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ZNF143, a human homolog of the transcriptional activator Staf, is a C2H2-type
protein consisting of seven zinc finger domains. As a transcription factor (TF),
ZNF143 is sequence specifically binding to chromatin and activates the expression of
protein-coding and non-coding genes on a genome scale. Although it is ubiquitous
expressed, its expression in cancer cells and tissues is usually higher than that in
normal cells and tissues. Therefore, abnormal expression of ZNF143 is related to
cancer cell survival, proliferation, differentiation, migration, and invasion, suggesting
that new small molecules can be designed by targeting ZNF143 as it may be a
good potential biomarker and therapeutic target for related cancers. However, the
mechanism on how ZNF143 regulates its targeting gene remains unclear. Recently,
with the development of chromatin conformation capture (3C) and its derivatives, and
high-throughput sequencing technology, new findings have been obtained in the study
of ZNF143. Pioneering studies have showed that ZNF143 binds directly to promoters
and contributes to chromatin interactions connecting promoters to distal regulatory
elements, such as enhancers. Further, it has proved that ZNF143 is involved in CCCTC-
binding factor (CTCF) in establishing the conserved chromatin loops by cooperating with
cohesin and other partners. These results indicate that ZNF143 is a key loop formation
factor. In addition, we report ZNF143 is dynamically bound to chromatin during the cell
cycle demonstrated that it is a potential mitotic bookmarking factor. It may be associated
with CTCF for mitosis-to-G1 phase transition and chromatin loop re-establishment in
early G1 phase. In the future, researchers could further clarify the fine mechanism of
ZNF143 in mediating chromatin loops with the help of CUT&RUN (CUT&Tag) and Cut-C
technology. Thus, in this review, we summarize the research progress of TF ZNF143 in
detail and also predict the potential functions of ZNF143 in cell fate and identity based
on our recent discoveries.
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INTRODUCTION

Schuster et al. (1995) found a transcription factor (TF), which
can be bound specifically to the promoter of selenocysteine
tRNA in Xenopus oocytes and named it Staf (selenocysteine
tRNA gene transcription activating factor). In the same year,
Tommerup and Vissing (1995) reported zinc finger protein 143
(ZNF143), a human homolog of the transcriptional activator
Staf, was located on the human 11th chromosome, 11p15.3–
15.4. Subsequently, Adachi et al. (1998) isolated and characterized
m-Staf from mouse mammary gland, which is consistent with
human ZNF143. ZNF143 is a member of the Kruppel family
and is a widely expressed transcriptional activation factor that
regulates gene expression associated with cell cycle and DNA
replication (Izumi et al., 2010). Therefore, it is widely involved
in a variety of cellular and pathogenic processes, such as cell
survival, growth, proliferation, etc. (Table 1). However, the
molecular mechanism of ZNF143 in regulating gene expression
remains elusive.

In recent years, studies have revealed that ZNF143 not only
exists in most cancer cells but is also necessary for the normal
development of tissues (Izumi et al., 2011; Halbig et al., 2012;

TABLE 1 | The role of ZNF143 in cancer progression.

ZNF143
status

Cancer type Association References

Knockdown Human prostate
cancer PC3

Induce cell
apoptosis

Izumi et al., 2010

Breast carcinoma Increase cellular
motility

Paek et al., 2017

Colon cancer
(HCT116)

Increase cell
migration and
invasion

Paek et al., 2014

HeLa-S3 Reduce cell
proliferation

Ngondo-Mbongo
et al., 2013

Breast cancer Better cell survival Paek et al., 2019

HeLa Reduce cell
proliferation,
cell-cycle
progression, and
cell viability

Parker et al., 2014

Colon cancer Increase cell
plasticity

Verma et al., 2019

Overexpression PC3 prostate
cancer cell lines

Increase cell
division

Izumi et al., 2011

Gastric cancer(GC) Enhance GC
migration

Wei et al., 2016

HepG2 and HeLa Increase cell
survival and
differentiation

Grossman et al.,
2014

Positively
expression

Lung cancer Increase cell growth Kawatsu et al.,
2014

Lung
adenocarcinoma

With highly invasive
and proliferation

Kawatsu et al.,
2014

Ovarian tumors and
Low-grade ovarian
cancers

Relate to cancer
invasion,
metastasis
formation

Sadlecki et al.,
2019

Kawatsu et al., 2014; Paek et al., 2014; Wei et al., 2016;
Paek et al., 2017). Genome-wide analyses have shown that TF
ZNF143 with sequence binding specificity is usually bound
to the promoter of its regulatory gene and promotes the
formation of chromatin loop by interacting with other chromatin
structure and organization factors, such as CCCTC-binding
factor (CTCF) and cohesin (Heidari et al., 2014; Bailey et al.,
2015; Ye et al., 2016; Yang et al., 2017; Mourad and Cuvier,
2018; Wen et al., 2018). In summary, as a key TF, ZNF143
plays a critical role in chromatin loop formation and gene
regulation (Table 2), illustrating great importance in the study of
its regulatory mechanism.

THE STRUCTURAL FEATURES OF
ZNF143

The amino acid sequence of human ZNF143 is highly
homologous to both m-Staf and Staf. Among its sequence, 97.1
and 84% residues are identical to those of m-Staf and Staf,
respectively (Schuster et al., 1995; Adachi et al., 1998; Myslinski
et al., 1998). Structurally, these proteins consist of three regions
(A, B, and C) (Figure 1). Analysis of the three regions indicates
that the central region B (residues 220–428 in ZNF143 and
m-Staf, residues 267–468 in Staf) encompasses seven tandemly
repeated zinc fingers of the C2H2 type, is highly basic, while
the regions A (residues 1–219 in ZNF143 and m-Staf, residues
1–266 in Staf) encodes four repeated motifs and C (residues

TABLE 2 | ZNF143 plays a critical role in chromatin interaction.

Cell type Detection method Interaction factor References

GM12878, K562,
HelaS3

Carbon-copy
chromatin
conformation
capture (5C), 3C,
ChIP-seq

Cohesin (SMC3),
CTCF

Bailey et al.,
2015

GM12878, K562 ChIA-PET,
ChIP-seq, RNA-seq

Cohesin (RAD21),
CTCF

Heidari et al.,
2014

GM12878, K562 ChIA-PET,
ChIP-seq

Cohesin (RAD21
and SMC3), CTCF

Ye et al., 2016

Kc167, GM12878 Hi-C, ChIP-seq Cohesin (RAD21),
CTCF

Mourad and
Cuvier, 2018

HEK293T Hi-C Cohesin (RAD21),
CTCF

Wen et al.,
2018

HeLa-S3, HEK293,
K562, HPB-ALL,
NIH3T3, mESC,
MEF

ChIP-Seq,
RNA-seq

Notch1, THAP11 Ngondo-
Mbongo
et al., 2013

293T/17, HeLa,
SW620, T98G

ChIP-Seq THAP11, HCF-1 Parker et al.,
2014;
Vinckevicius
et al., 2015

Mouse ES ChIP Oct4 Chen et al.,
2008

Human TLL RNA-microarray,
ChIP-Seq

Notch1, RBPJ Wang et al.,
2011

HeLa RNA-microarray,
ChIP-Seq

HCF-1, THAP11,
YY1, GABP

Michaud
et al., 2013
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FIGURE 1 | Schematic representation of structural features of human ZNF143 in comparison with m-Staf and Staf. Three regions of these three proteins can be
distinguished: A contains mRNA and snRNA activation domains with the presence of the four repeated motifs. B is the central seven zinc finger domain and is
therefore a DNA binding domain. C is a region with unknown function.

429–626 in ZNF143 and m-Staf, residues 469–600 in Staf) are
acidic (Figure 1). The central region of seven zinc fingers domain
is the DNA binding domain. Outside of the central domain,
N-domain (region A) is the activation domain both for mRNA
and snRNA, and the characteristic features of this domain of
these three proteins are very simlar. The function of C-domain
(region C) is unclear (Myslinski et al., 1998). Strikingly, the four
repeated motifs can be observed between residues 39 and 135
in region A of ZNF143/m-Staf (residues 84 and 176 in region
A of Staf) (Figure 1). Each repeat motif contains 15 amino
acids and the distance between them contains 10–12 amino acids
(Schuster et al., 1995).

As a TF, it is noted that the tandemly repeated zinc finger
domain (DNA binding domain) and the element of repeated
motifs (activation domain) are especially well conserved
among these three proteins (Myslinski et al., 1998). It is
reported that this TF possesses the capacity to bind over
2000 promoter regions of both mRNA and small nuclear
RNA (snRNA) genes (Myslinski et al., 1998, 2006). Recently,
Ngondo-Mbongo et al. (2013) have found that ZNF143 has
two main DNA binding motifs of high affinity, namely,
SBS1(GTTATGGAATTCCCATTATGCACCGCG) and SBS2
(AAACTACAATTCCCATTATGCACCGCG). Both of them are
closely related to its specific binding on the chromatin, and thus
initiate gene expression and regulation.

THE FUNCTION OF ZNF143

Regulating Cell-Cycle Progression
TF ZNF143 regulates gene expression associated with cell
cycle. Many studies utilize knockdown or overexpression
methods to evaluate the effect of ZNF143 on cancer cell
progression. For example, Izumi et al. (2010) have reported
that ZNF143 is associated with cell cycle and cell proliferation,
whereas ZNF143 knockdown causes human prostate cancer
PC3 cells to stagnate during G2/M and is accompanied
with apoptosis. By establishing two forced expression of
ZNF143 PC3 cancer cell lines, they found that overexpress
genes strongly associated with cell cycle and cell division

(Izumi et al., 2011). ZNF143 knockdown induces increased
breast cancer motility, which indicates that ZNF143 expression
contributes to breast cancer progression (Paek et al., 2017). In
addition, low ZNF143 expression exhibits better cell survival
through an autophagic process by regulating the p53–Beclin1
axis in breast cancer cells (Paek et al., 2019). ZNF143 is
essential and sufficient for Skp2 promoter activity and ZNF143
silencing inhibits cell proliferation; however, ectopic ZNF143
can rescue Skp2 expression (Hernandez-Negrete et al., 2011).
Overexpression of ZNF143 enhances transaldolase promoter
activity in HepG2 and HeLa cells and ZNF143 plays a key
role in controlling cell survival and differentiation (Grossman
et al., 2014). Simultaneously, other researchers have reported
that THAP11/ZNF143/HCF-1 complex is an indispensable
component of the transcriptional regulatory network and
disruption of this complex leads to reduced cell proliferation,
cell-cycle progression, and cell viability (Parker et al., 2014).
Ngondo-Mbongo et al. (2013) have also showed that ZNF143,
ICN1, and THAP11 play a pivotal role in modulating cell
proliferation of rapidly dividing cells. Myslinski et al. (2007)
have found that human BUB1B gene mediates the activity
of spindle checkpoints to ensure chromosomal stability and
euploidy, requires ZNF143 binding.

Regulating Embryonic Development and
Maintaining Stem Cell Identity
As a key TF, ZNF143 has a critical function in regulating
embryonic development. Halbig et al. (2012) have found that
ZNF143 significantly changes zebrafish embryonic phenotypes.
Therefore, ZNF143 is necessary for the normal development
of zebrafish embryos. The identification and characterization
of paralogous genes is also critical for understanding gene
function. In the functional study of ZNF143, Huning and Kunkel
(2020) have found that znf143a, a novel paralog of znf143,
encodes a strong transcriptional activator protein and performs a
similar role in the normal development of zebrafish embryos but
expressed at a different level during early development. In mouse
embryonic stem (ES) cells, ZNF143 regulates Nanog by regulating
the binding of Oct4, and ZNF143 is also critical for maintaining
human ES cell identity (Chen et al., 2008).
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Potential Drug Design Target
TF ZNF143 is a potential drug design target to treat solid
cancers. After cisplatin treatment, the binding activity of
ZNF143 and MRP S11 significantly increases. This indicates
that ZNF143 is involved in response to DNA damage (Ishiguchi
et al., 2004; Torigoe et al., 2005; Wakasugi et al., 2007).
P73 promotes ZNF143 binding with cisplatin-modified DNA,
indicating that ZNF143 can regulate the transcription of DNA
repair genes (Wakasugi et al., 2007). ZNF143 can also mediate
cell survival by upregulating glutathione peroxidase (GPX1)
activity. Thus, ZNF143 interference can increase drug sensitivity
to cisplatin treatment of mitochondrial dysfunction (Lu et al.,
2012). GAIP-interacting protein, C-terminus (GIPC) induces
ZNF143 expression by participating in IGF-1 signal transduction
to regulate reactive oxygen products (Paek and You, 2011).
ZNF143 is also involved in the migration and invasion of
colon cancer cells through a ZEB1-E- cadherin-linked pathway
(Paek et al., 2014). The expression levels of ZNF143 and
IL-8 are inversely correlated with three-dimensionally grown
spheroids and colon cancer tissues (Verma et al., 2019). ZNF143
is accompanied with an increase in MIB-1 index in patients
with lung adenocarcinoma, leading to high cell proliferation
activity and poor prognostic treatment (Kawatsu et al., 2014).
Wei et al. (2016) have found that ZNF143 expression can
enhance the metastasis of gastric cancer cells, indicating that
ZNF143 can be a drug target for the treatment of gastric
cancer. The reduction in ZNF143 expression eventually leads
to the cobaltamine transport protein not effectively transporting
cobalamin (Pupavac et al., 2016). The expression patterns of
ZNF143 and ZNF281 in serous borderline ovarian tumors
(SBOTs) and low-grade epithelial ovarian carcinomas (EOCs)
play a key role in cancer invasion, metastasis formation, and
chemotherapy resistance (Sadlecki et al., 2019). ZNF143 is an
upstream regulator to increase the expression of the RNA binding
protein TARBP2 in breast and lung cancers (Fish et al., 2019).
Thus, how to effectively design small molecule drugs to target
ZNF143 is imminent. Fortunately, Haibara et al. (2017) have
found that new small molecules YPC-21661 and YPC-22026
can reduce the expression of their target genes RAD51, PLK1,
and Survivin by inhibiting the binding of ZNF143 to their
promoters. In the future, it is believed that more and more
molecule drugs will be exploited by targeting ZNF143 to treat
related cancers.

ZNF143 REGULATES GENE
EXPRESSION AND ITS MECHANISM

ZNF143 Participates in the Regulation of
Coding and Non-coding Genes
As an important TF, ZNF143 regulates the expression of various
genes. During transcription activation, Schuster et al. (1998) have
found that ZNF143 activation domains bound by mRNA and
snRNA are different. Myslinski et al. (1998) first have found
ZNF143 can activate the transcription from RNA polymerase II
TATA box-containing mRNA promoters. For example, Kubota

et al. (2000) have reported that ZNF143 is the key TF upregulating
the molecular chaperone coding gene Cctα transcription through
binding with the two activation elements (CAE1 and CAE2).
Mach et al. (2002) have also showed that ZNF143 stimulates
transcription of the human interferon regulatory factor-3 (IRF-
3) gene by binding to SphI postoctamer homology (SPH)
elements in vitro and in transfected cells. ZNF143 plays an
important role in the transcription of neuronal nitric-oxide
synthase (nNOS) exon 1, the mutation of the binding site of
ZNF143 leads to a significant reduction in the activity of this
exon (Saur et al., 2002). Barski et al. (2004) use ChIP as well as
deletion/mutation analysis reveal that the aldehyde reductase is
significantly enhanced by transcription activation after binding
to ZNF143. Di Leva et al. (2004) have found that ZNF143,
together with CAAT factors, regulates human synaptobrevin-
like 1 (SYP-like 1) through binding to the SYBL1 promoter
in HeLa cells. Gerard et al. (2007) have reported that ZNF143
binds to the promoter of mitochondrial TF A (Tfam) to regulate
transcription initiation and replication of mitochondrial DNA
in consistent with Sp1, NRF-1, and NRF-2. ZNF143 binds with
the −305/−107 of the BUB1B promoter to regulate BUB1B
expression to maintain chromosomal stability and euploidy
(Myslinski et al., 2007). Gonzalez et al. (2017) have reported that
ZNF143, specifically binds to the 8-bp sequence (CCCAGCAG),
∼100 bases upstream of the C/EBPα transcription start site
(TSS), plays an important role in the expression of C/EBPα

in myeloid cells.
ZNF143 acts as a transcription-activated factor under the

joint action of RNA polymerase III (Schaub et al., 1997). The
snRNA and snRNA-type genes require the binding of ZNF143
during transcription, such as human U4C, U6, Y4, 7SK; mouse
U6 RNAs and Xenopus U1b1, U2, U5, MRP. However, the
binding of ZNF143 to snRNA occurs on a distal sequence element
(DSE) (Schaub et al., 1997). By comparing ZNF143 recognition
sequence of human U6 snRNA and selenocysteine tRNA, Schaub
et al. have found that there are only 47% consistent in sequences.
In the seven zinc fingers of ZNF143 recognition sequence, the
first zinc finger is necessary for selenocysteine tRNA promoter
identification, whereas U6 snRNA is not. The seventh zinc finger
is essential for the binding activity of them. The flexibility binding
results in differences in transcription activation mechanisms
(Schaub et al., 1999a). U6 snRNA transcription activation
requires ZNF143–DNA–Oct-1 complex, whereas selenocysteine
tRNA requires ZNF143-DNA complex (Schaub et al., 1999b).
Schaub et al. (2000) have found that zinc fingers 3–6 are the
minimum zinc finger regions.

Self-Regulation of ZNF143
To maintain stable ZNF143 expression at normal levels, the
transcription feedback regulation mechanism is the simplest
and most direct means. ZNF143 selectively adjusts reverse
expression by using a low affinity binding site (TSS2) located
downstream of the TSS. When ZNF143 expression is higher
than normal, transcripts containing longer 5′-UTR (few
translation products) are produced by TSS2 transcription.
In addition, when ZNF143 levels are lower than normal, the
canonical TSS1 binding site is used to express transcripts
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containing shorter 5′-UTR (many translation products).
This transcriptional auto-regulatory mechanism regulates
ZNF143 expression by the conversion of the TSS switch,
which plays an important role in cell proliferation and growth
(Ngondo and Carbon, 2004). Given that ZNF143 is closely
related to many biological processes, its expression must be
strictly regulated. Ngondo et al. have found that ZNF143
transcripts have three different lengths of 3′-UTR, with the
longer 3′-UTR isoform containing variable polyadenylation
sites, miRNA target sites, or AU-rich element (ARE). Thus,
it tends to post-transcriptional regulation. The longest 3′-
UTR isoform contains an unstabilizing ARE and is targeted
by mir-590-3p. These results emphasize that ZNF143 post-
transcriptional regulation depends on the long 3′-UTR isoform
(Ngondo and Carbon, 2014).

ZNF143 Is a Chromatin-Looping Factor
Myslinski et al. have predicted the whole genome binding
sites of ZNF143 through computer simulation (in silico) and
biochemical methods. They speculated that at least 2500

ZNF143-binding sites are distributed in 2000 promoter regions
throughout the mammalian genome. Further research has found
that the presence of ZNF143-binding site alone can initiate
the expression of a luciferase reporter gene, suggesting that
ZNF143 itself exhibits the ability to recruit the transcription
machinery (Myslinski et al., 2006). Recently, Wang et al. have
reported the co-localization of RBPJ/Notch1/ZNF143, in which
ZNF143 can bind with 40% of the Notch1 sites, and RBPJ
shows high promoter binding preference by embedding in
the ZNF143 motifs. These results may indicate a dynamic
exchange of RBPJ/Notch1 and ZNF143 complexes through
competition in the binding sites (Wang et al., 2011). Ngondo-
Mbongo et al. (2013) have revealed that ZNF143, THAP11,
and Notch1 regulate the common target genes through the
mutually exclusive occupation of overlapping binding sites.
Michaud et al. (2013) have found that HCF-1 is bound with
5400 CpG island promoters. HCF-1, ZNF143, and THAP11
exhibit co-localization, with HCF-1 in collaboration with ZNF143
and THAP11 plays an important role in the transcriptional
regulation of HeLa cells. Parker et al. have found that HCF-1, as

FIGURE 2 | Schematic representation of chromatin loop formation mediated by ZNF143, CTCF, cohesin, and other TFs during the cell cycle. ZNF143 is a potential
mitotic bookmarking factor helps to re-establish chromatin loops in early G1.
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a coregulator of the TF E2F proteins, is not directly collected in
the promoter region but is mediated by ZNF143 and THAP11.
HCF-1/ZNF143/THAP11 as a complex that occupies specific sites
of chromatin co-regulates the expression of cell proliferation
genes (Parker et al., 2014). However, how DNA sequences guide
the THAP11/ZNF143/HCF-1 complex to chromatin remains in
dispute. Vinckevicius et al. (2015) have explicitly proposed that
ACTACA, as a joint submotif of ZNF143 and THAP11, guides
THAP11 and HCF-1 to ZNF143-occupied loci and emphasized
the importance of the position, spacing, and direction relative to
the ZNF143 core motif.

TF ZNF143 can interact with other transcriptional regulators
in mediating chromatin loop formation. Chromatin interactions
between promoters and long-region regulatory elements can
determine the expression level of a gene (Fraser, 2006; Fraser
and Bickmore, 2007). In recent years, with the development
of high-throughput sequencing and chromatin conformation
capture technologies (3C, chromatin conformation capture;
Hi-C, chromatin conformation capture using high throughput
sequencing; ChIA-PET, chromatin interaction analysis by
paired-end tag sequencing) (Dekker et al., 2002; Fullwood
et al., 2009; Lieberman-Aiden et al., 2009), increasing evidence
indicates that the interaction between genomic regulatory
elements plays an important role in regulating gene expression.
Heidari et al. (2014) have discovered that ZNF143 plays an
important role in mediated distal chromatin interactions.
Bailey et al. (2015) have found that ZNF143, as a novel
and key chromatin-looping factor, with sequence specificity
dependency at promoters and links the distal regulatory
elements together, playing an important role in the establishment
of the genomic organization. ZNF143 binds to the PMM2
promoter could establish a functional chromatin loop enabling
interaction between the promoter and distal regulatory elements,
which allows specific spatiotemporal regulation of PMM2
(Cabezas et al., 2017). ZNF143 knockdown mainly eliminates or
destabilizes chromatin loops (Wen et al., 2018). We also found
that ZNF143 was involved in the CTCF-mediated chromatin
interactions by cooperating with cohesin (Ye et al., 2016).
Other researchers have showed that ZNF143 interactes with
other regulators are also important for chromatin domain
formation. For example, Mourad and Cuvier (2006) have
revealed that the formation of 3D chromatin domains is
affected by positive driving factors CTCF, cohesin, ZNF143,
polycomb proteins, and negative driving factors P300, RXRA,
BCL11A, ELK1. CTCF binding sites are not only closely
associated with topologically associating domain (TAD)
boundaries, but also interact with ZNF143 and Yin Yang (YY)1
(Hong and Kim, 2017).

CONCLUSION AND PROSPECTS

ZNF143 can bind with multi-species, multi-type coding and
non-coding genes (Schuster et al., 1995; Schaub et al., 1997;
Myslinski et al., 1998). However, ZNF143 binding and co-
initiative transcription differs due to the diversity of promoter
structures. Although the promoter structure of H1 RNA, the

RNA component of the human nuclear RNase P, is similar to
that of vertebrate snRNA, H1 RNA’s promoter is distributed
within 100 bp of the 5′ flanking sequence and presents a
highly compact structure to initiate transcription (Myslinski
et al., 2001). ZNF143 binding with U6 found in zebrafish
are located upstream of the TATA box and downstream of
proximal sequence element (PSE), unlike the U6 of other species
(Halbig et al., 2008). The promoter of SCARNA2 is contained
within 161 bp upstream of TSS due to its special transcription
(different from SCARNA), whereas ZNF143 is the basic regulator
(Gerard et al., 2010).

As a general TF, ZNF143 participates in numerous cellular
biological activities. Using comparative genomic analysis to
identify the distribution of ZNF143 target genes, Myslinski et al.
(2006) have found that DNA binding and TFs account for 23%,
protein synthesis/degradation/modification account for 21%, and
DNA replication/cell cycle/cell growth/differentiation/apoptosis
account for 13%. Anno et al. have also found that ZNF143
per se exhibits an inherently bidirectional transcription activity.
Thus, ZNF143 has the ability to control the expression of
divergent protein–protein and protein–non-coding RNA gene
pairs (Anno et al., 2011). ZNF143 is expressed differently
in various tissues. It is highly expressed in the lung, ovary
and thymus, but weakly expressed in the brain, liver, and
kidney (Grossman et al., 2014). ZNF143 is highly expressed in
many solid tumors, and it is involved in cisplatin resistance
because cisplatin induced ZNF143 binds to cisplatin-modified
DNA (Wakasugi et al., 2007; Paek and You, 2011; Lu et al.,
2012). Thus, novel small molecules can be designed for
ZNF143 to enhance the sensitivity of cisplatin chemotherapy
(Haibara et al., 2017). ZNF143 is not only indispensable for
the embryonic development of zebrafish but also necessary
for ES cell identity and self-renewal capability of ES cell
(Chen et al., 2008; Halbig et al., 2012). What is more, histone
methylation in the ZNF143 binding sites is usually related to
transcription regulation. Yang et al. (2019) have found that both
active (H3K4me1, H3K4me3, and H3K27ac) and suppressive
(H3K27me3) histone marks can modulate ZNF143 binding,
which in turn, regulate gene expression. However, how to develop
new and convenient detection systems to study the function
of ZNF143 is still a big challenge. Recently, Sathyan et al.
(2019) have developed an improved auxin-inducible degron
system to study TF function. After rapidly depleting the ZNF143
TF, transcriptional profiling indicates that ZNF143 activates
transcription in cis and regulates promoter-proximal paused
RNA polymerase density.

CTCF, cohesion, and ZNF143 are three major regulators
involved in the establishment and maintenance of long-range
chromatin interactions. In mammalian cells, TAD-free analysis
indicates that the blocking effects of CTCF, cohesin, and ZNF143
depend on the distance between loci because each protein may
participate at different scales of chromatin organization (Mourad
and Cuvier, 2018). CTCF and cohesin are the key factors in
organizing the mammalian genome to form TADs and loops,
and the CTCF loops are formed as a result of cohesin-dependent
loop extrusion (Dixon et al., 2012; Nor et al., 2012; Sanborn
et al., 2015; Fudenberg et al., 2016; Goloborodko et al., 2016;
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Busslinger et al., 2017; Nuebler et al., 2018). ZNF143 is not only
involved in CTCF/cohesin-mediated chromatin interactions, but
also can bind directly to the promoter and connect it to distal
regulatory elements (such as enhancer) to form chromatin loops
(Heidari et al., 2014; Bailey et al., 2015; Ye et al., 2016). The
recurrent C→T conversion at the ZNF143 locus influences the
chromatin loop formation and alters distal gene expression in
breast cancer (Yang et al., 2018). Lin et al. (2017) have reported a
new epigenetic feature called sparse conserved under-methylated
CpGs (scUMCs) is involved in cell-specific regulation of long-
range chromatin interaction mediated by chromatin-looping
factors (CTCF, cohesin, and ZNF143), providing a new direction
in the research of the relationship between DNA methylation
and chromatin organization. Recent technical developments
allow more accurately identify where TFs bind to DNA. Skene
et al. have showed that their new in situ methods, such as
cleavage under targets and release using nuclease (CUT&RUN)
and cleavage under targets and tagmentation (CUT&Tag), will
be viewed as a cost-effective and versatile alternative to ChIP
because of low backgrounds, which requiring only ∼1/10th the
sequencing depth as ChIP (Skene and Henikoff, 2017; Skene et al.,
2018; Kaya-Okur et al., 2019; Meers et al., 2019). Based on these
methods, Shimbo et al. (2019) have developed cleavage under
tethered nuclease for conformational capture (Cut-C) technology
to identify chromatin interactions mediated by a protein of
interest along with the genome-wide distribution of the target
proteins. Thus, using these latest technologies, we may be clearly
captured the accuracy of chromatin loops mediated by ZNF143
in a genome-wide scale.

During mitosis, transcription is globally shut down, chromatin
condenses, the nuclear envelope is disassembled, and most
TFs are stripped off the mitotic chromosomes. How do the
new daughter cells faithfully re-establish the cell-type specific
transcription program? Recent discoveries that a select set
of TFs remain associated with mitotic chromosomes suggest
a phenomenon termed mitotic bookmarking (Huang and
Wang, 2017). For example, many studies have reported that
CTCF is still partially retained in mitotic chromosomes and
chromatin structure dynamics during the mitosis-to-G1 phase
transition (Burke et al., 2005; Yan et al., 2013; Shen et al.,
2015; Teves et al., 2016; Oomen et al., 2019; Palozola et al.,
2019; Zhang et al., 2019). Thus, the presence of CTCF
during mitosis may function as candidate mitotic bookmarking
protein. This mechanism plays a potential and critical role in

maintaining cell identity and cell destiny. Meanwhile, ZNF143
can interact with CTCF and mediate the formation of the
chromatin loops. We recently discovered that ZNF143 was still
partially bound to the chromosome during mitosis and 80%
of the retained regions preferentially localized to promoters,
supporting that it functioned mainly through promoters (Ye
et al., 2020). Thus, the presence of CTCF and ZNF143 during
mitosis may be crucial to recruit other regulatory factors
to bind to chromosomes and re-establish chromatin loops
in early G1 phase (Figure 2). Therefore, further studies on
ZNF143 are necessary to help reveal its regulatory mechanism
during the cell cycle.

As a key TF, the role of ZNF143 in cancer progression
through transcriptional regulation of genes related to DNA
replication and cell cycle (Izumi et al., 2010). Furthermore,
Song et al. have showed that miR-590-3p could negatively
modulate the expression of ZNF143 via binding to the ZNF143
3′-UTR and ZNF143 can directly activate FAM224A expression
through binding to its promoter, forming the A1CF-FAM224A-
miR-590-3p-ZNF143 positive feedback loop. This loop plays a
critical role in regulating the malignant progression of glioma
cells, providing a novel molecular target for glioma therapy
(Song et al., 2019). In recent years, with the technology and
bioinformatics analysis development, the molecular mechanism
of ZNF143-mediated gene transcriptional regulation has been
largely exploited. Chromatin looping between promoters and
distal regulatory elements depends on DNA binding by ZNF143
and other partners. In the future, how to comprehensively analyze
the mechanism of ZNF143 in mediating gene expression of
different cell types and discover the novel and potential functions
of ZNF143 remains a considerable challenge.
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