open to other hydrogen
purification technologies such as cryogenic and solvent
absorption. Hence, more investigations on the integrated
hydrogen separation units such as material development,
process optimisation and economic analysis are suggested
to testify its industry potential.
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