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Hyaluronan (HA) is a glycosaminoglycan with a simple structure but diverse and often

opposing functions. The biological activities of this polysaccharide depend on its

molecular weight and the identity of interacting receptors. HA is initially synthesized as

high molecular-weight (HMW) polymers, which maintain homeostasis and restrain cell

proliferation and migration in normal tissues. These HMW-HA functions are mediated

by constitutively expressed receptors including CD44, LYVE-1, and STABILIN2. During

normal processes such as tissue remodeling andwound healing, HMW-HA is fragmented

into low molecular weight polymers (LMW-HA) by hyaluronidases and free radicals,

which promote inflammation, immune cell recruitment and the epithelial cell migration.

These functions are mediated by RHAMM and TLR2,4, which coordinate signaling

with CD44 and other HA receptors. Tumor cells hijack the normally tightly regulated

HA production/fragmentation associated with wound repair/remodeling, and these HA

functions participate in driving andmaintaining malignant progression. However, elevated

HMW-HA production in the absence of fragmentation is linked to cancer resistance.

The controlled production of HA polymer sizes and their functions are predicted to be

key to dissecting the role of microenvironment in permitting or restraining the oncogenic

potential of tissues. This review focuses on the dual nature of HA in cancer initiation vs.

resistance, and the therapeutic potential of HA for chemo-prevention and as a target for

cancer management.

Keywords: hyaluronan, hyaluronan receptors, tumor microenvironment, cancer resistance, tumor initiation, CD44,

RHAMM

INTRODUCTION

Cancer is the second leading cause of mortality worldwide according to GLOBOCAN estimates,
accounting for ∼9.6 million death in 2018 (1). Two decades ago, Hanahan et al. proposed the six
classic hallmarks during the multi-step development of cancer (sustained proliferative signaling,
evasion of growth suppressors, limitless replicative potential, resistance of apoptosis, sustained
angiogenesis, and invasion/metastasis) (2). Conceptual advancements in the past two decades have
added evasion of immuno-surveillance, elimination of cell energy limitation, genome instability,
and the participation of host cells in facilitating tumor initiation and progression (3, 4). Emphasis
has historically been placed on the key role of mutations and genomic instability as drivers of
tumor initiation and progression. However, the somatic mutation burden in physiologically normal
tissues can approach the level of many cancers (5). These somatic mutations increase with age,
and include cancer driver genes, which appear to be under strong positive selective pressure. They

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.00947
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.00947&domain=pdf&date_stamp=2019-05-10
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:eva.turley@lhsc.on.ca
https://doi.org/10.3389/fimmu.2019.00947
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00947/full
http://loop.frontiersin.org/people/652178/overview
http://loop.frontiersin.org/people/149755/overview


Liu et al. Functional Heterogeneity of Hyaluronan Polymers

occur in the absence of evidence for tumorigenic conversion
(5), suggesting that driver gene mutations by themselves are
insufficient for cancer initiation. Experimental data also predict
that the microenvironment can block or permit the oncogenic
potential of mutations (6–9). For example, teratocarcinomas
transplanted into early embryos do not form tumors but
participate in the development of normal tissues (10). Moreover,
the tumorigenic potential of genomically unstable breast cancer
cell lines can be curtailed by blocking specific signaling
pathways from the extracellular matrix (11–13) suggesting the
paracrine interactions between the host cells, tumor cells, and
the extracellular matrix can disable or enable the oncogenic
potential of mutations. Therefore, dissecting the nature of
such interactions is critical to identify therapeutic targets that
manage tumor initiation, tumor progression, and post-treatment
tumor recurrence.

The tissue polysaccharide, hyaluronan (HA), is one example
of an extracellular matrix component that participates in
cancer initiation and progression (5, 14–16). HA, like many
factors, is multifunctional and has both tumor-promoting and
-suppressing properties. HA is an anionic, linear, non-sulfated
glycosaminoglycan (GAGs) composed of repeating disaccharide
units of glucuronic acid, and N-acetylglucosamine that are
synthesized by hyaluronan synthases (HAS1-3) and that can
achieve molecular weights in excess of 1,000 kDa. Fragmentation
of these large polymers by free radicals and hyaluronidases
(HYAL1-3) generate low molecular-weight HA varying from 1
to 500 kDa. Despite its simple primary chemical structure, the
large range of polymer sizes generates diverse physiochemical
functions and signaling properties (14, 15). High molecular
weight HA (HMW-HA, defined here as >500 kDa and in text)
predominates in normal tissues, where it provides a scaffold
for protein interactions and is essential in maintaining tissue
homeostasis. The viscoelastic properties of HMW-HA contribute
to porosity and malleability of extracellular matrices (e.g., stem
cell niches) (17–20), which are important for resistance to
somatic mutation, protection against mechanical damage, and
regulating cell trafficking. HMW-HA is also anti-inflammatory
and anti-proliferative, which may contribute to tumor resistance
in normal tissues (21–24). Fragmentation of HMW-HA into
low molecular-weight polymers (LMW-HA, defined here as 7–
200 kDa, Figures 1A–D and in text) is minimal or absent in
homeostatic tissues, but is increased during response-to-injury
and remodeling events in the embryo and adult (25, 26) due
to expression of HYAL1-3 and generation of ROS/NOS. LMW-
HA activates signaling cascades that promote cell migration,
proliferation, immune cell influx, and mesenchymal cell
trafficking (27, 28) (Figures 1A–C). This review highlights the
consequence of these opposing functions of HA polymer sizes
to tumor resistance, initiation and progression. The potential
of HA polymers and the processing/signaling machinery for
these polymers as therapeutic targets in cancer prevention and
management is emphasized.

THE HYALURONOME

HA is uniquely synthesized by plasma membrane HAS. Polymers
are initiated on the cytoplasmic face of these proteins, then

extruded through pores created by aggregated HAS into the
ECM (29–32). The three HAS isoforms are encoded on
different chromosomes and exhibit distinct tissue distribution
and enzymatic properties (31, 33, 34). HA polymers are
degraded by three major hyaluronidases (HYAL1-3). HYAL1
and 3 are primarily located in the lysosome and, together
with glucosaminidases and glucuronidases (35), degrade HA
polymers into monomers. HYAL2 is located at the cell surface,
which together with extracellular reactive oxygen/nitrative
species (ROS/NOS), generate extracellular LMW-HA (36). These
HMW- and LMW-HA polymers bind to CD44, RHAMM,
LYVE1, TLR2/4, STAB2, and LAYILLIN (37). HA receptors
lack kinase activity and signal by associating with growth
factor receptors (e.g., EGFR, PDGFR, and TGFBR) (38, 39).
One function of HA:HA receptor interactions is to regulate
receptor clustering and membrane localization (40). These
critical HA functions are mediated by polymer size and the
size preference of HA receptors. For example, while CD44,
RHAMM and TLR2,4 bind to a range of sizes, RHAMM and
TLR2,4 preferentially bind to very low molecular-weight HA
(<7 kDa) (4, 37). The functional complexity of HA polymer
signaling is additionally generated by the extensive and often
tissue/stimulus-specific alternative splicing of CD44 (41, 42),
tissue-specific expression of LYVE1 (lymphatics), and STAB2
(liver) (43–46). The multi-compartmentalization, stress- and
stem cell-specific expression of RHAMM, as well as cell context-
dependent interaction of HA receptors with each other (e.g.,
RHAMM/CD44, RHAMM/TLR2,4) also influence HA-mediated
signaling (37, 38).

How this HA signaling machinery functions in tumorigenesis
can be complex and unpredictable. For example, CD44 can
perform tumor-promoting or -suppressing functions depending
on its association with protein partners (47). Despite its elevated
expression on progenitor-like tumor-initiating cells, deletion of
CD44 in a mouse model of luminal breast cancer susceptibility
increases rather than decreases metastases. Similarly, either
increasing or decreasing intracellular RHAMM expression
will de-regulate its functions in centrosome and spindles,
increasing the potential for generating genomic instability
and enhancing tumorigenesis (48). Such dual properties make
direct therapeutic targeting of HA receptors challenging.
Nevertheless, de-regulated HA metabolism/signaling typifies
many cancers and often predicts poor clinical outcome
(49–56). Therefore, developing an understanding of HA
metabolism/signaling as a microenvironmental factor that
contributes to cancer susceptibility, initiation and progression
is likely to identify therapeutic avenues for managing
this disease.

HYALURONAN: A DOUBLE-EDGED
SWORD IN CANCER?

The tumor microenvironment is emerging as a critical factor
in cancer progression and recurrence. HA production and
accumulation in both the stroma and tumor parenchyma is
characteristic of prostate, bladder, lung, breast and other cancers,
and is linked to poor clinical outcome (49, 51, 52, 57–59).
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FIGURE 1 | Hyaluronan synthesis and fragmentation in normal and tumor microenvironments. (A) Homeostatic skin is characterized by an organized epidermis with

the regulated symmetric and asymmetric division of basal keratinocytes. These are covered by layers of HMW-HA coats (blue outline). Dermal fibroblasts are

quiescent and HMW-HA is organized into complexes with proteins and proteoglycans. Extracellular LMW-HA accumulation is restricted. (B) Tumor-initiating events

result in disorganized growth of epidermal cells and changes to HA organization and processing. HA synthesis increases, hyaluronidases are expressed/released and

reactive oxygen/nitrogen species (ROS/NOS) production is high, resulting in HA fragmentation and reduced organization of macromolecular complexes. HMW-HA

coats around epidermal cells are reduced. LMW-HA activates fibroblasts (CAFs, cancer-associated or activated fibroblasts) and attracts immune cells

[tumor-associated neutrophils (TANs) and tumor-associated macrophages (TAMs)] that produce ROS/NOS. The fragmented and disorganized tumor

microenvironment supports tumor proliferation and evasion of immune surveillance. (C) In disease states such as tumors or chronically inflamed tissues, native or

HMW-HA synthesis is increased by constitutively elevated HAS expression. LMW-HA accumulates due to increased expression and activity of extracellular

hyaluronidase activity and reactive oxygen/nitrogen species (ROS/NOS) produced by stressed tissues. LMW-HA activates pro-migratory and proliferation pathways

through CD44, RHAMM and TLR2,4, whose expression is also increased. In a disease such as cancer, HMW-HA contributes to a stem cell-like microenvironment that

is immuno-suppressive and may protect tumor cells from DNA damage. (D) The continued accumulation of HMW HA polymers also provides a source for generating

LMW-HA that accumulates in tumor microenvironments as shown in (A). These fragments can be targeted by peptide mimetics that bind and sequestering them,

preventing their activation of pro-migration and proliferation signaling pathways.

The majority of these studies do not report the molecular-
weight ranges of HA present in the tumor samples. However,
the increased expression of HA receptors that preferentially bind
to LMW-HA (e.g., RHAMM), increased HYAL expression (e.g.,
HYAL1,2) (49, 50, 55, 57, 60, 61), and elevated ROS levels
predict that LMW-HA is elevated. However, It is likely that both
HMWand LMW-HA are increased in tumormicroenvironments
and that both contribute to tumor survival, growth and

aggression (Figures 1B,C). Data mining using TCGA data sets
in the cBioPortal for Cancer Genomics (www.cbioportal.org)
provides unbiased evidence the association of increased HA
production and fragmentation with cancer patient survival. For
example, increases in hyaluronidases, HAS and HA receptors are
significantly linked to reduced survival in colorectal (e.g., HAS2,
HMMR, CD44, HYAL1, p = 0.013) (62), and breast [e.g., HAS2,
HMMR, HYAL2, p= 0.023, (63) and p= 5.24e-3(64)] cancers.
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Experimental studies provide direct evidence for the
importance of elevated HA production in tumor initiation and
progression. As examples, MMTV-Neu mice over-expressing a
HAS2 transgene exhibit increased mammary tumor incidence
and growth compared to wildtype animals (65). HAS2-mediated
acceleration of tumor progression results in part from resistance
to apoptosis caused by constitutive activation of PI3K/AKT
signaling (65, 66). Conversely, HAS2 knockdown in metastatic
breast cancer cell lines arrests tumor cells in G0/G1 as a
result of reduced cyclin A, B, and cdc2 expression (67). Stable
knockdown of this HAS in MDA-MB-231 breast cancer cells
decreases their invasion, which is rescued by HAS2 re-expression
(66). Conversely, cell sorting of breast tumor cell lines that
bind to high levels of HA identifies highly invasive, metastatic
subpopulations (68). Experimental evidence from these types
of studies suggests that elevated HMW-HA accumulation in
either the peri-tumor stroma or tumor parenchyma performs
several key functions that favor tumor growth in addition to
protection from apoptosis. These include reducing uptake of
chemotherapeutic drugs by regulating drug transport proteins,
reducing neo-angiogenesis, and reducing drug diffusion into the
tumor by increasing local tissue hydrostatic pressure (69–71).
HMW-HA reduces immune surveillance at least in part by
blocking neo-angiogenesis. Importantly, abundant HMW-HA
polymers also provide a stable source for generating LMW-HA.

An example of evidence supporting this latter function
is provided by the enhanced invasion of tumor cells when
they are transfected with both HAS2 and hyaluronidases (72).
HYAL1 knockdown reduces tumorigenicity of breast cancer
cell lines (73), while forced expression of HYAL1 promotes
tumor cell growth and migration in culture and in vivo (74,
75). LMW-HA polymers promote neo-angiogenesis, tumor cell
migration, invasion, and proliferation (16). LMW-HA also
attracts macrophages, which polarize into subpopulations that
protect tumor cells from adaptive immune cell killing (76).
This fragment-specific signaling is mediated by HA receptors,
the best studied of which are RHAMM and CD44. Tumor
cell migration stimulated by LMW-HA is often associated
with an epithelial-mesenchymal transition mediated by CD44
through activating PI3K/AKT and TGFβ signaling (65), while
RHAMM is linked to increasing tumor cell migration via
regulating ERK (77–79) and AURKA/beta-catenin pathways (80,
81). This signaling not only impacts the functional properties
of tumor cells but also regulates stromal cells properties.
Thus, LMW-HA/CD44/RHAMM binding promotes angiogenic
capillary invasion into the tumor microenvironment. In MMTV-
Neu mice, elevated LMW-HA production induces intra-tumoral
microvessel formation through promoting angiogenic factor
secretion, and enhanced type I collagen, fibronectin, bFGF, CD31
mRNA expression (65, 74). Further, bFGF-induced angiogenesis
is accelerated in the presence of LMW-HA (74).

LMW-HA in the tumor microenvironment also promotes
monocyte recruitment and differentiation of cytotoxic M1
subtypes into the M2 subtype by altering the Th1/Th2 cytokine
balance, thereby enhancing local ROS level, which increases
LMW-HA generation and M2 monocyte accumulation (76).
This appears to have clinical relevance since both increased

M2-like tumor-associated macrophages (TAMs) and LMW-HA
accumulation correlate with tumor metastatic potential and poor
prognosis in breast cancer patients (54). Both CD44 antibodies
and LMW-HA binding peptides reduce monocyte activation
and M2 polarization predict that these effects are modulated
by LMW-HA:CD44 interactions(76). Moreover, tumor-derived
LMW-HA promotes tolerance of tumor cells to infiltrating
macrophages (82). This tumoricidal neutralization is suggested
to involve IRAK-M (interleukin-1 receptor-associated kinase
M), with LMW-HA as an extracellular modulator through both
TLR2,4 and CD44 (82).

Collectively, clinical and experimental studies show the
importance of tumor or peri-tumor stromal cell HA production
and fragmentation for tumor progression. Targeting HA may
therefore provide promising therapeutic approaches in cancer
management and treatment.

THERAPEUTIC APPROACHES FOR
REDUCING HA PRODUCTION AND
FRAGMENTATION TO CONTROL
TUMORIGENESIS

Inhibiting HA Synthesis
4-Methylumbelliferone (4-MU) is an inhibitor that depletes one
of the building blocks (glucuronic acid, GA) of HA synthesis
(83, 84). In 4-MU treated mammalian cells, UDP-transferase
catalyzes the transfer of GA onto 4-MU, thus depleting the
pool of cytoplasmic UDP-GA and inhibiting HA synthesis
(83, 85). 4-MU also decreases HAS2/3 expression (60–80%
in cancer cell lines) (86). This suppression is accompanied
by reduced CD44 and RHAMM expression, suggesting a
feedback loop between HA synthesis and receptor expression
(86). HA-mediated downstream signaling is therefore inhibited
following 4-MU administration with a consequent reduction
in proliferation, migration, and invasion of cancer cells. 4-
MU reduces metastasis in skin, lung, osteosarcoma, and breast
cancer xenograft models(85, 87–91). Dietary incorporation of 4-
MU is also associated with enhanced chemo-prevention: daily
ingestion of 4-MU (450 mg/kg) for 28 weeks abrogated prostate
tumor initiation and metastasis in experimental models (91).
Nevertheless, this approach is not specific for tumor-associated
HA and would also block the desirable functions of HMW-HA in
normal tissues.

Targeting LMW-HA
Blocking Hyaluronidase Activity
Natural derivatives (i.e., heparin, glycyrrhizic acid, and sodium
aurothiomalate) and drugs (i.e., fenoprofen) targeting HYAL
isoforms have been investigated as therapeutic agents (26, 85, 88).
Originally described as urinary HYAL inhibitors, O-sulfated HA
derivatives (sHA) exhibit potent inhibition of HYAL1 activity
(IC50: 0.0083–0.019µM) through binding to allosteric sites (92,
93). Moreover, sHA exhibits more effective non-competitive
than competitive inhibition, suggesting its efficacy would not be
impeded by elevated HA concentration in tumor tissues. In a
prostate cancer animal model, sHA-application inhibited HYAL1
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activity and triggered apoptosis through the extrinsic pathway
(70). The downregulation of HYAL1 correlated with reduced
CD44 and RHAMM expression, and PI3K/AKT signaling,
suggesting a feedback mechanism between HA degradation and
signaling in tumor cells. The proliferative and invasive capacities
of prostate cancer cells are also decreased significantly after
sHA-treatment (69).

Conversely, increased degradation of stromal HA by
PEGPH20 (a pegylated hyaluronidase) in pancreatic cancer
degrades the HA capsule that accumulates around these tumor
cells to allow better exposure of tumor cells to chemotherapy
and release suppression of neo-angiogenesis (94). PEGPH20
efficacy in facilitating a response of pancreatic tumor cells
to chemotherapy is currently being assessed in Phase 3
clinical trials for metastatic pancreatic ductal adenocarcinoma
(ClinicalTrials.gov) (94). PEGPH20 administration in animal
models of pancreatic cancer induced vascular collapse in
tumors and dramatically elevated the interstitial fluid pressure,
enhancing perfusion, and delivery of chemotherapeutic drugs
into the solid tumor (71). Thus, combined administration of
PEGPH20 and other chemotherapy (i,e: gemcitabine) promoted
survival and reduced tumor growth in mouse models through
inducing apoptosis and suppressing proliferation (71).

Sequestering HA Fragments
The use of peptides or small molecules that bind to the HA
binding regions of HA receptors, such as CD44 and RHAMM, is
another therapeutic approach that attempts to sequester LMW-
HA, thus preventing these from interacting with receptors to
abrogate signal activation. To date, extensive use of peptides

to block tumorigenesis has not yet been reported. However,
RHAMM- or HA-binding peptides can inhibit invasion and
survival of prostate and breast cancer cells in culture and in
vivo (95, 96). LMW-HA binding peptides have been isolated
by screening phage display libraries (97, 98) and by designing
RHAMM-like peptides that bind to LMW-HAs with nM affinity
(95). These have been shown to block inflammation and fibrosis
in both cell culture and animal models (95). Since some
cancers originate from progenitor-like cancer-initiating cells,
which commonly express CD44, small molecule inhibitors of
CD44:HA binding are also being developed (99). However,
polysaccharide:protein interactions in general and HA-CD44
binding in particular occur over large surfaces, making design
of small molecule inhibitors challenging (95). The amounts
of LMW-HAs that accumulate in the peri-tumor stroma is
surprisingly small (Figure 1D). These low amounts predict the
use of LMW-HA binding peptides may be one of the most
effective approaches for targeting the tumorigenic properties
tumor microenvironments.

HMW-HA, HYALURONIDASE, AND CD44
AS TUMOR PREVENTION MECHANISMS

HMW-HA can also suppress tumor initiation in cancer-prone
species by inhibiting proliferation, migration/invasion and ROS-
mediated DNA damage. HMW-HA blocks proliferation by
signaling through CD44 to promote G1/G0 arrest (100) and, as
noted above, alter tumor growth kinetics by suppressing neo-
angiogenesis and immune responses (101). Consistent with these

FIGURE 2 | HMW-HA functions in tumor prevention. (A) LMW-HA:CD44 interactions promote proliferation while HMW-HA:CD44 interactions suppress proliferation,

which can be mediated by an association of CD44 with the tumor suppressor, Merlin (NF2). HMW-HA:CD44 signals result in cell cycle arrest and are one mechanism

for reducing susceptibility to cancer. (B) Dorsal skin of UVB-exposed keratinocyte tumor-susceptible mice treated topically with

HMW-hyaluronan-phosphatidylethanolamine (HA-enriched) do not form tumors, accumulate higher levels of HMW-HA (top panels) and CD44 (bottom panels), and

lower levels of hyaluronidases than UVB-irradiated controls. Epidermal HA (brown) is detected via an HA-binding biotinylated protein on paraffin-embedded tissue

counterstained with hematoxylin (blue). CD44 (red) and RHAMM (green) are detected using pan-antibodies in dorsal skin of mice counterstained with DAPI (blue).
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reported functions, HMW-HA suppresses growth of murine
astrocytoma cell lines, glioma and colon carcinoma xenografts.
HMW-HA has also been reported to reduce the migratory and
invasive capacity of aggressive cancer cells (23, 102), which
could occur by several mechanisms. These include: (1) HMW-
HA strengthens cell-cell junctions and decreases the permeability
of ECM, thus preventing invasion (103); (2) HMW-HA
promotes tight junction formation and myosin polymerization
in lymphatics by displacing LMW-HA from the LYVE-1 receptor,
which restricts invasion into lymph nodes (103); (3) HMW-HA
blocks migration by enhancing NF2 and CD44 co-association,
which activates the tumor suppressor properties of CD44 (24);
and (4) HMW-HA modifies the motogenic effects of growth
factor signaling. As an example, bFGF-treatment decreases
sarcoma cell migration as a result of increased HAS1, HAS2, and
CD44 expression combined with a reduced expression of HYAL2
(74), which favors accumulation of HMW-HA(55). Further, the
addition of HMW-HA reduced fibrosarcoma cell migration,
which can be overridden by exogenous LMW-HA or HAS1
knockdown (74). In addition to these growth- and migratory-
suppressing effects, HMW-HA also reduces ROS-mediated DNA
damage, which lessens mutational burden and thereby reduces
the risk of neoplastic transformation (36, 104).

While the above studies predict functions of HMW-HA
that could contribute to tumor resistance in cancer-prone
species, such as mice and humans, the cancer-resistant naked
mole-rat (Heterocephalus glaber) provided the first direct
evidence for HMW-HA in suppressing carcinogen-induced
tumorigenesis(24, 105). In H. glaber, the combination of
HAS2 overexpression, strongly reduced hyaluronidase activity,
and signaling through CD44 provides resistance to several
carcinogenic insults, including UVB and activated RAS (24).
Interestingly, HMW-HA accumulates in some tissues, notably
skin, and remains high throughout the lifetime of this animal
(24). In contrast, HMW-HA declines in skin and most tissues
of human and mouse with age (106–110) and after chronic
exposure to UVB, which is the predominant carcinogen causing
keratinocyte tumors.

The naked mole-rat utilizes many tumor resistance
mechanisms, including the HMW-HA-regulated mechanism
termed “early contact inhibition” (ECI), a robust form of contact
inhibition that involves expression of a novel isoform of p16INK4A

(105). HA induces early expression at the p16INK4A locus
through CD44 binding, resulting in blocked phosphorylation
of Rb and attenuation of cell cycle. Naked mole-rat fibroblasts
cultured in the presence of hyaluronidase display no ECI
and downregulate p16INK4A expression (16). This effect of
HMW-HA is mediated by CD44:NF2 signaling (24, 105)

(Figure 2A).The growth-inhibiting non-phosphorylated form
of NF2 is predominant in cultured naked mole-rat cells, but
the addition of hyaluronidase stimulates NF2 phosphorylation,
which promotes cell growth (24).

HMW-HA AS A
CHEMOPREVENTION STRATEGY

To date, HMW-HA has not been used as a chemoprevention
strategy, although oral consumption has been shown to restrict
tissue inflammation, notably in the bowel (111). The barrier
to topical application of HMW-HA has historically been its
restricted passage through the outer cornified layer of the
epidermis. However, the recent development of high molecular-
weight hyaluronan-phosphatidylethanolamine polymers [E.
Turley (2010), Patent number: US20130059769A1] that cross the
epidermis and form coats around keratinocytes and dermal cells
(112) will permit an assessment of whether or not increasing
skin HMW-HA can reduce the predisposition of skin to
tumorigenesis in cancer-susceptible species (Figure 2B).

CONCLUSIONS

In summary, LMW-HA augments the proliferative and
migratory capacities of tumor cells, while HMW-HA reduces
tumorigenicity and confers cancer resistance by restricting
proliferation, limiting inflammation, neo-angiogenesis, and
possibly DNA damage. Further research is required to harvest
the full therapeutic potential of targeting LMW-HA polymers
and utilizing the tumor resistance properties of HMW-HA.
Improved understanding of the mechanisms augmenting the
size-dependent biological effects of HA is likely to advance new
therapeutic development to limit tumorigenesis.
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