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Abstract

Prediction of therapeutic peptide is a significant step for the discovery of promising thera-

peutic drugs. Most of the existing studies have focused on the mono-functional therapeutic

peptide prediction. However, the number of multi-functional therapeutic peptides (MFTP) is

growing rapidly, which requires new computational schemes to be proposed to facilitate

MFTP discovery. In this study, based on multi-head self-attention mechanism and class

weight optimization algorithm, we propose a novel model called PrMFTP for MFTP predic-

tion. PrMFTP exploits multi-scale convolutional neural network, bi-directional long short-

term memory, and multi-head self-attention mechanisms to fully extract and learn informa-

tive features of peptide sequence to predict MFTP. In addition, we design a class weight

optimization scheme to address the problem of label imbalanced data. Comprehensive eval-

uation demonstrate that PrMFTP is superior to other state-of-the-art computational methods

for predicting MFTP. We provide a user-friendly web server of PrMFTP, which is available at

http://bioinfo.ahu.edu.cn/PrMFTP.

Author summary

Therapeutic peptides possess a wide range of biological properties, including anti-cancer,

anti-hypertensive, anti-viral, and so forth. This is a prerequisite to understanding func-

tional therapeutic peptides and ultimately designing these peptides for drug discovery and

development. With the number of multi-functional therapeutic peptides (MFTP) grow-

ing, predicting these peptides is an urgent problem in the development of novel peptide-

based therapeutics. We develope PrMFTP, an approach for MFTP prediction based on

multi-label classification. Our method uses a deep neural network and multi-head self-

attention that are able to optimize the features from the peptide sequences. Furthermore,

for the imbalance problem in the multi-label dataset, a novel class weight optimization

scheme is used to improve the performance of PrMFTP. We evaluate our approach using

example-based measures and compare it with the top-performing MLBP method as well
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as the SOTA multi-functional peptides prediction approaches, demonstrating the

improvement of PrMFTP over the existing methods.

1. Introduction

Over the last decades, the number of peptide drug approvals has increased steadily, and the

global peptide therapy market has an average growth rate of 7.7% [1]. Peptide drugs have been

used to treat cancer, diabetes, HIV infection and so on [1, 2]. Compared with proteins and

antibodies, therapeutic peptides have many advantages as potential therapeutic drugs: low pro-

duction cost, low toxicity, and room temperature storage [3]. With the development of

sequencing technologies and peptide synthesis methods in the post-genome era, more and

more therapeutic peptides, with two or more functional characteristics, have been found.

These multi-functional therapeutic peptides (MFTP) are very important for new peptide drug

design. However, traditional experimental methods to screen therapeutic peptides are expen-

sive and time-consuming, a fast and effective computational approach could be an excellent

alternative [4].

Data-driven computational methods, especially machine learning (ML) methods, have

been widely used in the prediction of therapeutic peptides [5–10]. Thus far, random forest,

extra trees and extreme gradient boosting algorithms have successfully identified tumor hom-

ing peptide (THP) [11], anti-cancer peptide (ACP) [12], and anti-parasitic peptide (APP) [13].

Furthermore, TPpred-ATMV used BioSeq-BLM tool to extract various peptide sequence fea-

tures to optimize the prediction of therapeutic peptides [14, 15]. Among these traditional ML

methods, suitable feature sets are very important to distinguish functional and nonfunctional

peptides and achieve excellent performance. However, manual feature selection requires prior

knowledge, and high-dimensional features may cause overfitting. Recently, with the develop-

ment of artificial intelligence technology, the importance and advantage of deep learning (DL)

methods in the field of bioinformatics have been well demonstrated [16–21]. Various DL

methods have been utilized for therapeutic peptides prediction [22–25], such as Fang et al.
proposed a predictor based on DL combined with a character embedding layer for anti-fungal

peptides identification [24], Li et al. developed a dual-channel deep neural network (DNN)

model for identifying variable-length antiviral peptides [25]. Compared with the traditional

ML methods that need to extract or select features manually, the DL models can automatically

learn the feature representation with limited peptide knowledge [26]. Overall, numerous meth-

ods based on ML or DL have been proposed to predict the therapeutic peptides, but most of

them focused on the mono-functional peptides, and could not rapidly and efficiently identify

the therapeutic peptides with two or more functional characteristics. A multi-label classifica-

tion model of therapeutic peptides prediction may make up for the shortcomings.

To date, many multi-label classification algorithms have been proposed [4], and they can be

divided into two categories: problem transformation and algorithm adaptation. (1) Problem

transformation approach transforms the multi-label learning problem into a more single-label

classification [27]. For example, multi-label classification can be transformed into multiple

binary classifications by binary relevance (BR) [28], or label ranking tasks by calibrated label

ranking (CLR) [29]. Furthermore, the random k-labelsets method (RKL) regards each inde-

pendent label subset in the multi-label dataset as a new label, and classifies the datasets with

the new labels [30]. Among these three algorithms, BR is the easiest one, but ignores the corre-

lation between labels. CLR only considers the correlation between two labels. RKL considers

the correlations among labels. However, RKL turns the multi-label problem into multi-
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classification, which is easy to cause labels in the test set not to appear in the training set. In

addition, it may increase the model complexity. (2) Algorithm adaptation approach solves the

multi-label learning problem by directly processing multi-label data using popular learning

technologies [27], such as we previously proposed a DL-based multi-label approach for deter-

mining the multi-functional bioactive peptides [4], and Wu et al. proposed robust low-rank

learning of jointing ranking support vector machine and binary relevance (RBRL) for text,

images, music and bioinformatics fields [31].

In this study, for MFTP identification, we proposed PrMFTP, a novel multi-label predictor

based on DNN and multi-head self-attention mechanism (MHSA) [32]. PrMFTP model used

MHSA to optimize and filter the features extracted from the deep network layer, so as to

improve the prediction performance. For the class imbalance problem in the multi-label data-

set, we proposed a novel class weight optimization method to learn complex characteristics

from data. Compared with resampling methods, our method changed the loss value by adding

new class weights for different classes to deal with the imbalance in the data set.

2. Materials and methods

2.1 Datasets

In order to train and evaluate our proposed model, we constructed a benchmark MFTP data-

set. As July 2021, we conducted a literature query on Google Scholar with the keyword ‘thera-

peutic peptide’ and obtained 22 kinds of therapeutic peptide sequence datasets. There are a

total of 22 types of therapeutic peptides: AAP [33], anti-bacterial peptide (ABP) [33, 34], ACP

[12, 34], anti-coronavirus peptide (ACVP) [9], anti-diabetic peptide (ADP) [35], anti-endo-

toxin peptide (AEP) [34], anti-fungal peptide (AFP) [24, 34], anti-HIV peptide (AHIVP) [34],

anti-hypertensive peptide (AHP) [5], anti-inflammatory peptide (AIP) [33, 36], anti-MRSA

peptide (AMRSAP) [34], anti-parasitic peptide (APP) [13, 34], anti-tubercular peptide (ATP)

[37], anti-viral peptide (AVP) [33, 34], blood-brain barrier peptide (BBP) [7], biofilm-inhibi-

tory peptide (BIP) [8, 34], chemotactic peptide (CP) [34], cell-penetrating peptide (CPP) [33],

dipeptidyl peptidase IV peptide (DPPIP) [38], quorum-sensing peptide (QSP) [33], surface-

binding peptide (SBP) [33] and THP [11].

These datasets were processed according to the three criteria: (1) the peptides with sequence

contained non-standard amino acids were abandoned; (2) the peptides with sequence length

less than 5bp or more than 50bp were deleted. The reason is that long peptides are generally

toxic and have low stability, while very short peptide sequences do not have good activity [39];

(3) the peptides with their number less than 40 were removed. In addition, CP was abandoned

since there are too few CP to be statistically significant [34]. After these processes, we com-

bined theses therapeutic peptide data and assigned the peptides with multi-label functions. A

benchmark dataset was obtained, of which 8,415 peptides belong to one functional attribute,

981 with two different functional attributes, 329 with three different functional attributes, 91

with four different functional attributes, 31 with five different functional attributes and 27 with

more than five different functional attributes. The summary of different therapeutic peptide

data is shown in Table 1, and the details of the multi-label dataset are summarized in S1 Fig.

We sampled the training set with a ratio of 80% in this dataset, whereas the remaining 20%

data were applied as the test set.

2.2 PrMFTP framework

The framework of PrMFTP is shown in Fig 1, which consists of five layers: input layer, embed-

ding layer, DNN layer, MHSA layer, and classification layer. The details of these layers are

described as follows:
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Input layer

This layer encoded peptide sequence into a digital vector. The peptide sequences consisted of

20 standard amino acids {A, C, D, E, F, G, H, I, M, N, P, Q, R, S, T, V, W, Y}, and these amino

Table 1. The summary of the dataset used in this work.

Type Original number Final number Type Original number Final number

AAP 135 133 APP 319 279

ABP 2,469 2,154 ATP 246 242

ACP 1,052 1,043 AVP 736 711

ACVP 137 126 BBP 119 117

ADP 509 509 BIP 339 333

AEP 70 58 CPP 462 459

AFP 2,324 1,352 DPPIP 313 313

AHIVP 109 101 QSP 220 220

AHP 948 917 SBP 104 104

AIP 2,049 2,049 THP 651 651

AMRSAP 173 168 Total 11,142 9,841

https://doi.org/10.1371/journal.pcbi.1010511.t001

Fig 1. The framework of PrMFTP. First, peptide sequences are encoded as an input vector using numbers, and converted into a fixed-size matrix through the embedding

layer. Second, DNN layer, a combination of multi-scale CNN and BiLSTM architectures, is used to capture the sequence features. Third, multi-head self-attention

mechanism (MSHA) is used to make the model attend the more important and discriminating sequence features for prediction of multi-functional therapeutic peptides.

Finally, the resulting feature matrix is fed into a classification layer and applied to score the different therapeutic peptides to achieve the predicted result.

https://doi.org/10.1371/journal.pcbi.1010511.g001
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acids were encoded into nature numbers {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20}, respectively. In our benchmark dataset, the length of the peptide sequences varied

from 5 bp (the minimum length) to 50 bp (the maximum length), but the model could only

process peptide sequences with a fixed dimension. Therefore, if the length of a peptide

sequence is less than 50 bp, the pad ones were set to 0.

Embedding layer

Through the embedding layer, the sequence vector obtained from the input layer was trans-

formed into a dense continuous feature vector. The embedding layer algorithm encapsulated

as much information in the peptide sequence text as possible into the vector space [40]. Finally,

the peptide sequence was represented by the embedding matrix, which was used as the input

matrix to DNN layer.

DNN layer

The DNN layer consisted of a multi-scale convolutional neural network (CNN) and bi-direc-

tional long short-term memory (BiLSTM). Firstly, the multi-scale convolutional layer was

used to extract the semantic features of the sequence. To obtain more comprehensive features,

the convolution windows with sizes 2, 3 and 8 were used to extract the peptide features of dif-

ferent sequence lengths. Then, with the convolution feature matrix, the maximum pooling

operation was used to reduce the number of features and prevent over-fitting. Secondly, fea-

ture matrix extracted from CNN was used as the input matrix to BiLSTM. We used BiLSTM to

extract the hidden information in sequences, and it can also achieve long-dependent sequence

information. The core of BiLSTM was to use memory cells to remember long-term historical

information that could be impressed with memory cells and managed with a door mechanism.

The door structure was used to limit the amount of information. BiLSTM effectively captured

the relationship between the properties of the sequence in the forward and backward direc-

tions to obtain global information from the sequences [41]. Finally, sequence feature matrix

extracted from BiLSTM was used as the input matrix to MHSA layer.

MHSA layer

MHSA was proposed to focus attention on different parts of the peptide sequence. Therefore,

in our model architecture, MHSA layer further optimized the sequence features filtered by

DNN layer to capture evolutionary features. MHSA was composed of multiple self-attention

(SA) mechanisms, which were used to represent the context of learning sequences. The mathe-

matical description of SA is as follows:

Q ¼ F�WQ

K ¼ F �WK

V ¼ F�WV

ð1Þ

8
><

>:

Attention Q;K;Vð Þ ¼ softmax
Q � KT

ffiffiffiffiffi
dk

p

 !

V ð2Þ

where F 2 RL�dm is the output matrix of DNN layer, and Q;K;V 2 RL�dk are the query, key

and value matrix, respectively. These matrixes are obtained by F through a linear transforma-

tion with WQ;WK ;WV 2 Rdm�dk , here dm is twice the dimensionality of the BiLSTM hidden
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layer, dk is the dimension of the query, key or value vector and L is the length of an input

sequence.

Based on the SA mechanism, the linear matrix was changed from one set (WQ, WK, WV) to

multiple sets {ðWQ
0 ;WK

0
;WV

0
Þ, . . ., ðWQ

i ;WK
i ;W

V
i Þ}. Different randomly initialized linear

matrices (WQ, WK, WV) can map input vectors to different subspaces, allowing the model to

understand input information from different spatial dimensions. Therefore, the mathematical

description of MHSA is as follows:

Headi ¼ AttentionðQWQ
i ;KW

K
i ;VW

V
i Þ; i ¼ 1; � � � ; h ð3Þ

MHSAðQ;K;VÞ ¼WO � concatðhead1; � � � ; headhÞ ð4Þ

where WQ
i ;WK

i ;W
V
i 2 R

dm�dk are the query, key and value matrixes of the i-th head, respec-

tively, h is the size of heads and WO 2 Rdm�hdk is a linear transformation matrix to map the out-

put of MHSA to the space of the same dimension.

Classification layer

We used the full connection layer as the classification layer. The vector from the fully con-

nected layer was used as the input of the output layer. In the multi-label problem, the probabil-

ity of each node was independent with each other, and binary cross-entropy was used as the

loss function. Taking sigmoid as the activation function, the score of each node between 0 and

1 was obtained. Finally, we used the threshold of 0.5 to get the prediction label of each

category.

2.3 Class weights

In this work, the multi-label dataset is imbalanced, in which some therapeutic peptides are

very frequent (for example, the number of therapeutic peptide in the largest class (ABP) is

2,154), while others are quite rare (for example, the number in the smallest one (AEP) is 58).

Therefore, we proposed a class weight optimization method to add class weights to different

labels, with the prupose of overcoming the imbalanced problem. We named this novel calcula-

tion method as CW, and its mathematical description is as follows:

CW : Wi ¼ φ � log
N
ni

� �y

ð5Þ

where Wi is the weight of the i-th class, N is the total number of instances in the training set, ni
is the number of instances that are associated with the i-th class, φ is a hyperparameter whose

purpose is to increase the loss value of the model by doubling the label weight of each category,

and θ is a constant, and its constraints are as shown in Formula (6):

1 � y �
ln X � ln Y

ln logY X
ð6Þ

where X is obtained by dividing N by the minimum value of ni, and Y is obtained by N by max-

imum value of ni.

2.4 Performance metrics

As illustrated in the previous works on multi-label classifications [42–44], several evaluation

indexes have been proposed to evaluate the model performance. In this work, the performance

of our proposed multi-label models is estimated by Precision, Coverage, Accuracy, Absolute
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true, and Absolute false. The mathematical description of these measurements is as follows:

Precision ¼
1

N

XN

i¼1

kLi
T
L�i k

kL�i k

Coverage ¼
1

N

XN

i¼1

kLi
T
L�i k

kLik

Accuracy ¼
1

N

XN

i¼1

kLi
T
L�i k

kLi
S
L�i k

Absolute true ¼
1

N

XN

i¼1
DðLi; L

�

i k

Absolute false ¼
PN

i¼1

kLi
S
L�i k � kLi

T
L�i k

M

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

where N is the total number of multi-functional therapeutic peptide sequences in the datasets,

M represents the number of labels, that is the function types of therapeutic peptides \/[

denotes the intersect/union in the set theory, k�k indicates the operation of calculating the

number of elements, Li represents the subset of the i-th sample with real labels, and L�i repre-

sents the subset of the i-th sample with labels predicted and

DðLi; L
�

i Þ ¼
1; if L�i is identical to Li

0; other

(

statistical significance of differences between methods is quantified with the t-test.

2.5 Implementation details

Our prediction model was implemented using Tensorflow 1.12.0 and Keras 2.2.4. In the com-

puter with an Intel(R) Xeon(R) CPU@2.20GHz and NVIDIA Titan XP GPU, it took about 2

hours to train the PrMFTP model, and PrMFTP took about 600 seconds for multi-functional

therapeutic peptides prediction on test set. It is generally known that the performance of the

DL model was affected by some hyperparameters, such as learning rate, number of hidden lay-

ers, and dropout regularization [45]. These hyperparameters were optimized by grid search on

the training set with 5-fold cross-validation to achieve an optimal model as shown in S1 Table.

In the DNN layer, CNN was constructed using the Conv1D function in Keras. To extract the

features of peptide sequences with different lengths, three convolutional kernel sizes ks 2 {2, 3,

8} were selected. Then, we trained our model with Adam optimizer, batch size = 64 and

epochs = 60. To eliminate the effects induced by the random initialization of the DL frame-

work, we repeated the training of all models ten times, and the average scores were obtained as

the final predicted results for a test sample.

3. Results and discussion

3.1 Comparison of multi-label models using classical ML and DL methods

To achieve a high-effective model for multi-label therapeutic peptides prediction, we com-

pared the performance of these models based on different classical ML methods (such as BR

[28], CLR [29], random k-labelsets multi-label classification (RAKEL) [42] and RBRL [31])

and DL models (such as CNN, BiLSTM, CNN+BiLSTM, CNN+BiLSTM+SA). To ensure the

fairness of model comparison, during the training processes for other ML and DL models, we

employed two strategies: (1) the peptide sequences were uniformly encoded into digital vectors

with a fixed dimension and served as input vectors for all models, and (2) we applied
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hyperparameter optimization for other ML and DL methods using a grid search method on

the training with five-fold cross-validation. The classification performance of these models on

the training set is presented in Fig 2 and S2 Table. As the more important metrics for multi-

label classification evaluation, Accuracy and Absolute true were used to select the more perfect

model. Fig 2 shows the average value of Accuracy and Absolute true on the training set, and

we can see that CNN+BiLSTM+MHSA model has the best performance compared with other

models. S2 Table shows that our model (CNN+BiLSTM+MHSA) is significantly on the train-

ing set with 5-fold cross-validation. CNN and BiLSTM in the DNN layer are used for local and

global feature extraction, meanwhile, MHSA is used for further feature filtering. In addition,

the performance of models based on DL is generally higher than that of models using classical

ML. DL model automatically extracts the implicit feature information of peptide sequence to

improve the performance of the model.

The performance of these models on the test set is shown in Table 2, which is similar with

that on the training set. Compared with models based on CNN, BiLSTM and CNN+BiLSTM,

our CNN+BiLSTM+MHSA model has 4.8% higher for Accuracy and 5.2% higher for Absolute

true on the test set. Our model used the MHSA to optimize the feature matrix extracted from

Fig 2. Accuracy and Absolute true of multi-label therapeutic peptides prediction models using different classical ML and DL algorithms on the training set with

5-fold cross-validation.

https://doi.org/10.1371/journal.pcbi.1010511.g002
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DNN layer. Compared with SA, the Accuracy and Absolute true of the model are improved by

3.8% and 3.7%, respectively. Therefore, we applied CNN+BiLSTM+MHSA model for multi-

functional therapeutic peptides prediction.

3.2 Comparison with classical algorithms for solving the problem of

imbalanced data classification

Considering the high imbalanced level in the benchmark dataset, the undersampling method

is easy to cause the loss of label information, especially the peptides with multiple labels. The

oversampling method increases the size of peptide data with a small numbers, but it may affect

other labels and lead to overfitting [46]. As a cost-sensitive approach, class weight optimization

has been used to handle the imbalanced problem in the multi-label dataset [47]. In the previ-

ous studies, two methods [48] [46] have been proposed and applied to improve the multi-label

classification performance (here we called these methods as CW1 and CW2, respectively).

Considering the successes of CW1 and CW2, we employed these two class weight optimization

methods in this study. In addition, we proposed CW as the third method. To estimate the

improvement based on these three methods, we compared the values of Accuracy and Abso-

lute true among the base model with different class weight optimization methods (CW1, CW2,

and CW) on the same test subsets. We randomly extracted 80% of the test set results and

repeated them five times to obtain five test subsets. The average values of Accuracy and Abso-

lute true on the test set is shown in Fig 3, and the other metrics of the predicted results on the

test set are in S3 Table. The results indicate that the model base+CW is superior to the other

base models (base, base+CW1, base+CW2), and achieves the highest performance

improvement.

The performance of these models is associated with class weight values, so we investigated

the distribution of the class weight values of CW1, CW2 and CW methods for each label of

therapeutic peptides. The class weights calculated by different methods are shown in S2 Fig.

Comparing with the CW1 and CW2 methods, the CW method makes the value range of class

weights and the difference among these class weights in relatively reasonable regions. More-

over, we can find the optimal depth learning parameters in the process of model training by

increasing the weight of each class. Compared with CW2 and CW, CW1 set a higher weight

for the classes with the smaller numbers. It will result in the decline of the overall performance

of the model. By comparing the base+CW2 and base+CW models with the base model, it can

be seen that the method of adding class weight can deal with the imbalance of multi-label data,

and improve the performance. Finally, the base model combined with CW, named PrMFTP,

was used for multi-functional therapeutic peptides prediction.

Table 2. The performance of multi-label therapeutic peptides prediction models on the test set. The highest value is highlighted in bold.

Model Precision " Coverage " Accuracy " Absolute true " Absolute false #

BR 0.427 0.437 0.394 0.325 0.050

CLR 0.418 0.428 0.387 0.320 0.047

RAKEL 0.349 0.317 0.307 0.265 0.052

RBRL 0.513 0.507 0.478 0.426 0.057

CNN 0.456 0.410 0.406 0.366 0.042

BiLSTM 0.572 0.532 0.522 0.472 0.037

CNN+BiLSTM 0.563 0.509 0.505 0.458 0.037

CNN+BiLSTM+SA 0.589 0.535 0.532 0.487 0.036

CNN+BiLSTM+MHSA (our model) 0.626 0.574 0.570 0.524 0.034

https://doi.org/10.1371/journal.pcbi.1010511.t002
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To further verify the superiority of CW method, MLSMOTE [49], a variation of SMOTE

for multi-label sets, has been used to compare with our CW method. The results are shown in

S3 Table, and it is found that CW method achieves better performance(Precision = 0.699, Cov-

erage = 0.669, Accuracy = 0.651, Absolute true = 0.593 and Absolute false = 0.031)than

MLSMOTE (Precision = 0.638, Coverage = 0.606, Accuracy = 0.591, Absolute true = 0.536 and

Absolute false = 0.033) on the test set. As an oversampling method, MLSMOTE can increase

the data size of minority labels, but may affect other labels and lead to overfitting. As a cost-

sensitive method, CW considers higher costs for the misclassification of minority classes to

handle the multi-label imbalanced data and improve the model performance.

3.3 Performance comparison of PrMFTP with the existing methods

At present, there are few methods to predict the MFTP, including TP-MV [50], MLBP.

Although TP-MV is a therapeutic peptides prediction, PrMFTP cannot compare with this

method. It is because that TP-MV used binary relevance to transform the multi-label task to

more binary problems for specific functional peptides prediction. Our PrMFTP applied algo-

rithm adaptation to construct a general model effectively and could be used for any functional

peptide identification. Given abovementioned reason, we compared PrMFTP with MLBP, not

TP-MV.

MLBP based on multi-label DL method, MLBP was used to identify the multi-functional

peptides of bioactive peptides, which can simultaneously predict multiple functional peptides

Fig 3. The performance comparison of the base (CNN+BiLSTM+MHSA) model with different algorithms for solving the problem of imbalanced data classification

on the test set. A. Accuracy; B. Absolute true. Base+CW (our model) is significantly better at P-value< 0.001 (t-test).

https://doi.org/10.1371/journal.pcbi.1010511.g003
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including ACP, ADP, AHP, AIP, and AMP [4]. To further evaluate the performance of

PrMFTP, we compared PrMFTP with MLBP. To ensure the fairness of the comparison, we

retrained the model MLBP on our training set and compared the performance on the same

test subsets. We randomly extracted 80% of the test set results and repeated them five times to

obtain five test subsets. The average value of Precision, Coverage, Accuracy, Absolute true, and

Absolute false for the five test subsets are shown in Fig 4. The result indicates that PrMFTP is

superior to MLBP on all evaluation metrics. For example, Accuracy and Absolute true of

PrMFTP were increased by 16.0% and 14.8%, respectively. It was noteworthy that MHSA in

the PrMFTP model could further filter and optimize the features, and PrMFTP solved the

problem of data imbalance through the optimization of class weight to improve the prediction

performance of the model. To sum up, PrMFTP has a comparatively excellent performance.

3.4 Ablation study

According to the comparison of PrMFTP and MLBP (Fig 4), we discovered the importance of

MHSA and class weight optimization on performance improvement. To further investigate

the importance of multi-scale CNN, BiLSTM, MHSA, and CW in PrMFTP, we illustrated the

role of these components through ablation experiments and compared the following variants

of PrMFTP:

Fig 4. Performance comparison of MLBP and PrMFTP. A. Precision, Coverage, Accuracy and Absolute true; B. Absolute false. ���� mean that PrMFTP is significantly

better at P-value< 0.0001 (t-test).

https://doi.org/10.1371/journal.pcbi.1010511.g004
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• w/o CNN is a variant that does not use multi-scale CNN.

• w/o BiLSTM is a variant that does not use BiLSTM.

• w/o MHSA is a variant that does not use MHSA.

• w/o CW is a variant that does not use CW.

Table 3 shows the performance of PrMFTP and their variants on the performance on the

same test subsets. We randomly extracted 80% of the test set results and repeated them five

times to obtain five test subsets. As seen, the removal of any module in PrMFTP would induce

the performance decreases. This result illustrates that each module is crucial to PrMFTP’s per-

formance. On the test set, the performance of the w/o BiLSTM model decreased most drasti-

cally, and the Accuracy and Absolute true decreased by 9.4% and 8.7%, respectively, followed

by the w/o CNN model (the Accuracy and Absolute true decreased by 7.5% and 7.4%, respec-

tively), the w/o CW model (the Accuracy and Absolute true decreased by 8.0% and 6.9%,

respectively), and the w/o MHSA model (the Accuracy and Absolute true decreased by 3.0%

and 3.5%, respectively). Comparing the results of the w/o CW, w/o BiLSTM, and PrMFTP

models, the features extracted by the DL layer are conducive to improving the prediction per-

formance of the model. Comparing the results of w/o CW and PrMFTP models, adding class

weights is beneficial to improve the performance of the model. Removing MHSA leads to the

performance degradation of the model, which shows that MHSA can optimize the extracted

features and improve the performance of the model.

3.5 The PrMFTP web server

To facilitate the pre-screening of therapeutic peptides by researchers, we established a user-

friendly web server for the PrMFTP model (http://bioinfo.ahu.edu.cn/ PrMFTP). In this web

server, the user can input the FASTA formatted peptide sequences into the main box or upload

a FASTA file containing peptide sequences. Then, the user could achieve the prediction results

with the mailbox or on the webserver. After that, the user clicks the submit button and start

the prediction of these unknown peptides. It needs only a few minutes for the predicted

results.

Conclusion

In this study, to address the multi-functional prediction of therapeutic peptides, we propose a

new prediction model based on MHSA and class weight optimization, called PrMFTP. Com-

pared with the existing multi-label methods, PrMFTP achieves the highest prediction perfor-

mance. The pivotal part of PrMFTP model includes the global and local information

extraction of the sequence through multi-scale CNN and BiLSTM, and then the optimization

of sequence features through MHSA. In addition, PrMFTP model effectively solves the

Table 3. The performance of PrMFTP and their variants on the test set. The highest value is highlighted in bold. w/o is abbreviation of without. The mean ± standard

deviation on 5-fold cross-validation is shown for models. �, ��, ��� and ���� mean that PrMFTP is significantly better at P-value< 0.05, P-value< 0.01, P-value< 0.001

and P-value< 0.0001 (t-test), respectively.

Model Precision " Coverage " Accuracy " Absolute true " Absolute false #

PrMFTP 0.699±0.004 0.669±0.004 0.651±0.004 0.593±0.004 0.031±0.001

w/o CNN 0.618±0.006���� 0.598±0.006���� 0.576±0.006���� 0.519±0.006���� 0.033±0.001���

w/o BiLSTM 0.605±0.005���� 0.573±0.005���� 0.557±0.004���� 0.504±0.004���� 0.034±0.001����

w/o MHSA 0.660±0.002���� 0.651±0.002���� 0.621±0.003���� 0.558±0.004���� 0.032±0.001�

w/o CW 0.629±0.004���� 0.574±0.005���� 0.571±0.005���� 0.524±0.007���� 0.035±0.001����

https://doi.org/10.1371/journal.pcbi.1010511.t003
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problem of data imbalance by adding class weight and optimizing the value of class weight to a

certain extent. In the future development of MFTP prediction, we will consider how to further

solve the imbalance of data sets and improve the prediction performance of the model.
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