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Normalizing brain activity across 
individuals using functional 
reference mapping
Eugenio Martinelli1, Alja Lüdke2, Piergiorgio Adamo1, Martin Strauch2,3, Corrado Di Natale1 & 
C. Giovanni Galizia   2

Neural activity can be mapped across individuals using brain atlases, but when spatial relationships are 
not equal, these techniques collapse. We map activity across individuals using functional registration, 
based on physiological responses to predetermined reference stimuli. Data from several individuals 
are integrated into a common multidimensional stimulus space, where dimensionality and axes are 
defined by these reference stimuli. We used this technique to discriminate volatile compounds with a 
cohort of Drosophila flies, by recording odor responses in receptor neurons on the flies’ antennae. We 
propose this technique for the development of reliable biological sensors when activity raw data cannot 
be calibrated. In particular, this technique will be useful for evaluating physiological measurements 
in natural chemosensory systems, and therefore will allow to exploit the sensitivity and selectivity of 
olfactory receptors present in the animal kingdom for analytical purposes.

Sensory systems provide animals with information about the environment with a level of efficiency that, in some 
cases, largely exceeds that of technological equivalents. This is certainly the case in olfaction where so-called 
electronic noses are still rudimentary compared to biological olfactory systems. Several attempts have been done 
in the past to incorporate elements of olfaction, at various level of complexity, into sensors1. For instance, silicon 
devices have been coupled with odorant binding proteins2 or even with olfactory receptor neurons3. A different 
approach consists in recording the physiological responses of olfactory receptor neurons in living animals. Here, 
experimental methods used in neuroscience, such as population calcium imaging to record functional activ-
ity patterns of olfactory neurons, generate data that can be used to discriminate among volatile compounds4. 
However, phenotypic differences affect the comparability of the recordings among different individuals. This 
affects analytically necessary properties such as reproducibility and stability. In artificial sensor arrays, we might 
place or wire the sensors with a known response profile according to their functional properties, and thus facil-
itate their readout. However, when using an olfactory epithelium or an insect antenna, the responses appear 
spatially scrambled, making it difficult to compare spatial activity patterns from one antenna to the next. In this 
paper, we propose a system to use the activity maps themselves to register functional responses across olfactory 
epithelia (antennae) in the fruit fly Drosophila melanogaster.

The spatial organization of neurons in the nervous system is genetically controlled to a large extent. For this 
reason, functional imaging data can be compared across individuals. At a large scale, brain areas are identified 
morphologically and their activity compared directly (e.g. “visual cortex”, “motor cortex” or “hippocampus”). But 
also at smaller scale, within functional areas, the geometrical arrangement of activity is conserved across indi-
viduals. In these cases, a stereotactic approach is useful. One approach uses elastic registration to match different 
brain images using identifiable landmarks5,6. The underlying assumption is that spatial arrangement of activity is 
faithfully represented at the interpolated locations. For example, in the mouse olfactory bulb, olfactory glomeruli 
are arranged in a stereotypical manner, e.g. the mouse mOR23 is always located medially7. However, at a small 
spatial scale, variability across individuals increases and interpolation based on morphological and/or functional 
landmarks becomes unreliable7. The precise location of genetically determined glomeruli is variable, with groups 
of a few glomeruli swapping their relative position8. Therefore, at fine resolution, a registration across individual 
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brains based on geometric and spatial criteria is impossible. This lack of fine-scale registration is also present in 
the periphery, i.e. when we consider the precise location of identifiable olfactory neurons in the epithelium (in 
mammals) or on the antenna of insects, such as Drosophila melanogaster9, also because neuronal populations are 
scattered in overlapping areas in these organs. Here we propose that rather than using geometry, it is possible to 
use neural activity itself for calibration, and perform functional registration.

We used the peripheral olfactory system of Drosophila melanogaster as a test case (Fig. 1A,B). Olfactory recep-
tors are arranged along the surface of the antenna in a genetically determined way, but the small-scale arrange-
ment of activity patches is different from animal to animal, due to genetic and experimental variability9. Some of 
these receptors exhibit a broad response range to odorants, and odours elicit combinatorial activity patterns10. We 
suggest that a linear transformation could be used to map odours within a functional reference odour space. We 
have previously used Drosophila to detect and discriminate clinically relevant odorants, e.g. from cancer cells4. 
However, since every animal is an autonomous sensorial system, the derived qualitative features could not be 
directly compared or averaged across different flies. Here, we introduce a virtual reference system based on func-
tional responses, rather than spatial locations, in order to quantitatively compare brain activity across individuals.

Results and Discussion
We expressed a genetically encoded calcium sensor in olfactory receptor neurons (ORNs) of Drosophila melano-
gaster, and recorded their responses to olfactory stimuli as a change in fluorescent signal (Fig. 1C,D). Next, we 
defined a multidimensional functional stimulus space based on a set of reference odours, assuming that the rela-
tive positions of (any) odorant should be the same across individuals. This is reminiscent of sensorial analysis, e.g. 
when describing a particular odour (say, a wine) with predefined qualitative reference axes (“subtle cedar wood, 
oriental earth, dried plum, minor raspberry”). Since similar molecules activate the same ORNs in different flies, 
the topological arrangement in a functional multidimensional space should be comparable. Thus, we adopt a set 
of reference odours to map the subjective perception of the signal into a space where measures from different flies 
are comparable (Fig. 1E).

We recorded odorant-elicited calcium increases in ORNs on the Drosophila antenna by expressing GCaMP3 
under the control of Orco-Gal4 (see methods). Single recordings were 20 s long, consisting of s = 80 frames meas-
ured at 4 Hz with two identical odorant stimuli lasting 1 s each. This arrangement recorded an odorant response 
in a non-adapted (1st stimulus), and in a slightly adapted state (2nd stimulus), maximizing odorant response infor-
mation (Fig. 1D). The procedure is shown in Fig. 2: optical recordings across the insect cuticle in the antenna 
gave spatially structured activity maps (top left in Fig. 2). Olfactory sensilla are expressed in genetically controlled 
patches along the antenna11, generating spatial maps. However, calcium signals from the neurons are scattered by 
the cuticle, so that individual sensilla cannot be recognized. Therefore, signals in individual pixels represent linear 
combinations of responses from different receptor types, in differing weights. Furthermore, over time, responses 
are strong right after odorant stimulation. Therefore, we reduced the number of pixels to c = 300 features in order 
to reduce redundancy (Fig. 2, top centre). We selected t = 10 time points (top right) to focus on the informative 
time points right after stimulation. Thereafter, all data processing was done separately for the reference odours 
(Fig. 2, left column) and the test odours (Fig. 2, right column). Signals were processed as relative fluorescence 
changes (ΔF/F, autoscaling), resulting – for each odorant – in a response vector sized q = t * c. These we call the 
vi

local for test odorants (vector representing this odour locally in animal i). We assembled the r reference odor-
ants (in this example r = 3) into the matrix Pi (for animal i). Pi was then used to calculate the animal-specific 
transformation matrix Si, and Si was used to remap each vi

local into vi
global (vector representing the response to this 

odour in animal i in the global odour space). In this way, odour-response vectors from different animals could be 
mapped into a common multidimensional reference system (Fig. 2, bottom). The information previously taken 
from other flies can now be integrated, allowing for taking a decision (odour categorization) based on the cumu-
lative information from many animals. Different classifiers can be used, such as k-NN (k-nearest neighbour) or 
SVM (support vector machine)12.

To probe the efficacy of our method we performed two sets of experiments. In the first one, we measured five 
different odorants: 4-methylcyclohexanol (abbreviated to MCHL), isoamyl acetate (iSOE), benzaldehyde 
(BeAM), ethyl butyrate (EtBE), and 3-octanol (Oc3L) in n = 7 Drosophila flies. Each odorant was given at five 
concentrations, in decadic steps from 10−6 to 10−2. We mapped the odorants into a common functional space as 
described above, and classified them using k-NN or SVM classification, in order to probe whether the same 
odours cluster together irrespective of the measured animal. We selected three reference odorants using only the 
highest and the lowest concentration (excluding the intermediate concentrations, in order to reduce the danger 
of overfitting), and used the remaining two (across all concentrations) as test odorants. Concentration was not a 
parameter in the cross-validation procedure, but used to test the robustness of the procedure: a sensor needs to be 
concentration invariant over several orders of magnitude in order to be useful. A sample 3-D projection of the 
two test odours (across all concentrations) is shown in Fig. 3A. We ran this for all =( )5

2 10 odorant combina-
tions. The best results were obtained for MCHL, iSOE and BeAM as reference odorants (k-NN classifier 96.3% 
accuracy, Fig. 3B; average of 35 cases with 4 training animals, and 3 testing animals each), the worst results for 
MCHL, BeAM and EtBE as reference odorants (accuracy of 73.3 ± 8.9% with k-NN classification). Using an SVM 
classifier yielded similar results, with 96.1 ± 4.1% accuracy in the best case (same odorants as for k-NN), and 
71.9 ± 6.17% in the worst case (odorants EtBE, MCHL, BeAM as reference odours). The large difference between 
the best and the worst performance indicates that the choice of reference odours is important for this technique: 
only areas in stimulus space that are covered by reference odours can be mapped accurately. In the wine analogy 
mentioned above: if the reference axes would be “cedar wood”, “dried plum” and “rasperry”, it would be difficult 
to place “diesel” in the reference space. Reference odours and test odours need to be related.
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Figure 1.  Conceptual procedure of functional reference mapping, used for Drosophila odorant responses 
(A) Setup for recording odorant-evoked calcium imaging data from the fly’s antenna. A living fly is fixed in a 
microscope (objective), and odorants are delivered to the antennae. (B) Schematic of a Drosophila head. The 
antennae with olfactory receptor neurons (blue) are shown. Within the brain, a schematic of the olfactory 
circuitry is shown, with the antennal lobe in purple, and the mushroom bodies in green. These are the brain 
areas that decode odour information. (C) Examples of calcium recordings. Top: image of the antenna with 
GCaMP-fluorescence, and the missing part of the antenna shown schematically. Bottom: false colour coded 
odorant responses to the odorants isoamyl acetate (iSOE) and benzaldehyde (BeAM), in two frames: one before 
odorant stimulus (upper), and one during odorant stimulus (lower). Local regions of interests (features) are 
shown as squares. (D) Calcium odorant responses for individual features from (C), showing the two response 
peaks to the two stimuli. Note that response magnitude and shape differ between antennal regions (numbered, 
and evidenced by colour), and for different odours (iSOE left, BeAM right, within each animal). (E) Idea of 
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In a second experimental approach, we measured nine types of odorants with n = 10 flies (Fig. 3C). Three dif-
ferent human breast cancer cell lines were used in the experiment and one immortalized, non-transformed human 
mammary epithelial cell line referred to as healthy control. To build the functional reference space, three reference 
odorants were used: propanoic acid (ProS), ethanoic acid (EtaS), 1-butanol (ButL), as well as two stimulus controls: 
medium (culture medium), and the solvent mineral oil (MOL). From every animal, we obtained four measure-
ments for test odours (one healthy control and the three cancer lines), resulting in 40 measurements in total (10 
animals × 4 odorant response signals). The results obtained considering all possible combination are shown as a 
confusion matrix with the corresponding accuracy (Fig. 3C). When using 8 animals for training, and 2 animals for 
testing, we found an overall accuracy of 72.0% for k-NN, and 80.7% for SVM. We have run the same classification 
for all cases between 5 training (and 5 testing) animals and 9 training (and 1 testing) animals: the more training 
animals were used, the better the classification (data not shown). These data show that the approach can also be 
used for complex odorant mixtures as test odors, in a reference system of pure chemicals as reference odours.

The two experiments reported here allowed us to cluster odorant responses across animals in a reliable way, by 
mapping them onto a functional reference space spanned by responses to known reference stimuli. We applied the 
technique also to complex odorant mixtures of unknown chemical identity, aiming at identifying, in a promising 
non-invasive way, the presence of cancer tissues (experiment 2, Fig. 3C). We consider this to be a major break-
through, because it allows to assemble odorant responses from different animals, thus exploiting the olfactory knowl-
edge previously acquired. However, many aspects remain to be investigated, and to be considered for particular 
applications. Using biological sensors implies, inherently, the necessity to deal with variability. Sensory epithelia may 
differ due to genetic background, to developmental changes (e.g. wearing off with age), and to plasticity (learning 
and/or adaptation). The strength of our approach is that much of this variability is self-correcting, since the reference 
odours are measured under the same system conditions as the test odours. Therefore, if the system changes by wear-
ing off with age, the response patterns of the reference odours should shift in concordance with the response patterns 
of the test odours, but within the transformed odour spaces the positions of the test odours should remain constant. 
There will be situations, though, where this stability collapses (e.g. when a particular receptor, or a group of receptors 
sensitive to one of the used odours, is missing). Therefore, in future experiments, the choice of reference odorants 
and their concentration will need to be addressed (as a function of which odours to be classified). From a geometric 
point of view, the subspace spanned by the reference odorants should share as many dimensions as possible with the 
(unknown) subspace of the target stimuli. For example, in experiment one we used 5 odorants, three as reference and 
two as test odorants, and found that performance was highly dependent on the choice of which odorants where used 
as reference. In the olfactory epithelium, every odorant will activate a set of receptors in a combinatorial manner. If 
the set of receptors activated by the reference odorants is entirely disjunct from the set of receptors activated by the 
test odorants, then the approach presented here will fail. Similarly, at very low concentrations, odorants activate only 
very few or even only a single receptor type13. Unless this receptor is also activated by the reference odorant, it will 
not reliably project into the reference odour space. In a sensorial description: if all reference odorants are “fruity”, 
a test odour that smells “burned” will be misjudged (but might still be consistently mapped onto a reproducible 
location). Finally, for every application, the number of reference odorants (i.e. the dimensionality of the reference 
odour space) needs to be determined: more dimensions will allow for better resolution, but higher costs. These costs 
involve, in particular, measurement time. Using biological tissue implies that measurement time is limited by fatigue, 
adaptation, nutrient supply and tissue longevity; therefore, in every single situation, a compromise has to be struck 
between resolution (based on quantity, which increases with more measurements) and reproducibility (data quality, 
which decreases with more measurements). Also in biology, animals have evolved very different numbers of olfac-
tory receptors in their genomes, affording their differences in olfactory performance.

Conclusions
We propose that the multidimensional rotation technique presented here will allow for several new approaches 
into analysing physiological data. Animal olfactory cells are highly sensitive for a variety of odorants, such as 
medically diagnostic odorants or explosives14, and many offer high selectivity. Our technique will allow combin-
ing several animals to create metasensors ready for practical applications, also in situations where the individual 
receptors cannot be measured separately. The general nature of this technique can be also applied to biosensors 
and bio-electronic devices incorporating biological elements. In brain science, functional mapping may be used 
to create functional brain atlases even without morphological reference systems.

Material and Methods
Flies.  The flies used for calcium imaging (genotype: w; P[UAS:GCaMP3]attP40/CyO; P[Orco:Gal4]) expressed 
the calcium reporter GCaMP3 in all Orco bearing cells (UAS-GCaMP3 flies were provided by Loren L. Looger, 
Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia, USA). Flies were kept on 
standard medium (100 ml contain: 0.7 g agar, 2.4 g yeast, 2.1 g sugar beet syrup, 7.1 g cornmeal, 6.7 g fructose, 
1.4 ml Nipagin-10%, 0.6 ml propionic acid), at 25 °C and 60% rel. humidity, on a 12/12-hour light/dark cycle.

For calcium imaging of the olfactory receptor neurons (ORNs) on the fly’s antenna, the fly was fixed in a 
mounting block with soft wax around the head and the antenna was further fixed by gluing the arista to the eye or 
to the block and further by placing a small metal grid onto the second antennal segment. Either the right or the 
left antenna was recorded from.

functional reference mapping: for each animal, two measured odorants (odour 1, odour 2) can be represented 
in a multidimensional space created by all feature responses (subjective perception odour space). When they are 
mapped onto a reference odour space created by common reference odours (yellow and orange arrows in the 
centre images), and rotated accordingly, they can be merged into a reference odour space (bottom).
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Odorant preparation.  Odorants were purchased from Sigma (Sigma-Aldrich, Steinheim, Germany) in 
highest purity and diluted in 5 ml mineral oil (Sigma-Aldrich, Steinheim, Germany; CAS: 8042-47-5) to the 
assigned concentration (from 10−2 to 10−6). All odorants were prepared in 20 ml headspace vials, covered with 

Figure 2.  Schematic of the functional reference mapping procedure. From top to bottom: in the optical imaging 
recording of a fly antenna (left), c = 300 features are selected (centre), and for each of these features, the 10 most 
informative time points (t) are taken (responses to the first and second odorant stimulus, right). Next, signals 
are processed (ΔF/F, autoscaling), separately for the test odorants (right) and the r = 3 reference odorants (left). 
Each odorant response (test odour, or reference odour) gives a vector sized q = t * c. These are the vi

local for test 
odorants, while the r reference odorants are assembled to the matrix Pi (for this animal i). Pi is used to calculate 
an animal-specific Si, and Si is used to remap each vi

local into vi
global.
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nitrogen and sealed with a Teflon coated septum (Axel Semrau, Germany). Cancer samples were used in 1 ml 
aliquots and covered with nitrogen.

Cell culture and cancer odour sample preparation.  Cell culture and cancer odour sample preparation 
has been reported before4. Three different human breast cancer cell lines (SKBR3, BT474 and ZR75-1) and one 
non-transformed human mammary epithelial cell line (MCF-10A), referred as healthy control, were used in 
the experiments. The three human breast cancer cell lines were derived from different breast cancer histotypes: 
SKBR3 cell lines from metastatic breast adenocarcinoma (MetAC), BT474 cells from invasive ductal carcinoma 
(IDC) and ZR75-1 cells from metastatic invasive ductal carcinoma (MetIDC) (see ATCC.org website). These 
cancer cells were grown in DMEM culture medium (DMEM high-glucose medium (Sigma-Aldrich) supple-
mented with 10% fetal bovine serum (Sigma-Aldrich), 100 units/ml penicillin and 100 mg/ml streptomycin 
(Sigma-Aldrich). The immortalized, non-transformed human mammary epithelial cell line MCF-10A, was grown 
in DMEM/F12 medium (Sigma- Aldrich) supplemented with 5% fetal bovine serum, 20 ng/ml epidermal growth 
factor (EGF), 10 mg/ml insulin, 0.5 mg/ml hydrocortisone (Sigma-Aldrich), 100 units/ml penicillin and 100 mg/
ml streptomycin (Sigma-Aldrich), as previously described4,15. All cells were cultured under standard conditions 
at 37 °C in humidified atmosphere containing 5% CO2.

For volatile organic compound (VOC) analysis, healthy control and the three cancer lines were seeded in trip-
licate in culture flasks (25 cm2) in 5 mL of their specific culture medium and were grown for 24 h. The number of 
plated cells was chosen based on the specific doubling time of every cell line, in order to obtain a comparable cell 

Figure 3.  Results of the olfactory signals representation in two considered experiments. (A) Representation of 
signals of two compounds (five concentrations each) in the base of three reference compounds (Oc3L, BeAM 
and iSOE). (B) Rate of correct classification and confusion matrices obtained processing the matrix of projected 
signals in the best and worst representation bases, given in percentage. k-NN (left) and SVM (right) are 
compared as classifier algorithms. (C) Rate of correct classification and confusion matrix of the signals related 
to cancer cell odorant experiment. Classification was performed by k-NN (left) and SVM (right) algorithms.
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number at the end of the incubation of 24 h. After 24 h, the specific culture medium was removed and replaced 
with 5 mL of the DMEM culture medium. Cells were grown in these conditions for the next 96 h, up to a conflu-
ence of 50%-60% (around 1.5 ∗ 106 cells/flask). After this incubation period, the DMEM culture medium was har-
vested, centrifuged at 1200 rpm for 5 min and collected in sterilized glass vials. Note that with this procedure, all 
samples derive from flasks with comparable cell density. The control medium was obtained by incubating DMEM 
culture medium in the same conditions as the cell samples, but without seeded cells.

Calcium imaging.  Calcium imaging was performed as described before16,17. In brief, we used a fluorescence 
microscope (BX50WI, Olympus, Tokyo, Japan) equipped with a 50x air lens (Olympus LM Plan FI 50x/0.5). A 
CCD camera (SensiCam, PCO, Kelheim, Germany) was mounted on the microscope recording with 8 × 8 pixel 
on-chip binning, which resulted in p = 80 × 60 pixel sized images. For each stimulus, recordings of 20 s at a rate 
of 4 Hz were performed using TILLvisION (TILL Photonics, Gräfelfing, Germany), resulting in s = 80 frames. A 
monochromator (Polychrome II or V, TILL Photonics, Gräfelfing, Germany) produced excitation light of 470 nm 
wavelength which was directed onto the antenna via a 500 nm low-pass filter and a 495 nm dichroic mirror. 
Emission light was filtered through a 505 nm high-pass emission filter.

Stimulus application.  Odorants were applied automatically, using a computer controlled autosampler (PAL, 
CTC Switzerland). 2 ml of headspace was injected in two 1 ml portions controlled by TTL pulses at time points 
6 s and 9 s with an injection speed of 1 ml/s into a continuous flow of purified air flowing at 60 ml/min. The 1 s 
stimulus was directed onto the antenna of the fly via a Teflon tube (inner diameter 1 mm, length 38 cm). The 
autosampler syringe was flushed with purified air for 1 min after each injection and washed with pentane (Merck, 
Darmstadt, Germany), heated and flushed automatically for several minutes after each application of 1-butanol.

Data processing.  We extracted signals from the in-vivo calcium imaging movies with KNIME (www.knime.org)  
using the ImageBee plugin for insect imaging data18. We first corrected the imaging recordings for animal move-
ment by rigid image registration with the ImageBee node “Stabiliser”. Each fluorescence value fj at time point 
j = 1..s was normalized by computing Δfj/f = (fj - f0)/f0, where f0 was the mean fluorescence value during 20 time 
points before stimulus application (time points from 3 to 22). Each calcium imaging recording can be represented 
by a (m x p) movie matrix Ai containing m odour features (s time points * odours) and p = 4,800 pixels (images 
were 80 × 60 = 4,800 pixels in size).

Thus, each of the i = 1..n flies in the experiment contributed a (m x p) movie matrix Ai after concatenating all 
odorant response measurements. We employed an unsupervised feature selection approach to choose a subset 
of size c < p of the columns (pixels) of Ai that explained most of the norm of Ai. We set c = 300 for antennal data 
based on previous data showing that using c = 300 could explain >99% of the norm of Ai for all recordings of 
a comparable data set (antenna imaging recordings with the same number of pixels)4. Thus, we selected c pix-
els from Ai into the (m x c) matrix Fi composed of c columns from Ai, such that, when combined linearly with 
non-negative coefficients in the (c x p) matrix Xi, the norm error ||Ai − Fi Xi|| was minimized (Frobenius norm). 
Elements in the coefficient matrix Xi were constrained to be non-negative, so that columns inside the convex cone 
spanned by the columns in Fi could be reconstructed exactly, while the columns left outside of the cone contrib-
uted to the norm error. Minimization of the norm error criterion can be performed efficiently with the convex 
cone algorithm, as implemented in the “ConvexCone” node in the ImageBee plugin for KNIME. This identified a 
set of pixels whose signals varied most in response to the odorant stimulations. For noise reduction the selected 
pixels were replaced with means over spatially contiguous similar pixels18. For further details on data pre and post 
processing, see4.

We selected t = 10 time points corresponding to the two response peaks. Next, each time point was stand-
ardized (autoscaling). The (t x c) response matrix obtained for every odour was reshaped in order to obtain a 
reference odour response spot vector of dimensions (1 x q), with q = t ∗ c, representing the odorant response signal 
for each individual odorant. Next, we constructed a (r x q) reference odorant projection matrix for this animal, Pi, 
by stacking the reference odorant response vectors gathered for r different reference odorants. Finally, we remapped 
the reference odorant stimulus space through

= = ∗ ∗+ −S P P P P( ) ( ) (1)i i
T

i
T

i i
T 1

with the plus (+) and T superscripts indicating the pseudoinverse and the transpose of Pi, respectively. The matrix 
Si represents the linear transformation that allows to set the reference odours of animal i as the basis of the new 
reference coordinate system. With this process, the way we imagine how a brain maps and subsequently catego-
rizes odours is the same as how we would statistically cluster points in a multidimensional space. Here, we use an 
r-dimensional space, where r is the number of reference odorants used. Every (new) odorant response vi

local for an 
odorant that is not a reference odour can now be expressed by an r-dimensional vector

= ∗v S v (2)i
global

i i
local

Since this transformed vector vi
global is in an animal-independent functional coordinate system, it is independ-

ent of the individual in which it was recorded, and can now be compared across individuals.
For every further animal i, each odorant response vector, vi

local, can be calibrated via its own animal-specific Si, 
into the global reference system vi

global, thus normalizing the space across animals.

Pattern classification, cross-validation.  The pattern recognition process for experiment 1 (Fig. 3A,B) 
was structured as follows: i) measurements from four animals were used as training set (highest and lowest con-
centration) and the measurements from the complementary three animals as test set (all concentrations); ii) 

http://www.knime.org
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two classifiers were used to derive a supervised model with an associated learning algorithm: either supporting 
vector machine (SVM) classifier, or a k-NN classification, a non-parametric, supervised, instance-based learning 
technique using the Manhattan distance as metric criterion12; iii) A confusion matrix was determined by com-
paring the known group labels and the predicted group labels. iv) Steps (i) to (iii) were repeated for all 35 possible 
combinations of 3 out of 7 animals, yielding a net result and an associated error. Pattern recognition procedures 
are susceptible to errors deriving from data preprocessing, or meta-parameter refining19. Therefore, we carefully 
excluded any preprocessing in our cross-validation procedure, and always used separate datasets for training and 
testing. We find that the different performance between odour sets (step iv) is an indication of the importance of 
the odours used, i.e. of how to span the reference odour space.

For experiment 2 (Fig. 3C), the pattern recognition process was structured similarly: i) measurements from 
seven out of ten animals were used as training set and measurements from the complementary three animals as 
test set; ii) the classification was performed using SVM or k-NN classification; iii) a confusion matrix was deter-
mined by comparing the known group labels and the predicted group labels. iv) Steps (i) to (iii) were repeated 
for all 120 combinations of 7 out of 10 animals. The SVM and k-NN algorithms were implemented through the 
statistical toolbox of MATLAB R2016a.

Significance statement.  Functional activity patterns are a fundamental property of brain function – from 
those representing sensory stimuli all the way to consciousness. Even when there are no landmarks and/or iden-
tified neurons, it should be possible to exploit common activity patterns as a reference space to map neural rep-
resentations from one brain to the next. Here, we use the peripheral olfactory system of the fruit fly as a test 
system. We define a mathematical reference framework from known odorants, and map novel odour stimulus 
representations across individuals into this common sensory space. This allows to identify novel odours reliably, 
opening far reaching novel possibilities, and allowing for important insight into brain function. Furthermore, it 
will be a useful tool for practical developments, e.g. in using animals as highly efficient sensors, and/or for bio-
technological developments.
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