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Endothelial cells that functionally express blood brain barrier (BBB) properties are useful surrogates for studying leukocyte-
endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human
brain microvascular endothelial cells (THBMECs) and human umbilical vein endothelial cells (HUVECs). With each grow un-
der optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC
cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-
coated transwell inserts had significantly higher transendothelial electrical resistance (TEER) and lower solute permeability than
HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized
abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facil-
itate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying
leukocyte-endothelial interactions during neuroinflammation.

Copyright © 2008 Shumei Man et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Leukocyte recruitment across the blood brain barrier (BBB)
into the perivascular space of the central nervous system
(CNS) is a key step in the host defense response to pathogens,
as well as in neurological disorders such as multiple scle-
rosis (MS), trauma, and stroke [1–3]. Static in vitro BBB
models using brain microvascular endothelial cells (BMECs)
have been used for studying the mechanism of leukocyte-
endothelial interactions at the BBB [4–8]. Basic insights
into leukocyte-endothelial interactions have been obtained
through experiments using human umbilical vein endothe-
lial cells (HUVECs) in both static and dynamic conditions
[9–11]. Because endothelial cells from different vascular beds
are uniquely adapted to meet the demands of the underly-
ing tissues [12, 13], data from studying HUVECs may not
be directly applicable to leukocyte-endothelial interactions
at the BBB. In this regard, differences between BMECs and

HUVECs have been reported [14–17]. Transfected human
brain microvascular endothelial cells (THBMECs) were iso-
lated from human brain microvessels and immortalized by
transfection with simian virus 40 large T antigen (SV40-
LT) [14]. THBMECs share characteristics of primary human
brain microvascular endothelial cells (HBMECs) including
expression of tight junction (TJ)-associated proteins and
high transendothelial electrical resistance (TEER) [4, 14].
THBMECs express factor VIII-related antigen and gamma-
glutamyl transpeptidase, and take up 1, 1′-dioctadecyl-
3, 3, 3, 3′-tetramethylindocarboxyamine perchlorate-labeled
acetylated low-density lipoprotein [18]. In this paper, we
compare selected features of THBMECs and HUVECs and
focus on their capacity for utilizing abluminal endothelial
cell derived chemokines to facilitate mononuclear cell trans-
migration in vitro.

Chemokines have been proposed to play a major role
in the activation and recruitment of leukocytes to sites of
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inflammation. CCL5 is a chemoattractant for multiple leuko-
cyte subtypes (predominantly T cells) via three known
G protein-coupled receptors (GPCRs), CCR1, CCR3, and
CCR5 [19] while CCL3 signals towards a similar spectrum
of mononuclear cells. CCL3 and CCL5 are produced in the
CNS of individuals with several neuroinflammatory diseases
including MS. Using confluent THBMEC culture as an in
vitro BBB model, anti-CCR1 and anti-CCR5 antibodies com-
pletely abrogated CCL5-driven mononuclear cell migration
across a cytokine-activated BBB [5]. The data in this paper
showed that THBMECs differed from HUVECs in their abil-
ity to use abluminal CCL5 to mediate T cell migration. These
results characterize specific features that distinguish THB-
MEC from HUVEC cultures, and will help clarify conditions
for the development of models to study leukocyte transmi-
gration across BBB in vitro.

2. METHODS

2.1. Endothelial cells culture and
leukocyte preparation

THBMECs are adult human brain microvascular endothelial
cells transfected and immortalized with a plasmid containing
SV40-LT [4–6].THBMECs were grown in RPMI 1640 con-
taining 10% heat-inactivated fetal bovine serum, 10% Nu-
Serum, 2mM L-glutamine, 1 mM pyruvate, essential amino
acids, and vitamins. The HUVEC cell lines were purchased
from American Type Culture Collection ATCC (ATCC Num-
ber CRL-1730TM) and cultured in Ham’s F12K medium ad-
justed to contain 2 mM L-glutamine, 1.5 g/L sodium bi-
carbonate, 0.1 mg/mL heparin, 0.03 mg/mL endothelial cell
growth supplement (ECGS), and 10% fetal bovine serum.
The THBMECs used in this paper were passages 19–25
and HUVECs were passages 3–7. In order to address their
basic characters, endothelial cells in this paper were not
stimulated with cytokines. Peripheral blood mononuclear
cells (PBMCs) were isolated from fresh whole heparinized
blood of healthy volunteers by density centrifugation us-
ing lymphocyte separation medium (Mediatech Inc., Hern-
don, VA) as previously described [4–6]. PBMCs were resus-
pended at 107 cells/mL in transendothelial migration (TEM)
buffer (RPMI 1640 without phenol red +1% bovine serum
albumin) for transmigration assays. For quantification of
transmigrated cells, PBMCs were labeled with calcein-AM
(Molecular Probes Inc., Eugene, OR) according to the man-
ufacturer’s instructions and resuspended in the original vol-
ume of TEM buffer prior to transmigration assays. The re-
search protocol was approved by the local institutional re-
view board and signed informed consent was obtained from
all donors studied.

2.2. Transendothelial electrical resistance (TEER) and
solute permeability

THBMECs and HUVECs were cultured to confluence on
24-well collagen-coated TranswellTM tissue culture inserts
(Corning Costar Inc., Corning, NY). TEER and solute per-
meability were measured as previously described [4–6, 18].

TEER was measured using an EVOM voltohmmeter (World
Precision Instruments Inc., Sarasota, FL). Solute permeabil-
ity was assessed using fluoresceinated dextran-70 (1 mg/ml,
Sigma Inc., St. Louis) and fluorescent recovery in the lower
chamber was measured after 15 minutes using a SPECTRA-
max GEMINIXS microplate spectrafluorometer (Molecular
Devices Corp., Sunnyvale, CA). Solute permeability was cal-
culated using the following formula: (lower chamber fluores-
cence/input fluorescence) × 100%. TEER and solute perme-
ability was determined in triplicate.

2.3. Immunocytochemistry

ZO-1 and occludin were detected by indirect immunocy-
tochemistry on confluent THBMECs and HUVECs as pre-
viously described [20]. Polyclonal rabbit anti-human ZO-1
and anti-human occludin antibodies (1 : 100; Zymed Lab-
oratories Inc., San Francisco, CA) were used in combina-
tion with mouse antirabbit IgG conjugated to FITC (1 : 100;
Southern Biotechnology Associates Inc., Birmingham, AL).
Slides were viewed using a Leica Aristoplan laser scanning
confocal microscope (Leica Wetzlar, Heidelberg , Germany).

2.4. Transmigration assays

Transmigration assays were performed with Transwell TM

inserts containing confluent THBMEC or HUVEC culture.
Unlabeled and calcein-AM-labeled PBMCs were utilized in
parallel for the quantification of PBMC transmigration and
subpopuation analyses as previously described [4–6]. 106

PBMCs from the same donor suspended in TEM buffer were
added to the insert and allowed to transmigrate at 37◦C
in a 100% humid atmosphere with 5% CO2 for the indi-
cated time. For chemokine-driven migration, 600 μL of TEM
buffer containing 50 ng/mL CCL3 or 100 ng/mL CCL5 was
placed in the lower chamber (abluminal side of the endothe-
lium). These concentrations had been previously shown to
maximally induce PBMCs migration in transmigration as-
says (data not shown). Migrated cells were collected for sub-
population analysis using flow cytometry. The migration ra-
tio for each leukocyte subpopulation was calculated with the
following formula: [total number of migrated calcein-AM-
labeled PBMCs × subpopulation percentage in migrated
PBMCs]/[total number of input PBMCs × subpopulation
percentage in input PBMCs] × 100%. These assays were per-
formed in quadruplicate, with migration without added ab-
luminal chemokine serving as controls.

2.5. Antibody staining and flow cytometry

Four wells containing migrated PBMCs were pooled for flow
cytometric staining using anti-CD3 PerCP (clone SK7) and
anti-CD14 APC (Leu-3A, all from Becton Dickinson Bio-
sciences, San Jose, CA) as previously described [4–6] Data
were collected using an LSR flow cytometer (BD Immunocy-
tometry Systems, San Jose , CA). Analysis was performed us-
ing FlowJo� software (Tree Star, Ashland Inc., OR). Mono-
cytes and lymphocytes were gated according to forward and
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side scatter, as well as CD3 and CD14 staining profiles and
analyzed against isotype-matched controls.

2.6. Data analysis

Statistically significant differences between groups were de-
termined by Student’s t-test, and values of P < .05 were con-
sidered significant.

3. RESULTS

3.1. Different patterns of occludin and ZO-1
immunoreactivity in confluent THBMECs and
HUVECs

HUVEC have been reported to express TJ proteins when cul-
tured with human astrocyte-conditioned medium [21]. We
addressed TJ protein expression by HUVECs in tissue culture
conditions that included ECGS with bovine pituitary extract.
Occludin and ZO-1 have regulatory and signaling functions,
acting as cytoskeletal linkers interacting with elements of the
actin cytoskeleton [22]. We assessed ZO-1 and occludin ex-
pression by fluorescent immunocytochemistry using 3 dif-
ferent passages of THBMECs and HUVECs. THBMECs ex-
hibited strong and continuous ZO-1 and occludin expression
at sites of intercellular contact. In contrast, HUVECs showed
no occludin expression and discontinuous, punctuate ZO-1
staining at the cell-cell interfaces (see Figure 1). We stained
the TJ associated proteins on HUVECs from passages 3–7
and THBMECs of passages 19–25 and obtained consistent
expression patterns.

3.2. Confluent THBMEC cultures have a higher TEER
and lower solute permeability than HUVEC

TEER and solute permeability are often used to evaluate
the physical properties of endothelial intercellular junctions
[4, 5, 23]. Confluent THBMECs exhibited mean TEER of
100Ω·cm2, values that are consistent with a previous report
for primary brain microvascular endothelial cells [24] while
HUVECs attained an average TEER of 74Ω·cm2 at passage 3
(see Figure 3), which decreased to 33Ω·cm2 at passages 5–7
(data not shown). Confluent THBMECs consistently exhib-
ited a low solute permeability, with average fluorescence re-
covery in bottom wells of 3.4% of input, compared to 6%
for HUVECs at passage 3 (see Figure 2). Solute permeability
of HUVECs increased to 15.9% at passages 5–7. These data
demonstrated that some barrier properties of HUVECs were
passage dependent.

3.3. THBMECs are more restrictive towards PBMC
transmigration than HUVECs

We initially determined the kinetics of PBMCs migration
across THBMEC and HUVEC cultures. The migration of
calcein-AM labeled PBMCs across THBMECs and HUVECs,
as a percentage of input cells, progressively increased over
time (see Figure 3). At passage 3, HUVECs were more per-
missive than THBMECs for PBMCs migration at both 1 hour

and 3 hours (as in Figure 3). The findings are consistent with
those previously repeated for passages 5–7 HUVEC. We also
ascertained the kinetics of PBMCs subpopulation migration.
There was a progressive increase in monocyte and T lympho-
cyte migration across both THBMEC and HUVEC cultures,
with higher numbers observed at all time points with conflu-
ent HUVECs (Figure 3). This observation demonstrated that
confluent THBMEC cultures were more restrictive towards
the migration of both monocytes and T cells than HUVEC.

3.4. THBMEC cultures utilize both CCL3 and CCL5 to drive T
cell migration while HUVEC utilize only CCL3

Chemokines are produced primarily by astrocytes, microglia
endothelial cells, and infiltrating leukocytes during neuroin-
flammatory disorders such as MS. It remains uncertain how
chemokines produced in the brain parenchyma or within en-
dothelial cells can be secreted, transported, and immobilized,
so as to signal to circulating leukocytes. In order to study
question in vitro, a BBB model capable of utilizing those
chemokines highly expressed in neuroinflammatory lesions
would be advantageous.

Transmigration assays were performed with CCL3 or
CCL5 introduced in the abluminal side of the TranswellTM

system. CCL5 induced an approximately 5-fold increase in
CD3+ T cell migration across THBMECs relative to basal mi-
gration at 1 hour and 3-fold increase at 3 hours (P < .05). In
contrast, adding CCL5 to the bottom chamber did not in-
duce a significant change in CD3+ T cell migration across
HUVECs (Figure 4). In contrast to CCL5, CCL3 increased
CD3+ T cell migration across both THBMECs and HUVECs
at 3 hours (Figure 4). We also compared CCL5 driven migra-
tion in cultured THBMECs and HUVECs at passage 3 and
found that lower passage HUVECs did not utilize abluminal
CCL5 to facilitate T cell migration (data not shown).

4. DISCUSSION

We compared selected morphological and functional fea-
tures of THBMEC and HUVEC cultures. This analysis in-
cluded junctional protein expression, restriction and selec-
tion in leukocyte recruitment, and utilization of abluminal
CCL3 or CCL5 to drive T cell migration. Our data con-
tinue and extend prior findings from J.S. Pachtor and his
colleagues (Andjelkovic, IVCDB, 2001). This group devel-
oped a novel model to visualize CCL2-driven monocyte
transendothelial migration into a subendothelial collagen
gel. Compatible with the current report, Pachter et al. found
that BMECs were less permissive than HUVECs for mono-
cyte transendothelial migration. Our study utilized different
methods, and also added the new information that T cell mi-
gration is equally affected. Further, we found that CCL5 is
selectively used by THBMECs but not by HUVECs to pro-
mote T cell transmigration. The data showed that morpho-
logical and functional differences exist between THBMECs
and HUVECs under the defined culture conditions used in
these studies. The findings were consistent with prior re-
ports [14–17]. It has been reported that BMECs but not HU-
VECs express genes that are important in immunoregulation
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HBMEC

Occludin ZO-1

HUVEC

Figure 1: Confluent THBMEC cultures possess intercellular TJs while HUVECs do not. Three different passages of THBMECs and HUVECs
were cultured to confluence. Endothelial cells were stained with rabbit anti-human ZO-1 and occludin antibodies followed by FITC conju-
gated goat anti-rabbit IgG. Digital pictures were taken following visualization with a Leica Aristoplan laser scanning confocal microscope.
THBMEC cultures exhibited continuous ZO-1 and occludin expression at sites of intercellular contact. In contrast, HUVEC cultures showed
punctate ZO-1 staining and no occludin immunoreactivity. Scale bar 10 μm.

0

20

40

60

80

100

120

T
E

E
R

(Ω
·c

m
2
)

THBMEC HUVEC

∗

0

1

2

3

4

5

6

7

D
ex

tr
an

p
er

m
ea

bi
lit

y
(%

of
in

pu
t)

THBMEC HUVEC

∗

Figure 2: Confluent THBMEC cultures have a higher TEER and lower solute permeability than HUVEC. THBMECs and HUVECs were
cultured to confluence on 24-well collagen-coated TranswellTM inserts. TEER (a) was measure using an EVOM voltohmmeter. THBMECs
possess higher TEER values. Solute permeability (b) was assessed by adding 100 μl of 1 mg/mL fluoresceinated dextran-70 in TranswellTM

inserts. Fluorescent recovery in the lower chamber (well) was measured after 15 minutes as stated in Section 2. Triplicate wells were mea-
sured and inserts without cultured endothelial cells were used as controls (data not shown). THBMEC cultures demonstrate a lower solute
permeability. ∗indicates P < .05 compared with HUVECs.
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Figure 3: THBMEC cultures are more restrictive towards PBMCs transmigration than HUVECs. 106 of PBMCs were added into the transwell
inserts containing confluent THBMECs or HUVECs and allowed to transmigrate for the indicated time. Migrated cells were collected and
three color stainings were performed in one step using anti-CD3 PerCP and anti-CD14 APC antibodies. Data were collected with an LSR
flow cytometer and analyzed using FlowJo� software. Parallel migration assays were performed using calcein-AM labeled and unlabeled
PBMCs, and migration ratios calculated as stated in Section 2. The assays were performed in quadruplicate using four different donors.
Confluent HUVEC cultures are more permissive towards PBMCs migration than THBMECs. ∗indicates P < .05 comparing THBMECs with
HUVECs. PBMCs transmigration across these endothelial cultures follows the pattern: monocytes > T cells > B cells (data about B cells not
shown).

(OSM-R beta, decorin, IL-6), growth support (brain-derived
neurotrophic factor, stem cell factor, transforming growth
factor-beta), and angiogenesis (VEGF, erbB1) [25]. In addi-
tion, differential expression of adhesion molecules between
THBMECs and HUVECs has been described [14]. Our data
focus on functional differences between THBMEC and HU-
VEC cells with regard to PBMCs transmigration in vitro.

The structural peculiarities of endothelial cells from dif-
ferent tissues or organs are adapted to meet the demands
of the underlying tissue. Intercellular TJs play a key role in
maintaining homeostasis of the brain. The heteropolymers
of occludin and claudin form the intramembrane strands of
TJs while ZO-1 is involved in the formation of cytoplasmic
plaques that connect with occludin [26]. Occludin and ZO-
1 also function as cytoskeletal linkers interacting with actin
cytoskeleton, and are involved in TJ assembly signaling path-
ways [22]. Strong occludin expression is unique to cerebral
endothelial cells and plays a crucial role in the control of vas-
cular permeability, since tissue expression of occludin corre-
lates well with barrier properties [27]. Although we did not
address the ultrastructural presence of tight junctions, our
experiments showed that confluent THBMEC cultures ex-
hibited continuous occludin and ZO-1 immunoreactivity at
points of intercellular contact while confluent HUVECs (pas-
sages 3–7) exhibited a lack of occludin and punctate ZO-1 ex-
pression. It has been reported that HUVECs express occludin
and ZO-1 upon culture with astrocyte conditioned medium
[11], and that primary HUVECs expressed occludin at inter-
cellular junctions in BioWhittaker’s endothelial cell growth
medium, which contains bovine brain extract [28]. Given
these disparate findings, it is likely that passage and culture
conditions greatly affect the intercellular TJ protein expres-
sion in HUVECs while THBMECs consistently express in-
tercellular TJ components. It should be noted that culture

conditions for HUVECs and THBMECs differ, and these dif-
ferences may have contributed to the results we report here.

The interaction between circulating leukocytes and the
endothelium of BBB is a crucial step in diverse pathologic
processes [29, 30]. THBMEC cultures, from passage 19 to
25, in contrast with HUVEC cultures from passage 3 to 7,
were extremely restrictive towards PBMCs transmigration.
Interestingly, although HUVECs at earlier passage showed
higher TEER and lower solute permeability than higher pas-
sages, they supported more PBMCs transmigration than
THBMECs. Currently, there are mainly three potential routes
known for leukocyte diapedesis across endothelial cells: para-
cellular, transcellular, and tricellular corners [11, 31, 32]. Our
data do not address whether there is increased PBMCs para-
cellular migration across HUVECs.

In our in vitro transmigration assays, monocytes had
much higher migration efficiency across both THBMEC and
HUVEC cultures than lymphocytes. About 50 percent of in-
put CD14+ monocytes migrated across confluent THBMEC
cultures after 3 hours, while more than 85 percent of in-
put CD14+ monocytes migrated across HUVEC cultures at
this time point. Although the current studies do not address
this, it is possible that the expression of specific chemokine
receptors, leukointegrins, and adhesion molecules facilitates
higher rates of monocyte migration in these assays. The
CD14+ monocyte subset comprises nearly 90% of periph-
eral blood monocytes and the vast majority of these cells
express CCR1, CCR2, CXCR2, CXCR4, and α4β1 integrins
[14, 33–36]. Our previous work showed that most input
CD14+ monocytes express CCR2 and THBMECs produce
CCL2 under resting conditions [4–6]. We also demonstrated
that confluent THBMECs express fibronectin connecting
segment-1 (FN CS-1), a high affinity receptor for α4β1 inte-
grin, and showed that chemokine-driven CD14+ monocyte
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Figure 4: THBMEC cultures utilize both CCL3 and CCL5 to drive T
cell migration while HUVEC cultures utilize CCL3 only. THBMECs
or HUVECs were cultured to confluence on Transwell TM inserts.
106 of PBMCs from the same donor were added into the inserts
with or without 50 ng/mL CCL3 or 100 ng/mL CCL5 added to the
lower chamber (well). Migration ratios were calculated as described
in Section 2. CCL3 facilitated T cell migration across both THB-
MECs and HUVECs while CCL5 induced T cell migration across
THBMECs only. The assays were performed in quadruplicate for
each donor and three donors were included. ∗indicates P < .05 com-
pared to basal migration without added chemokine.

transmigration was dependent on α4β1/FN CS-1 interac-
tions [5]. These observations suggest that CCR2+ CD14+
monocytes interact with endogenous CCL2 produced by
THBMECs, with resultant chemokine-induced α4β1 integrin
activation, followed by transmigration through α4β1 inte-
grin/FN CS-1 interactions. Analogous mechanisms may ex-
plain the high rates of CD14+ monocyte migration across
HUVECs.

T cells migrated at much lower rates, compared to mono-
cytes in these assays, across both THBMECs and HUVECs.
It is worth noting that activated lymphocytes, which mi-
grate efficiently in these assays, are present at relatively low
abundance (10–20% of PBMCs) in the circulation. The low
rates of T cell migration could also be explained partially by
the observation that HUVECs and THBMECs exhibit low
constitutive expression of ICAM-1, an important determi-
nant for T cell adhesion and transmigration [5, 37, 38]. The
specific expression of chemokines and adhesion molecules
doubtless plays key roles in the selective recruitment of
leukocytes across the BBB [33, 34].

Finally, in this study, we addressed the capability of THB-
MECs and HUVECs to utilize chemokines CCL3 and CCL5
to enhance PBMCs transmigration in vitro. Unexpectedly,
the data showed that confluent THBMECs could utilize both
CCL3 and CCL5 to facilitate T cell migration, while HUVECs
only employed CCL3 to drive T cell migration in vitro. Our
data do not address the mechanisms underlying these differ-
ences. Characterizing the properties of peripherally-derived
and CNS-derived endothelial cells in vitro will aid interpre-
tation of data from model systems in the context of inflam-
matory CNS disease.
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