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Caveolin-1 (CAV1) is a vital scaffold protein heterogeneously expressed in both healthy and
malignant tissue. We focus on the role of CAV1 when overexpressed in T-cell leukemia.
Previously, we have shown that CAV1 is involved in cell-to-cell communication, cellular
proliferation, and immune synapse formation; however, the molecular mechanisms have
not been elucidated. We hypothesize that the role of CAV1 in immune synapse formation
contributes to immune regulation during leukemic progression, thereby warranting stud-
ies of the role of CAV1 in CD4+ T-cells in relation to antigen-presenting cells. To address
this need, we developed a computational model of a CD4+ immune effector T-cell to
mimic cellular dynamics and molecular signaling under healthy and immunocompromised
conditions (i.e., leukemic conditions). Using the Cell Collective computational modeling
software, the CD4+T-cell model was constructed and simulated under CAV1+/+, CAV1+/−,
and CAV1−/− conditions to produce a hypothetical immune response. This model allowed
us to predict and examine the heterogeneous effects and mechanisms of CAV1 in silico.
Experimental results indicate a signature of molecules involved in cellular proliferation, cell
survival, and cytoskeletal rearrangement that were highly affected by CAV1 knock out.
With this comprehensive model of a CD4+ T-cell, we then validated in vivo protein expres-
sion levels. Based on this study, we modeled a CD4+ T-cell, manipulated gene expression
in immunocompromised versus competent settings, validated these manipulations in an
in vivo murine model, and corroborated acute T-cell leukemia gene expression profiles in
human beings. Moreover, we can model an immunocompetent versus an immunocom-
promised microenvironment to better understand how signaling is regulated in patients
with leukemia.

Keywords: caveolin-1, CD4+ T-lymphocyte, the cell collective, adult T-cell leukemia, immunosuppression,
immunotherapy, computational biology, logical models

INTRODUCTION
Caveolae are cave-like invaginations comprised mostly of the pro-
tein caveolin-1 (CAV1). In addition to the traditional roles of
CAV1 in endocytosis, CAV1 has been implicated in processes
ranging from signal transduction (1, 2), to both oncogenesis (3–
5), and tumor suppression (6–8). Recently, three new roles for
CAV1 emerged, including regulating immune synapse formation,
T-cell receptor (TCR) activation, and mediating actin polymer-
ization (9–11). Caveolin-1 knockout studies show an attenuated
immune synapse formation as observed by decreased F-actin stain-
ing and dysregulation of RAC1 and ARP2/3 pathways (9). When
T-cells engage with antigen-presenting cells (APCs), decreased
TCR-dependent T-cell proliferation is observed when CAV1 is pro-
hibited from interacting with CD26 (12). Downstream signaling
pathways affected by CAV1 knockdown include the organization
of the KSR1 mediated Raf/MEK/ERK signal cascade (13) and
ZAP70, p56lck, and TCRζ phosphorylation (14). This mechanism

has been shown to be distinct from CD3/CD28 stimulation (15),
where no proliferation defects were observed in Cav1−/− T-cells.

CAV1 acts as a scaffolding molecule thereby likely contributing
to diverse events in the cell through CAV1-mediated recruit-
ment of signaling complexes to the plasma membrane. More-
over, T-cell activation through the TCR and competent immune
synapse formation are necessary for a healthy immune response.
Misregulation of these processes can lead to deleterious effects,
including cancer progression and a phenotype known as tumor-
induced immunosuppression (16, 17). As CD4+ T-cells are vital
for proper adaptive immune function, and CAV1 plays a role in
immune synapse formation, we chose to further investigate the
CAV1-mediated pathways in a CD4+ T-cell.

To better understand the intricate biology of CAV1 signaling
in CD4+ T-cells, the development of a comprehensive in silico
model is warranted. Through such a model, further identification
of molecules associated with CAV1 signaling can occur.
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Importantly, such a model allows for real-time simulations
using computer software in an effort to identify specific mech-
anisms in the cell. In order to generate such a comprehensive and
dynamic model, a systems biology approach is required (18). This
approach provides a potentially greater understanding of the com-
plex cellular functions that occur in living systems, allowing the
use of computer models to conduct thousands of virtual experi-
ments as well as make methodical predictions regarding proteins
of interest (18–21).

Herein, we describe the construction and validation of a fully
functional in silico CD4+ T-cell model using the Cell Collec-
tive, a web-based, open-source dynamic modeling platform that
allows scientists to construct computational models in a non-
mathematical fashion (20, 22). From this in silico starting position,
comprehensive simulations were performed, allowing for predic-
tions and hypotheses to be drawn for further in vitro/in vivo
experimentation. To our knowledge, this is the first time a dynamic
model of a CD4+ T-cell has been created to observe the down-
stream effects of CAV1+/+ (wild type), CAV1+/− (heterozygous),
and CAV1−/− (knock down) upon cell signaling and intracel-
lular networks as validated by in silico simulations and in vivo
investigations.

MATERIALS AND METHODS
COMPUTATIONAL MODEL CONSTRUCTION WITH CELL COLLECTIVE
The presented model was constructed using Cell Collective –
a collaborative and interactive platform for modeling biologi-
cal/biochemical systems (20, 22). The mathematical framework
behind Cell Collective is based on a common qualitative (discrete)
modeling technique where the regulatory mechanism of each node
is described with a logical function [for more comprehensive infor-
mation on logical modeling, see Ref. (23, 24)]. Cell Collective
allows users to construct and simulate large-scale computational
models of various biological processes based on qualitative inter-
action information extracted from previously published literature.
The initial version of the model was structured after the previously
published models (25, 26). The individual components and local
interactions in the presented final model were retrieved manually
from published literature. The model was subsequently validated
against well-known experimentally demonstrated T-cell dynam-
ics (see Model Validation), as well as new experiments presented
in this paper. The Cell Collective’s Knowledge Base was used to
catalog and annotate every interaction and regulatory mechanism
(e.g., tyrosine phosphorylation on Y316) as mined from the pri-
mary literature. The model is freely available for simulations and
further contributions by others directly in the platform. The model
can be also downloaded in the SBML format (24) to be used within
other software tools.

MODEL VALIDATION
The model was constructed using local (e.g., protein–protein inter-
action) information from the primary literature. In other words,
during the construction phase of the model, there was no attempt
to determine the local interactions based on any other larger phe-
notypes or phenomena. However, after the model was completed,
verification of the accuracy of the model involved testing it for
the ability to reproduce complex input–output phenomena that
have been observed in the laboratory. To do this, the T-cell model

was simulated under a multitude of cellular conditions and ana-
lyzed in terms of input–output dose–response curves to determine
whether the model behaves as expected [Figure 2; Ref. (27–33)],
including various downstream effects as a result of activation of
the TCR, G-protein-coupled receptor, cytokine, and integrin path-
ways. A total of 20 phenomena were used for the validation phase
(data not shown).

IN SILICO SIMULATIONS
The Cell Collective platform was utilized to perform all sim-
ulations for the CD4+ T-cell model. Virtual extracellular envi-
ronments, composed of 20 CD4+ T-cell stimuli, were optimized
for each in silico experiment based on immunocompetent versus
immunocompromised (diseased) settings [Table 1; Ref. (9, 13, 30,

Table 1 | A summary of the experimental conditions simulated.

External

stimulus

Tissue

(WT)

Tissue

(Disease A)

Tissue

(Disease B)

Alpha_13L Med High High

GalphaS_L Med High High

APC Med High High

CGC Med Med-High Med-High

ECM High High High

GP130 0 0 0

IFNB Med Med Med

IFNG Med Med Med

IFNGR1 Med Med Med

IFNGR2 Med Med Med

IL10 Med High 0–100

IL10RA Med High High

IL10RB Med Med Med

IL12 Med High High

IL15 Med High High

IL15RA Med High High

IL18 Med High High

IL21 Med High High

IL22 Med High High

IL23 Med High High

IL27 Med High High

IL27RA Med Med Med

IL2 Med High High

IL2RB Med High High

IL4 Low Low Low

IL6 Low Low Low

IL6RA Low Low Low

IL9 Low Low Low

TGFB Low Low Low

Specifically, these conditions included (1) a wild-type condition (i.e., healthy bio-

logical levels of cytokines), (2) an immunosuppressive disease condition (i.e.,

Disease A), and (3) a scenario with varying degrees of immunosuppression (i.e.,

Disease B) with CAV1+/+, CAV1+/−, and CAV1−/−.

Low, 0–20 activity level; Med, 21–60 activity level; High, 61–100 activity level

(Note that the activity levels do not directly correspond to concentrations, rather

the activity levels provide a semi-quantitative measure to describe the relative

activity of a particular component of the model.).
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FIGURE 1 | In silico modeling of a CD4+ T-cell. (A) Nodal representation of
CD4+ T-cell signaling pathways constructed using the Bio-Logic builder
inclusive within the Cell Collective. Linkages represent protein–protein,
protein–phosphorylation, and kinase interactions. (B) Osprey modeling of

predicted CAV1 protein–protein interactions and functions. Linkages are
categorized by function and centrality to CAV1. (C) Graphical depiction of
CAV1-associated interactions. Major pathway end-points include cell survival,
cytoskeletal rearrangement, and cellular proliferation.

31, 34, 35)]. For each experiment, these values were analyzed and
used to compare proteins most affected by CAV1+/+, CAV1+/−,
and CAV1−/− in an immunocompetent (i.e., WT) versus varying
degrees of immunosuppression (i.e., Diseases A versus B) condi-
tion. The model was simulated under hypothetical disease-causing
environments in order to observe the changes, if any, in CAV1 reg-
ulatory activity. Disease A mimics an immunosuppressive disease

condition, and disease B simulates varying degrees of immuno-
suppression, as controlled by varying IL-10 levels. Each experi-
ment consisted of 1,000 simulations, with different activity levels
randomly selected between 0 and 100 for the external stimuli
representing the extracellular environment. Each simulation con-
sisted of 800 iterations and activity level of the model species was
calculated over the last 300 iterations using methods previously
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FIGURE 2 |The Cell Collective accurately models complex cellular
phenomena. (A–F) Certification of Bio-Logic built local interactions
executing in accordance with primary literature findings. (A) Activation of
the mitogen-activated protein kinase (MAPK) pathway via APC stimulation
(27). (B) Positive relationship between filamentous actin polymerization in
response to stimulation with extracellular matrix (ECM) components (28).
(C) PI3-Kinase activation via binding of ligand to G protein-coupled

receptor, GαQ (29). (D) Activation of the MAPK pathway via
integrin-dependent ECM stimulation (9, 30). (E) Activation of the MAPK
pathway via stimulation with interleukin-2 (IL2) (31, 32). (F) Activation of
the small GTPase Cdc42 via binding of ligand to the G protein-coupled
receptor, Gα12/13 (33); these results not shown in the graphic. Each
dose–response curves appears to demonstrate a positive correlation with
the stimulus.

described (36). The aforementioned simulations were run under
six separate conditions including wild-type tissue, diseased tissue
(diseases A and B), wild-type blood, and diseased blood (diseases A
and B). Wild-type and diseased blood simulations are not included
due to inconclusive data. Each experimental environment was sim-
ulated under (1) healthy cellular conditions, (2) CAV1 knocked
out, (3) CAV1 activated 50% of the time (CAV1+/−) and (4) CAV1
activated at random levels between 0 and 100. (To be able to arti-
ficially control the activity levels of CAV1 under environments 3
and 4, an external species, “CAV1 Activator,” was built into the
model to activate CAV1 independently of the activity levels of its
direct upstream regulators).

MOUSE MAINTENANCE
Animals were housed in pathogen-free animal facilities, and all
experimental protocols were reviewed and approved per the
Institutional Animal Care and Use Committee at the University
of Nebraska Medical Center/University of Nebraska at Omaha
(IACUC# 13-056-08-EP). C57Bl/6J and B6.Cg-Cav1tm1Mls/J mice
were purchased from the Jack-son Laboratory (Bar Harbor,
ME, USA). Post-natal day 54 (±5 days) mice were used for all
experiments.

HISTOLOGICAL STAINING
Spleen and lymph node tissues were sectioned and stained at the
University of Nebraska Medical Center’s Tissue Science Facility.
Spleen and lymph node tissues were sectioned, preserved in 10%

formalin, and embedded onto slides in paraffin. Specifically, all
tissues were sectioned after at least 48 h in fixative and stained
with hematoxylin and eosin using standard protocol.

For immunohistochemical staining (IHC), tissues were depar-
rafinized in xylene for 3 min and rehydrated in decreasing concen-
trations of ethanol (100–50%). Antigen retrieval was performed
by boiling sections in a solution of Sodium Citrate with 0.05%
Tween-20. Blocking against non-specific binding and endoge-
nous peroxidases was performed by incubation with 5% bovine
serum albumin (BSA; Invitrogen) and 0.3% hydrogen perox-
ide, respectively. Primary antibody incubation was conducted for
90 min at room temperature in phosphate buffered saline (PBS;
DIBCO). The following antibodies were used: Rac1 (Merck KGaA,
Darmstadt, Germany); CD28 (BD Pharmingen); GATA3 (BD
Pharmingen); CD26 (Abcam); BCL10 (Cell Applications, Inc.).
Horse radish peroxidase-conjugated secondary antibodies (Cell
Signaling Technology; BD Pharmingen; Abcam) were incubated
for 1 h at room temperature. Slides were developed with a working
solution 3,3-diaminobenzidine for 10 min at room temperature,
followed by rinsing with distilled water and mounting the coverslip
with Permount (Thermo Fisher Scientific).

GENE EXPRESSION PROFILING
Microarray data were downloaded from the Gene Expression
Omnibus, accession number GSE55851 (37). Data contained
whole genome expression profiling of CD4+ T-cells, sorted based
on a CADM1/CD7 phenotype. Samples were collected from
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FIGURE 3 | In silico predictions for translation into in vitro/in vivo
experimentation. Following 1,000 iterations of simulation as described in
Table 1, the most affected proteins (either up or downregulated) were
compiled by the Cell Collective and ranked based on activity% ON.

Specifically, those described were the top 15 most differentially expressed
molecules in the (A) CAV1+/+, (B) Cav1+/−, (C) CAV1−/− genotype. These
proteins were selected for further investigation with in vitro/in vivo
verification.

patients diagnosed with Adult T-cell leukemia-lymphoma (ATL)
subtypes: asymptomatic (n= 2), smoldering (n= 2), chronic
(n= 1), acute (n= 2), and healthy controls (n= 3). A mini-
mum of two samples were taken from each patient for microar-
ray analyses. Molecules of interest, as established utilizing the
Cell Collective, were selected within the microarray data and
analyzed by fold-change from normal controls between ATL
subtypes. Fold-change values were subjected to uncentered,
average-linkage correlation using Cluster 3.0, and Java Tree-
View as described previously (9). Further, Pearson regression
analyses were conducted to discern correlation among mole-
cules of interest in relation to CAV1 expression across ATL
subtypes.

RESULTS
IN SILICO MODELING OF A CD4+ T-CELL
The completed CD4+ T-cell model consists of 188 nodes
representing components of various signaling pathways and
corresponding protein-to-protein, protein-phosphorylation, and
kinase interactions (Figure 1A). These interactions correlate with

preliminary data generated using Osprey software used to model
CAV1 protein-to-protein interaction types (Figure 1B). Each
method of analysis (both the Cell Collective and Osprey) impli-
cates a role for CAV1 in phosphorylation, signal transduction,
transport, and cytoskeletal arrangement. The regulation of these
events by CAV1 is highly complex and dynamic, as illustrated in
Figure 1C.

To verify that the local interactions built into the model were
able to accurately mimic complex phenomena that have been
produced in the laboratory, 20 validations were conducted via sim-
ulations in Cell Collective (six representative validations are shown
in Figures 2A–F). As an example, simulated TCR activation by an
APC leads to Erk activation, and the subsequent downstream effect
of cellular proliferation as represented by the literature (Figure 2A,
Figure S1 in Supplemental Material).

IDENTIFICATION OF MOST AFFECTED PROTEINS IN SILICO
Experiments were simulated using the in silico model (as described
in Table 1) to make rational predictions about how the sys-
tem would function in the laboratory. Following 1,000 iterations,
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we observed the protein products most affected by CAV1+/+,
CAV1+/−, and CAV1−/− in immounocompetent versus immuno-
compromised conditions (Figures 3A–C). In order to test the
validity of the model, we chose to investigate expression levels
of the proteins most affected in the knock down genotype as com-
pared to a wild-type system. Specifically proteins disregulated by
CAV1−/− across all three conditions (WT, Disease A, and Disease
B) included CD26, CARMA1, FYN, SHC1, SOS, SHP2, NOS2A,
BCL10, and GRB2 (Figure 3C). Based on findings from the model
as well as preliminary in vitro data, we hypothesized that CAV1
expression regulates Ras-related C3 botulinum toxin substrate 1
(RAC1), B-cell lymphoma/leukemia 10 (BCL10), GATA-binding
protein 3 (GATA3), CD26, and CD28 (Figures 1C and 3C).

The abovementioned results are indicative of CAV1-mediate
regulation of a variety of cellular functions, notably those that are
downstream of TCR and integrin pathways of which CAV1 serves
as the scaffold. Given these results, we were able to make predic-
tions about protein expression in relation to CAV1 and test them
in the laboratory using in vitro and in vivo experiments. For exam-
ple, we observed that CAV1 is involved in the integrin signaling
pathway that ultimately activates the mitogen-activated protein
kinase (MAPK) cascade (Figure 2); therefore, we can predict that
cellular proliferation will be decreased if CAV1 is knocked down.

VERIFICATION OF IN SILICO PREDICTIONS IN VIVO
To determine differences in morphology between CAV1−/− and
wild-type mice, we examined tissues (including lymph nodes
and spleen) stained with hematoxylin and eosin and observed
no differences were observed in tissue architecture. Lymphoid
organs (lymph nodes and spleen) were selected for their robust-
ness of CD4+ T-cells, and liver was used as a control for tis-
sue histology (i.e., to ensure mice were disease free). Further-
more, immunohistochemistry was utilized to biologically validate
in silico predictions from our CD4+ T-cell model.

Top hit proteins: GATA3, RAC1, CD26, and BCL10 were
selected for IHC to validate the model (Figure 4). RAC1 and
GATA3 showed upregulation in the lymph node tissue of the
CAV1−/− mice. We observed CD26 and BCL10 to be upregu-
lated in both the lymph node and spleen tissues of the CAV1−/−

mice. We also stained for CD28, as it is a well-characterized co-
stimulatory protein involved in T-cell activation. CD28 showed
no differential expression between the wild-type and CAV1−/−

mice.
Based on predictions from the model (Figure 3C), we investi-

gated the differential expression, hierarchal clustering (Figure 5A),
and regression analyses (Figure 5B) of top hit proteins using
microarray data from ATL cases (GSE55851). Comparison of
ATL subtypes for identification of potential molecular signa-
tures in relation to CAV1 expression reveal seven molecules,
including CAV1, clustered together based upon gene expression
profiles following hierarchal clustering (Figure 5A). We observed
a positive correlation (R= 0.78), with distinct signatures dis-
played between healthy, asymptomatic, smoldering, chronic, and
acute patients (Figure 5B). Pearson regression analyses were con-
ducted between each molecule of interest in relation to CAV1
expression across ATL subtypes (Figure 5B). Specifically, we

FIGURE 4 | Immunohistochemistry from murine model validation of
in silico-predicted differentially expressed molecules with CAV1
knockout. Molecules downstream of CAV1 that were predicted to be
affected with CAV1 knockout using the Cell Collective were validated using
lymphoid tissue histology from wild-type (WT) C57Bl/6 mice and CAV1−/−

mice. The corresponding hematoxylin and eosin preparations are included in
the top panel for morphological orientation; all tissues were sectioned
subsequently.
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FIGURE 5 | Verification and comparison of in silico results with gene
expression profiling from adultT-cell leukemia-lymphoma (ATL). (A)
Uncentered average-linkage correlation of fold-change values from top
affected proteins in ATL patients. The yellow-boxed region represents a
CAV1-associated molecular signature (R=0.78). Healthy (n=3),

asymptomatic (ASYM) (n=2), smoldering (SMLD) (n=2), chronic (CHRN)
(n= 1), and acute (ACUT) (n=2) cases are shown. A minimum of two
samples were taken from each patient for microarray analyses. (B) Pearson
regression analyses of top affected proteins in relation to CAV1 expression
across ATL subtypes.

observed strong correlations between CAV1 and the follow-
ing molecules: BCL10 (R= 0.947), DEC2/BHLHB3 (R= 0.782),
SHP2/PTPN11 (R= 0.742), and GATA3 (R= 0.694). Conversely,
SOS1 (R=−0.981), FYN (R=−0.949), SOS2 (R= -0.825), and
CD26 (R=−0.740) were most negatively correlated to CAV1
expression. These data corroborate those described and simu-
lated in the model (Figure 3); therefore, it is translated to in vivo,
leukemic conditions.

DISCUSSION
Herein, we present a comprehensive, computational model of a
CD4+ T-cell, including CAV1 regulatory pathways. This model
incorporates experimentally validated interactions to posit the role
of CAV1 in healthy CD4+ cells and CD4+ cells in the context
of T-cell leukemia/lymphoma (i.e., when the immune response
is skewed). CD4+ T-cells are a vital component of the immune
system, as they protect against cancer, infection, and play a role
in autoimmunity. CAV1 has been shown to be upregulated in
numerous types of malignancies. Consequently, we built a CD4+

T-cell model to better understand basic T-cell biology and to
address the role(s) of CAV1 within immunocompetent versus
immunocompromised conditions. Inclusively, we investigated the
role of CAV1 in the regulation of cellular processes, including
cell cycle progression, cell proliferation, actin polymerization, and
immune synapse formation. This model was successfully con-
structed using the Cell Collective platform that allows users to
build cellular models capable of mimicking actual cellular sys-
tems in the laboratory (19–22, 38). The accuracy of the model
was then successfully validated through the comparison of simu-
lations with well-established, global input–output relationships

as previously observed experimentally. Most importantly, new
in silico predictions were validated in vitro/in vivo using both
murine models and gene expression profiles from patients with
a T-cell leukemia due to the previously observed role of Cav1 in
lymphocytes (39–46).

Using Cell Collective, we were able to perform virtual experi-
ments in order to make predictions as to how a CD4+ T-cell would
behave when the expression levels of CAV1 were altered and when
CAV1 was knocked down. These experiments provided insight as
to which proteins, and ultimately which cellular functions, might
be regulated by CAV1. Based on in silico results, we observed
that BCL10, CD26, FYN, CARMA1, SHC1, SOS, SHP2, NOS2A,
GRB2, and GATA3 are strongly influenced by CAV1 expression
(Figure 3C). Consequently, the expression of these molecules
in vivo was investigated using cluster analyses of microarray data to
measure gene expression (Figure 5). Finally, four key proteins were
selected for further verification of the predictions of the model
using immunohistochemistry on mouse tissue with and without
Cav1 (Figure 4).

In addition to the four key proteins, CD28 was chosen because
it is known to regulate T-cell activation independent of CAV1
expression (15). RAC1 and GATA3 expression were upregulated
in the lymph node tissue of the CAV1−/− mice. These results were
expected based on studies showing the role of CAV1 in lymphoid
tissue (9). We observed both CD26 and BCL10 upregulation, espe-
cially in the germinal centers of the lymph node and spleen tissue
of the CAV1−/− mice. These validations of the in silico predictions
show that the CD4+ T-cell model is biologically relevant. These
validations of the in silico predictions show that the CD4+ T-cell
model is biologically relevant. Therefore, we suggest that based on
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the validations in vivo the T-cell in silico model is predictive of
biological processes.

We then translated the in silico predictions to gene expression
profiles of patients with a T-cell malignancy (i.e., ATL). Of the
top 15 most differentially expressed molecules in CAV1-mediated
pathways, the top 4 most highly correlated molecules to CAV1
expression were BCL10, DEC2, SHP2, and GATA3 (R value > 0.74;
Figure 5B). Obstinately, SOS1, FYN, SOS2, and CD26 were neg-
atively correlated with CAV1 (R < 0.74; Figure 5B). Additionally,
we observed unique clustering of these 15 conserved molecules
across subtypes of ATL patients. Interestingly, there was a distin-
guishable differential expression of MALT1 in asymptomatic ATL
cases as compared with healthy individuals (Figure 5A). There-
fore, further investigation into the plausibility of these correlated
molecules being used for diagnostic purposes is warranted. We
hope that our other ongoing studies will shed light as to their
role in ATL. In short, our data regarding the role of CAV1 in cell
signaling (as demonstrated using an in silico software and subse-
quently validated experimentally) corroborate that of the existing
literature.

Specifically, CAV1 participates in processes including actin
polymerization, cell proliferation, and cell survival (9, 12, 15,
47–49).

The usefulness of the in silico approach combined with that of
in vivo/in vitro approaches provide rapid information as to the
cell signaling networks in healthy and leukemic cells. There are
currently many therapies being used to treat leukemia that tar-
get specific proteins in order to inhibit cellular pathways. These
treatment modalities are advanced when comprehensive, molecu-
lar models allow the researcher to observe the direct mechanism
of action of gene targeting as well as downstream consequences of
gene/protein knockdown. The CD4+ T-cell model will hopefully
be able to provide insight to for both T-cell biology (as demon-
strated herein) as well as possible targets for lymphocytic leukemia
treatments. The importance of in silico approaches combined with
immunoinformatics as well as in vivo validation cannot be under-
stated (18). With the often-prohibitive cost of drug design, it is
imperative to use computational approaches to derive and test
hypotheses. Current therapy regimens for T-cell malignancies can
be modeled in silico initially in an effort to understand mechanisms
and potential outcomes.

A comprehensive model of the CD4+ cells has the potential to
provide substantial insight into cancer treatment, immunotherapy,
and cellular biology. This twofold approach incorporating in silico
and in vivo investigations has the potential to translate diagnostics
and therapeutic targets from bench to bedside.
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