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Abstract: Endoplasmic reticulum stress (ERS) and autophagy pathways are implicated in disuse
muscle atrophy. The effects of high eicosapentaenoic (EPA) or high docosahexaenoic (DHA) fish oils
on soleus muscle ERS and autophagy markers were investigated in a rat hindlimb suspension (HS)
atrophy model. Adult Wistar male rats received daily by gavage supplementation (0.3 mL per 100 g
b.w.) of mineral oil or high EPA or high DHA fish oils (FOs) for two weeks. Afterward, the rats
were subjected to HS and the respective treatments concomitantly for an additional two-week period.
After four weeks, we evaluated ERS and autophagy markers in the soleus muscle. Results were
analyzed using two-way analysis of variance (ANOVA) and Bonferroni post hoc test. Gastrocnemius
muscleω-6/ω-3 fatty acids (FAs) ratio was decreased by both FOs indicating the tissue incorporation
of omega-3 fatty acids. HS altered (p < 0.05) the protein content (decreasing total p38 and BiP
and increasing p-JNK2/total JNK2 ratio, and caspase 3) and gene expressions (decreasing BiP and
increasing IRE1 and PERK) of ERS and autophagy (decreasing Beclin and increasing LC3 and ATG14)
markers in soleus. Both FOs attenuated (p < 0.05) the increase in PERK and ATG14 expressions
induced by HS. Thus, both FOs could potentially attenuate ERS and autophagy in skeletal muscles
undergoing atrophy.

Keywords: ω-3 fatty acids; eicosapentanoic acid; docosahexaenoic acid; hindlimb suspension;
skeletal muscle atrophy; unfolded protein response

1. Introduction

Aging, catabolic states (e.g., cancer and sepsis), and lack of mechanical load cause
skeletal muscle atrophy. There are several strategies to treat skeletal muscle atrophy [1–4].
One of them is dietary supplementation [5,6], including administration of fish oils (FOs) [7].
FOs contain high amounts of eicosapentaenoic (EPA) and docosahexaenoic (DHA), ω-3
fatty acids (FAs). Previous studies reported that these FAs improve conditions with
marked skeletal muscle mass loss [8–10]. Administration of ω-3 FAs increases protein
synthesis [11–13] and decreases protein degradation signaling [14,15] in the skeletal muscle.
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Endoplasmic reticulum stress (ERS) promotes unfolded protein response (UPR), reduc-
ing protein synthesis and augmenting the content of chaperones and of protein degradation
and autophagy markers. ERS also impacts muscle metabolism, adaptation, and remodel-
ing [16,17].

UPR has three signaling branches: UPR activates inositol requiring kinase 1 (IRE1),
double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK)
and activating transcription factor 6 (ATF6) [18]. IRE1α cleaves X-box binding protein (XBP1)
mRNA removing 26 nucleotides and generating the spliced XBP1 (sXBP1) that promotes
transcription of UPR genes. Some IRE1/XBP1 via activated genes takes part in endoplasmic
reticulum (ER)-associated degradation signaling [18]. IRE1α-mediated XBP1 mRNA processing
promotes rapid breakdown and elimination of rough ER-associated mRNAs, decreasing entry
of new proteins into this organelle lumen. When there is a chronic stress condition, activated
IRE1α can trigger downstream phosphorylation of the pro-apoptotic kinase jun N-terminal
kinase (JNK) or p38 members of MAP kinase (MAPK) family [19,20].

Activated PERK raises transcription of UPR regulation genes (through PERK-eIF2α-ATF4
pathway), like chaperones binding immunoglobulin protein (BiP) among others [21,22]. These
genes are associated with oxidative stress suppression and stimulation of autophagy and
cell metabolism [23].

The three signaling branches of UPR promote cell apoptosis through CCAAT/enhancer-
binding protein homologous protein (CHOP) activation [20,24]. CHOP also regulates apoptosis
directly or indirectly affecting the activity of caspase 3 [20]. In addition to mediating apoptosis
through the endogenous and exogenous pathways, CHOP also mediates apoptosis through
other pathways indirectly increasing the oxidation of protein disulfide isomerase (PDI) [20,25].

UPR activation is also associated with increased autophagy activity [26]. Autophagy is an
evolutionarily well-preserved degradation process that maintains cellular homeostasis and
responds to various cellular stressors. It can selectively or non-selectively degrade cellular
components. A gain or a loss of autophagic function can induce cell damage [27–29].

Autophagy is essential for preventing accumulation of misfolded/aggregated pro-
teins and controlling muscle glucose levels, energy balance, and exercise response. In
opposition, increased autophagy activity lowers muscle protein synthesis [30–32]. Due
to these observations, there is an urgent need to investigate autophagy process during
skeletal muscle-induced atrophy conditions. In this line, Beclin, LC3b, and ATG14, markers
of the macroautophagy, are important to consider [33], which involves 4 phases: initiation,
formation, membrane expansion, and maturation [34,35].

Deldicque and colleagues (2010) reported that high-fat diet (HFD) fed mice exhibit
augmented BiP and IRE1α content in soleus muscle. These authors also reported UPR
activation in response to palmitic acid in C2C12 myogenic cells [36]. As mentioned above,
stressful conditions activate the soleus UPR, which is the case of long-distance running [37].
On the other side, bed rest for nine days also activates UPR in human muscle [38]. The
above, increasing the activity of the 26S proteasome or the autophagy process, leads to
skeletal muscle atrophy [39].

Using a hindlimb suspension (HS)-animal model some authors observed an increase
in UPR [40] and autophagy [41] markers whereas others did not [42]. ω-3 FAs have had
different effects on these markers. For example, EPA attenuated lipotoxicity-induced car-
diomyocyte apoptosis through autophagy regulation [43] and DHA modulated ubiquitin
proteasome and autophagy indicating that it could delay muscle mass loss due to aging [44].
In addition, DHA supplementation prior to fasting preserved muscle mass by reducing
activation of AMPK, ubiquitination or autophagy [10]. On the other hand, ω-3 fatty acids
supplementation increases muscle atrophy caused by glucocorticoids in an autophagic,
AMPK and ubiquitination process [45]. In this sense, understanding the effects of two FOs
supplementation in a skeletal muscle disuse condition on UPR and autophagy markers
might shed light on novel therapies for skeletal muscle atrophy.

Along these lines, skeletal muscle atrophy involves an inflammatory phase that occurs
during the first 3–5 days of the process, leading to cell death and tissue remodeling with
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an activation of ERS and autophagy [46–49]. ERS activates UPR proteins, which trigger
a sterile inflammation [50]. Herein, we investigated the effect of anti-inflammatory EPA
or DHA-rich FOs [51] on UPR and autophagy in muscle atrophy induced by HS. It was
hypothesized that this treatment might decrease UPR and autophagy markers activity in
soleus muscle undergoing a disuse-induced atrophy.

This study comprises of a large research project investigatingω-3 FAs (high EPA and
high DHA) in skeletal muscle atrophy induced by HS; we previously published results on
protein synthesis/protein degradation signaling showing that this experimental model
promotes a reduction of body weight, fat mass, muscle weight, and soleus cross-sectional
areas (CSA), and a decrease in protein synthesis and an increase protein degradation [7].
FOs supplementations did not influence changes in body weight or soleus CSA induced
by HS. However, in the percentage of soleus fibers CSA from rats submitted to HS, there
was an increase in the number of fibers in the range of 1000 µm2 by approximately 140%.
On the other hand, with respect to fibers in the range of 800 µm2, supplementation with
both fish oils during HS caused a reduction of about 25% compared with controls. EPA-
high fish oil attenuated the changes induced by HS on 26S proteasome activity, and
levels of p-Akt, total p70S6K, p-p70S6K/total p70S6K, p-4EBP1, p-GSK3-beta, p-ERK2,
and total ERK 1/2 proteins. In turn, DHA-high fish oil attenuated the changes induced
by HS on p-4EBP1 and total ERK1 levels [7]. The results herein reported (UPR and
autophagy markers) and ones previously published (muscle size, proteasome activity,
and protein synthesis/degradation) contribute to the understanding of the effects of FOs
supplementation on skeletal muscle atrophy due to disuse.

2. Materials and Methods
2.1. Animals

We obtained eight-week-old male Wistar rats (weighing 203± 20.1 g) from the Institute
of Biomedical Sciences of University of São Paulo (ICB-USP). We maintained the rats under
a 12-h light/dark cycle with free access to water and food. We followed the Guide for Care
and Use of Laboratory Animals (National Academy of Sciences, Washington, DC, USA).
The ICB-USP Ethics Committee approved the study (24/13/CEUA). The same animals and
study design was used in a previous study [7].

2.2. Experimental Study Design

We randomly divided the rats into six groups of 10 each, totaling 60 in the whole
study. The groups are: MO-C, control receiving mineral oil—MO; MO-HS, HS receiving
MO; EPA-C, control treated with high EPA fish oil; EPA-HS, HS treated with high EPA
fish oil; DHA-C, control treated with high DHA fish oil; and DHA-HS, HS treated with
high DHA fish oil. We administered the oils (0.3 mL per 100 g weight) daily for four weeks
by gavage (for details of the fatty acid composition of each FO used, please see ref. [7]).
The HS was initiated at the end of the second week and continued concomitantly with the
treatments with FOs for another two-week period. We removed soleus and gastrocnemius
muscles from both limbs in the conditions previously described [7]. The soleus muscle
displays more significant mass loss than the extensor digitorum longus in HS [7].

2.3. Hindlimb Suspension (HS)

The HS protocol involved attaching the rat’s tail to a rolling pulley at the top of the
cage and suspending the hind limbs (30◦ suspension) with tape. In this situation, the
animals can still move using the forelimbs but do not use their hindlimbs. The same HS
protocol was used in previous studies from the same laboratory [6,7,52,53].

2.4. Gastrocnemius Muscle Fatty Acid Determination

We measured fatty acid composition as previously reported [7,54,55]. Gastrocnemius
muscle was analyzed instead of the soleus due to the limited number of samples.
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2.5. Mesurements of p-IRE1, JNK 1/2, p38, BiP, PDI, CHOP, and Caspase 3 Contents

We prepared soleus muscle extract [7] and measured protein content [56]. Forty µg
protein was separated as previously reported [7] and results normalized by total loading
of proteins [7,57] (Supplemental Figure S1). We expressed the results as relative to MO-C.
We used a mixture of samples collected from all groups as a pool sample and added to
all western blot runs as a normalization factor between membranes (Supplemental Figure
S2). The primary antibodies included phospho-IRE 1 at S724 (p-IRE1, ab48187, Abcam,
Cambridge, MA, USA), phospho-JNK 1/2 at Thr 183/Tyr 185 (p-JNK 1/2, 9251, Cell
Signaling Technology—CST, Beverly, Massachusetts, USA), total JNK 1/2 (9252, CST), p-
p38 at Thr 180/Tyr 182 (9216, CST), total p38 (9212, CST), BiP (3183, CST), Protein Disulfide
Isomerase (PDI, 3501, CST), CHOP (2895, CST), and caspase 3 (9662, CST).

2.6. XBP-1 mRNA Splicing

We used TRIzol reagent (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA)
and RNeasy Mini Kit (Qiagen, Hilden, Germany) to prepare total RNA from soleus (Chom-
czynski and Sacchi, 1987). RNA was transcribed to complementary deoxyribonucleic
acid (cDNA) with the High-Capacity cDNA reverse transcription kit (Applied Biosystems,
Waltham, MA, USA). XBP-1 cDNA was amplified with OneStep reverse transcription poly-
merase chain reaction (RT-PCR) kit (Qiagen) using primers excised by IRE1 exonuclease.
Primer sequences for rat XBP-1 were 5′-AAACAGAGTAGCAGCACAGACTGC-3′ and
5′-TCCTTC TGGGTAGACCTCTGGGAG-3′. The temperatures (◦C) and times (minutes)
used for RT-PCR were, respectively: 50-30; 95-15; 35 cycles at 94-1, 55-1, 72-1; and 72-10.
RT-PCR products were resolved, and the bands visualized, as previously described [58].

2.7. Real-Time Polymerase Chain Reaction (RT-PCR)

Total RNA was prepared as described above. We assessed purity through 260/280 nm
absorbance ratio and RNA concentration using 260 nm absorbance. We used 1.0 µg
total RNA to synthesize cDNA with the High-Capacity kit (Invitrogen). The follow-
ing primers were used: GRP78 (BiP) 5’-GACGCACTTGGAATGACCCTTC-3′ and 5′-
TGGCAAGAACTTGATGTCCTGC-3′; C/EBP homologous protein (CHOP) 5′-ACGGAAA
CAGAGTGGTCAGTGC-3′ and 5′-TGCTCCTTCTCCTTCATGCG-3′; IRE1 5′-TGTGGAGC
AGAAGGACTTCGC-3′ and 5′-TCTGATGAAGCAAGGTGATGGG-3′; PERK 5′-CAAGCC
AGAGGTGTTTGGGAAC-3′ and 5′-TCTCCGTCCAGGGAAGGAATG; Beclin 5′-AGCACG
CCATGTATAGCAAAGA-3′ and 5′-GGAAGAGGGAAAGGACAGCAT-3′; LC3b 5′-CCAA
GCCTTCTTCCTCCTGG-3′ and 5′-TCTCCTGGGAGGCATAGACC-3′; ATG14 5′-TGCCGA
ACAATGGGGACTAC-3′ and 5′-AGGCAGGGTTGTTATGCTCC-3′. We used SyBR Green
JumpStart kit (Sigma Aldrich, Merck, St. Louis, Missouri United States) and Rotor-Gene
6000 instrument (Corbett Research, Mortlake, Australia). RPL37A (5′-CGCTAAGTACACT
TGCTCCTTCTG-3′ and 5′-GCCACTGTTTTCATGCAGGAAC-3′) and HPRT1 (5′-GCGAAA
GTGGAAAAGCCAAGT-3′ and 5′-GCCACATCAACAGGACTCTTTAG-3′) were used as
internal controls to measure gene expression by the 2−∆∆C

T method [59,60].

2.8. Statistical Analysis

Results are reported as the mean ± standard error of the mean (SEM). We used two-
way analysis of variance (ANOVA) to indicate significant effects (p < 0.05) of FO treatments
and HS. A Bonferroni post hoc test indicated differences between groups (GraphPad
Prism software version 4.01; El Camino Real, CA, USA) when a significant interaction
was found. Grubbs’ test-GraphPad software (graphpad.com/quickcalcs/Grubbs1.cfm)
indicated outliers.

3. Results
3.1. Evidence for Incorporation of ω-3 FAs in Skeletal Muscle

Reductions ofω-6 FAs (MO: 28%; EPA: 14%; DHA: 7%) andω-3 FAs (MO: 32%; EPA:
3%; DHA: 4%) observed in the HS groups were less pronounced in rats treated with FOs.

graphpad.com/quickcalcs/Grubbs1.cfm
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In addition to the above,ω-6/ω-3 FAs ratios were lowered by the supplementation (fish
oil supplementation effect, p < 0.001) (Supplemental Table S1 and Supplemental Figure S3).

3.2. IRE1 Signaling in the Soleus Muscle

Using western blot analysis and RT-PCR, p-IRE1 protein content (Supplemental Figure S4)
and sXBP1 mRNA levels were measured, respectively. As described above, IRE1α cleaves
XBP1 mRNA removing 26 nucleotides and generating the spliced XBP1 (sXBP1) that promotes
transcription of UPR genes. Treatment with FOs showed higher values in p-IRE1 protein
content (Figure 1A). sXBP1 was detected in the positive control but it was not found in any
experimental group (Figure 1B).
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Figure 1. (A) Soleus phosphorylated IRE 1 (p-IRE1) content. Membranes stained with Ponceau S to assess total protein
loading (n = 7–8). Results (mean ± SEM) were compared using two-way ANOVA. # For treatments with fish oils (p < 0.05).
The six groups are: MO-C; control receiving mineral oil-MO, MO-HS; HS receiving MO, EPA-C; control treated with high
EPA fish oil, EPA-HS; HS treated with high EPA fish oil, DHA-C; control treated with high DHA fish oil, and DHA-HS; HS
treated with high DHA fish oil. (B) Complementary cDNA bands of not spliced XBP1 (uXBP1) (top band) and spliced XBP1
(sXBP1) (bottom band). Results obtained from 3 independent experiments. C+: positive control (insulin-producing beta-cell
line, INS-1E treated with 1 µM thapsigargin, 1 h). MO: Mineral oil supplementation; EPA: High eicosapentaenoic acid fish
oil supplementation; DHA: High docosahexaenoic acid fish oil supplementation; HS: hindlimb suspension; SEM: Standard
Error of the Mean.

The contents p-JNK 1, total JNK1, p-JNK2, and total JNK2 contents, and p-JNK 1/total
JNK1 ratio were not significantly different among the groups (please see Figure 2 and
Supplemental Figure S4). However, p-JNK2/total JNK2 ratio was significantly higher
(p < 0.05) in MO-HS (119%), EPA-HS (42%), and DHA-HS (59%) than in non-HS rats
(hindlimb suspension effect, Figure 2F).

The p-p38 content and the p-p38/total p38 ratio were not different (p > 0.05, please see
Figure 3 and Supplemental Figure S4). However, total p38 content was significantly lower
(hindlimb suspension effect, p < 0.05) in the MO-HS (41%), EPA-HS (23%), and DHA-HS
(13%) than in the non-HS groups (Figure 3B).
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3.3. Soleus ERS Markers

HS reduced (p < 0.01) soleus BiP protein content (Figure 4) with greater change in
the MO group (~−47%). On the other hand, PDI and CHOP protein content remained
unchanged in all groups (p > 0.05, Figure 4B,C). Caspase 3 content was higher (hindlimb
suspension effect, p < 0.01) in the MO-HS (40%), EPA-HS (28%) and DHA-HS (28%) than in
non-HS animals (Figure 4D and Supplemental Figure S4).
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3.4. Soleus mRNA Expression (RT-PCR) of ER Stress and Autophagy Markers

Expressions of UPR markers (BiP, CHOP, IRE1, and PERK) are in Figure 5, and Supple-
mental Figure S5 and of autophagy markers (Beclin, LC3b, and ATG14) are in Figure 6 and
Supplemental Figure S5). HS decreased (p < 0.001) BiP expression, with the DHA-C being
42% lower than the MO-C group (MO-C, 1.2± 0.2 vs. DHA-C 0.7± 0.1, p < 0.05, Figure 5A).
CHOP expression remained unchanged (p > 0.05, Figure 5B). In contrast, IRE1 expression was
higher in HS (p < 0.01), being more prominent in the MO group (MO: 111%, EPA: 27%, and
DHA: 56%), than in non-HS rats (Figure 5C). PERK expression was changed by FO treatments
(p < 0.01) and HS (p < 0.05), with significant differences between groups (interaction effect,
p < 0.05). PERK expression was augmented in MO rats (MO-C vs. MO-HS, p < 0.001), an effect
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abolished by both FOs; MO-HS: 1.4± 0.2; EPA-HS: 0.8± 0.0; DHA-HS: 0.7± 0.1, MO-HS vs.
EPA-HS, p < 0.01 and MO-HS vs. DHA-HS, p < 0.001 (Figure 5D).

Nutrients 2021, 13, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 5. Effects of hindlimb suspension (HS) and oral fish oil (FO) supplementations (High EPA or High DHA) on soleus 
expression of endoplasmic reticulum stress markers: (A) BiP, (B) CHOP, (C) IRE1, (D) PERK. Results are reported as 
mean ± SEM (n = 6–9). RPL37A and HPRT1 genes are internal controls. BiP, CHOP, and IRE1 results were analyzed using 
two-way ANOVA. * HS effect (p < 0.05). PERK results were analyzed using two-way ANOVA and Bonferroni post hoc 
test. # FO treatment effects (p < 0.05). α Different from MO-C (p < 0.001). β Different from MO-HS (p < 0.01). The six groups 
are: MO-C, control receiving mineral oil-MO; MO-HS, HS receiving MO; EPA-C, control treated with high EPA fish oil; 
EPA-HS, HS treated with high EPA fish oil; DHA-C, control treated with high DHA fish oil; and DHA-HS, HS treated 
with high DHA fish oil. MO: Mineral oil supplementation; EPA: High eicosapentaenoic acid fish oil supplementation; 
DHA: High docosahexaenoic acid fish oil supplementation; HS: hindlimb suspension; SEM: Standard Error of the Mean. 

 

Figure 5. Effects of hindlimb suspension (HS) and oral fish oil (FO) supplementations (High EPA or High DHA) on soleus
expression of endoplasmic reticulum stress markers: (A) BiP, (B) CHOP, (C) IRE1, (D) PERK. Results are reported as mean ±
SEM (n = 6–9). RPL37A and HPRT1 genes are internal controls. BiP, CHOP, and IRE1 results were analyzed using two-way
ANOVA. * HS effect (p < 0.05). PERK results were analyzed using two-way ANOVA and Bonferroni post hoc test. # FO
treatment effects (p < 0.05). α Different from MO-C (p < 0.001). β Different from MO-HS (p < 0.01). The six groups are:
MO-C, control receiving mineral oil-MO; MO-HS, HS receiving MO; EPA-C, control treated with high EPA fish oil; EPA-HS,
HS treated with high EPA fish oil; DHA-C, control treated with high DHA fish oil; and DHA-HS, HS treated with high
DHA fish oil. MO: Mineral oil supplementation; EPA: High eicosapentaenoic acid fish oil supplementation; DHA: High
docosahexaenoic acid fish oil supplementation; HS: hindlimb suspension; SEM: Standard Error of the Mean.

Beclin expression decreased significantly by HS in all groups (hindlimb suspension
effect, p < 0.001), with a prominent level in MO-C (MO-C: 0.8 ± 0.1, EPA-C: 0.6 ± 0.1,
and DHA-C: 0.7 ± 0.1) (Figure 6A). Two-way ANOVA detected significant effect of HS
on LC3b expression (hindlimb suspension effect, p < 0.05), which was increased in the
MO-HS (31%), EPA-HS (19%) and DHA-HS (46%) groups when compared to the non-
HS animals (Figure 6B). Additionally, ATG14 expression was significantly increased by
the HS (hindlimb suspension effect, p < 0.05) with attenuation in this effect by the FO
supplementations (fish oil supplementation effect, p < 0.001) (Figure 6C).



Nutrients 2021, 13, 2298 9 of 15

Nutrients 2021, 13, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 6. Effects of hindlimb suspension (HS) and oral fish oil (FO) supplementations (High EPA or High DHA) on au-
tophagy gene expressions: (A) Beclin, (B) LC3 II, (C) ATG14. Results (mean ± SEM) were compared using two-way 
ANOVA (n = 6–9). * HS effect (p < 0.05). # FO treatment effect (p < 0.05). The six groups are: MO-C; control receiving 
mineral oil-MO, MO-HS; HS receiving MO, EPA-C; control treated with high EPA fish oil, EPA-HS; HS treated with high 
EPA fish oil, DHA-C; control treated with high DHA fish oil, and DHA-HS; HS treated with high DHA fish oil. MO: 
Mineral oil supplementation; EPA: High eicosapentaenoic acid fish oil supplementation; DHA: High docosahexaenoic 
acid fish oil supplementation; HS: hindlimb suspension; SEM: Standard Error of the Mean. 

 

Beclin expression decreased significantly by HS in all groups (hindlimb suspension 
effect, p  ˂0.001), with a prominent level in MO-C (MO-C: 0.8 ± 0.1, EPA-C: 0.6 ± 0.1, and 
DHA-C: 0.7 ± 0.1) (Figure 6A). Two-way ANOVA detected significant effect of HS on 
LC3b expression (hindlimb suspension effect, p  ˂ 0.05), which was increased in the 
MO-HS (31%), EPA-HS (19%) and DHA-HS (46%) groups when compared to the non-HS 
animals (Figure 6B). Additionally, ATG14 expression was significantly increased by the 
HS (hindlimb suspension effect, p  ˂0.05) with attenuation in this effect by the FO sup-
plementations (fish oil supplementation effect, p  ˂0.001) (Figure 6C). 

4. Discussion 
It has been reported that HS mimics spaceflight, bed rest, or the hospitalization state 

in humans [52]. Previous studies of our group [6,7,53] and others [61,62] described that this 
experimental model promotes a reduction of body weight, fat mass, muscle weight, and 
soleus CSA. Concomitantly, there are a drop of protein synthesis and a raise of protein 
degradation. Previously, we showed that in rats subjected to HS, FOs increase CSA of so-
leus muscle fibers. Separately, high EPA FO supplementation attenuates the increase in 26S 
proteasome activity and the decrease on protein synthesis markers. Conversely, high DHA 
FO supplementation has fewer molecular effects in the protein synthesis pathway [7]. 

Figure 6. Effects of hindlimb suspension (HS) and oral fish oil (FO) supplementations (High EPA or High DHA) on
autophagy gene expressions: (A) Beclin, (B) LC3 II, (C) ATG14. Results (mean ± SEM) were compared using two-way
ANOVA (n = 6–9). * HS effect (p < 0.05). # FO treatment effect (p < 0.05). The six groups are: MO-C; control receiving mineral
oil-MO, MO-HS; HS receiving MO, EPA-C; control treated with high EPA fish oil, EPA-HS; HS treated with high EPA fish
oil, DHA-C; control treated with high DHA fish oil, and DHA-HS; HS treated with high DHA fish oil. MO: Mineral oil
supplementation; EPA: High eicosapentaenoic acid fish oil supplementation; DHA: High docosahexaenoic acid fish oil
supplementation; HS: hindlimb suspension; SEM: Standard Error of the Mean.

4. Discussion

It has been reported that HS mimics spaceflight, bed rest, or the hospitalization state
in humans [52]. Previous studies of our group [6,7,53] and others [61,62] described that
this experimental model promotes a reduction of body weight, fat mass, muscle weight,
and soleus CSA. Concomitantly, there are a drop of protein synthesis and a raise of protein
degradation. Previously, we showed that in rats subjected to HS, FOs increase CSA of
soleus muscle fibers. Separately, high EPA FO supplementation attenuates the increase in
26S proteasome activity and the decrease on protein synthesis markers. Conversely, high
DHA FO supplementation has fewer molecular effects in the protein synthesis pathway [7].

In the skeletal muscle, the endoplasmic reticulum regulates calcium concentrations
during muscle contractions and plays a critical role in cellular homeostasis [63]. However,
few studies have investigated strategies to prevent alterations on ERS and autophagy
markers in a muscle disuse condition. The effects of ω-3 FAs (EPA and/or DHA) attenuate
ERS and autophagy markers expressions induced by HS were investigated in the present
study. HS altered the soleus protein content (decreasing total p38 and BiP and increasing p-
JNK2/total JNK2 ratio and caspase 3) and gene expressions (decreasing BiP and increasing
IRE1 and PERK) of ERS and autophagy (decreasing Beclin and increasing LC3 and ATG14)
markers. The treatment with both FOs decreased the ω-6/ω-3 FAs ratio in the skeletal
muscle. In addition, both FOs attenuated the decrease in p-IRE1 content and the increase in
PERK and ATG14 mRNA expressions induced by HS, the last two displaying particularly
meaningful changes as compared to the other measurements. Although in this study the
effect of the groups as a whole must be considered, we also performed an unpaired t-test
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to examine the effects of HS in each condition (MO, EPA or DHA). We observed that fish
oils can attenuate the protein contents changes on p-p38, BiP and caspase 3, and gene
expressions of IRE1, PERK, and Beclin induced by two-week HS.

Herein, there was no evidence of XBP1 splicing in any group. However, there was
a percentage increase in p-IRE1 protein content in the DHA-HS compared to the DHA-
C group. It is known that the IRE1 pathways can also activate apoptosis through JNK
activation [24]. In this sense, it is important to point out that an increase in p-JNK 2/total
JNK 2 ratio in HS rats was found. Another MAPK family member is the p38, which
is activated by inflammatory signals and oxidative stress, and it is involved in muscle
atrophy [64,65]. p38 activates transcriptional factors that lead to protein degradation and
apoptosis in skeletal muscle [66]. While it was not observed increased p38 activation,
a decrease in total p38 content was detected in the HS groups. This reduction in p38
content could account for the observed increase in JNK activity. Notably, an increase
in caspase 3 content was detected in all HS groups after 14 days, indicating apoptotic
pathway activation.

It is well-known that BiP is an essential protein in the UPR and ERS. The release of
BiP from the luminal domain of IRE1, PERK, or ATF6 correlates with an imbalance in the
ER microenvironment and activation of the three signaling pathways. High BiP levels
could delay the UPR, and low levels could prolong it [67]. Woodworth-Hobbs et al. (2017)
reported that muscle atrophy induced by palmitate can be prevented by DHA through
an ERS/UPR mechanism. DHA was postulated to activate proteolysis via caspase and to
augment expressions of autophagy-associated genes [68]. Herein, decreased BiP expression
and protein content and increased IRE1 and PERK expression in the soleus of MO-HS
animals were observed, which is indicative of a prolonged ERS. Both FOs suppressed the
upregulation of IRE1 and PERK expression. This finding may have a significant effect at
the beginning of the UPR signaling, but since there were no differences between groups
regarding JNK activation and caspase 3, PDI, and CHOP expression or content, this effect
was not translated into significant downstream alterations.

It was previously reported by Chen et al. (2015) that transgenic amyotrophic lateral
sclerosis (ALS) mice (G93A*SOD1 heterozygote) displayed increased levels of ERS markers
in the white gastrocnemius fibers. These authors found more pronounced effects than
those reported in the present study, which is probably due to the ALS-related neurological
changes (e.g., degenerative neuromuscular disease) [69]. In addition, the white muscle
portion has more glycolytic/type II fibers with less oxidative capacity, whereas the soleus,
herein studied, has predominantly oxidative/type I red fibers [70]. Differences between
skeletal muscles with different fiber type compositions require further investigation.

Baehr et al. [42] investigated the effects of HS for 14 days followed by the same period
of reloading on 9 (adult) and 29 (aged) months old male F344BN rats. ERS markers (BiP,
PDI, CHOP) contents did not change by HS [42]. These results are consistent with PDI
and CHOP content results herein observed but are in contrast with the decrease in BiP
protein content and gene expression described. Similarly, the authors observed no changes
in autophagy markers (phospho-Unc-51 like autophagy activating kinase-1 [p-ULK1], p62,
ATG7, Beclin, and LC3b-II) in soleus. Despite showing no evidence of autophagy or ERS
increase in the soleus of 9-month-old animals during HS, their data suggest that these
processes are activated upon reloading [42], contrary to what was herein found. These
differences could be due to the strain of rat employed (F344BN vs. Wistar) or animal age
(9 months vs. 2 months).

Herein, Beclin, LC3b, and ATG14 expressions, markers of the macroautophagy, were
evaluated [33]. All HS groups exhibited increased ATG14 and LC3b expressions in the
soleus muscle, markers commonly upregulated during autophagy. However, contrary to
the hypothesis of the present study, the expression of Beclin was reduced by the HS. In the
dynamics of autophagosome formation, ATG14 recruits PI3K-III complex when subjected
to autophagic stress [71–74]. In addition, it is known that the Beclin homodimer is inactive
when bound to the BCL2-complex. However, when BCL2 is phosphorylated, Beclin is
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released, allowing it to bind to ATG14, VPS34 and VPS15 [71]. Therefore, a concomitant
increase in ATG14 and Beclin expression was expected to be observed. However, this was
not the case.

Considering solely the gene expression, without protein translation or post-translational
modifications, stability changes, protein translocation and assembly of the autophagy complex,
there was another study reporting a disconnection between the expression of Beclin and
ATG14. In HeLa cells, siRNA-mediated knockdown of either Beclin or ATG14 did not affect
the mRNA levels of the other gene [75]. Moreover, there are different transcription factors
regulating Beclin1 and ATG14. While forkhead box protein [FoxO] can affect both, others
such as nuclear factor-kappa B [NF-κB], farnesoid X Receptor [FXR], peroxisome proliferator-
activated receptor alpha [PPARα], N-terminal p63 isoform alpha [∆Np63α] and activator of
transcription 1 [STAT-1] were described for Beclin only (reviewed by Füllgrabe et al.) [76]. Thus,
it is possible that an extreme condition like hindlimb suspension, which modulates several
signaling pathways, would interfere with the activity/expression of some of those transcription
factors, with independent effects in the expression of Beclin and ATG14. In this work, a part
of the entire process was evaluated, and other markers can influence this pathway. The
increase in ATG14 and LC3 could have occurred through the PERK-eIF2α-ATF4 pathway [23].
As mentioned above, ERS and autophagy are involved in controlling skeletal muscle mass
loss. Despite some markers of these pathways being upregulated, their specific activation
during muscle unloading requires further investigation. For example, the involvement of
5′ adenosine monophosphate-activated protein kinase [AMPK], a serine/threonine protein
kinase/mammalian target of rapamycin complex [Akt/mTORC], FoxO3, NF-κB, and protein
kinase C theta [PKCθ] should be considered [77–80].

5. Strengths and Limitations

The anabolic effects ofω-3 FAs on protein synthesis were previously described [13].
There is evidence that FO supplementation can improve insulin sensitivity and increase
the protein synthesis pathway activity. FO can also attenuate some markers of the UPR in
ERS-induced conditions (ex. PERK), which is in contrast to the induction of ER ceramide
synthesis by palmitic acid [81]. Herein, high EPA and high DHA FOs attenuated the
increased expression of PERK induced by HS. Such an effect could potentially prevent the
deleterious activation of UPR and ERS during disuse muscle-induced atrophy.

It is important to point out that our study has some limitations. For example, the
experimental protocol was conducted over a fixed period, with supplementation for four
weeks and HS in the final two weeks. The authors interpreted that the effects of the
FOs were mainly due to an increase in the content of ω-3 FAs, but one cannot rule out
a decrease in the proportion of saturated fatty acids plays a role in the results reported.
Additionally, we did not perform any of the analyses on skeletal muscles with different
fiber type compositions. Some autophagy and ERS markers were not evaluated, and some
were evaluated through their gene expression and not their protein content. A possible
total JNK reduction in the DHA group may account for the increased phospho/total
ratio Further research is necessary to detail how FOs could potentially attenuate ERS and
autophagy activities in muscles undergoing atrophy. The supplementation in different
doses of FO in patients under a condition of muscle disuse should be evaluated and muscle
ERS and autophagy markers should be measured. Additionally, studies measuring protein
synthesis/degradation in vivo will be of great interest. However, despite the mentioned
limitations, the results are consistent and support the conclusions of the study.

6. Conclusions

Both FOs attenuated the increase in PERK and ATG14 expressions induced by HS.
Thus, both FOs could potentially attenuate ERS and autophagy in skeletal muscles under-
going atrophy.
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