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Objective: Cross-sectional studies, including one from our NOVICE cohort [Neuro-
logical Visual and Cognitive performance in children with treated perinatally acquired
HIV (PHIV) compared with matched HIV-negative controls], have revealed that the
brains of children with PHIV have lower white matter and grey matter volumes, more
white matter hyperintensities (WMH) and poorer white matter integrity. This longitu-
dinal study investigates whether these differences change over time.

Methods: We approached all NOVICE participants to repeat MRI after 4.6�0.3 years,
measuring total white matter and grey matter volume, WMH volume and white matter
integrity, obtained by T1-weighted, fluid-attenuated inversion recovery (FLAIR) and
diffusion tensor imaging (DTI), respectively. We compared rates of change between
groups using multivariable linear mixed effects models, adjusted for sex and age at
enrolment. We investigated determinants of developmental deviation, and explored
associations with cognitive development.

Results: Twenty out of 31 (65%) PHIV-positive, and 20 out of 37 (54%) HIV-negative
participants underwent follow-up MRI. Groups did not significantly differ in terms of
age and sex. Over time, we found no statistically different changes between groups for
white matter and WMH volumes, and for white matter integrity (P>0.1). Total grey
matter volume decreased significantly less in PHIV [group�time 10 ml, 95% confidence
interval �1 to 20, P¼0.078], but this difference in rate of change lost statistical
significance after additional adjustment for height (group�time 9 ml, 95% confidence
interval �2 to 20, P¼0.112). We found no HIV-associated determinants for potential
reduced grey matter pruning, nor associations with cognitive development.

Conclusion: While using long-term antiretroviral treatment, structural brain development
of adolescents growing up with perinatally acquired HIV appears largely normal.
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Introduction
HIV enters the brain shortly after infection, thereby
potentially posing a threat to normal brain development.
Although severe neurological complications are rare due
to combination antiretroviral therapy (cART) [1],
children with perinatally acquired HIV (PHIV) continue
to show cognitive impairment, cerebral abnormalities and
persistent immune inflammation and immune activation
[2–4].

Normal brain development starts prior to birth and
continues throughout early adulthood [5,6]. It is a highly
dynamic process in which white matter volume increases,
whereas grey matter volume – after initially increasing
similarly – declines from puberty onward.

Up to now, we do not know whether brain development
in cART-treated PHIV-positive children is similar to that
of healthy peers. The few studies that have investigated
this were mostly cross-sectional [7]. Those studies,
including a prior analysis by our group, have reported
that PHIV-positive children have lower brain volumes,
poorer white matter integrity and more white matter
hyperintensities (WMH) [4]. MRI studies in adults on
cART have shown similar changes over 2 years to be
similar compared with HIV-negative comparable con-
trols, suggesting that most damage in HIV-positive adults
likely occurred during the preceding period of untreated
HIV infection [8–10]. However, this may not be
generalizable to children, as HIV-positive adults generally
acquire HIV long after the critical stages of early
brain development.

This analysis from the prospective NOVICE (Neuro-
logical Visual and Cognitive performance in perinatally
HIV-positive children) observational cohort study [3,4]
compared structural brain development between
children with PHIV and controls over 4–5 years of
follow-up.
Materials and methods

Study design and participants
Between December 2012 and January 2014, 35 PHIV
children 8–18 years of age were enrolled into the
NOVICE observational cohort study from the outpa-
tient department of the Amsterdam University Medical
Centers (Amsterdam UMC), location Academic Med-
ical Center, Amsterdam, the Netherlands, and 37 HIV-
negative controls were recruited from the same
communities as the PHIV children and frequency
matched regarding age, sex, ethnicity and socioeco-
nomic status (SES). The outcomes of the first
neuroimaging assessment have previously been pub-
lished in this journal [11]. Exclusion criteria were (non-
HIV associated) chronic neurological diseases such as
seizure disorders, (history of) intracerebral neoplasms
and severe infections, a history of severe traumatic brain
injury (with loss of consciousness longer than 30 min)
and severe psychiatric disorders. Between February
2017 and July 2018, we approached all original
NOVICE participants for follow-up assessment and
included those who provided consent.

Standard protocol approvals, registrations and
patient consents
We obtained written informed consent from participants
older than 12 years and from all parents or legal guardians
of participants younger than 18 years. The Ethics
Committee of the Amsterdam UMC approved the study.
The NOVICE study is registered with the Netherlands
Trial Register (ID NL6813).

MRI data acquisition and processing
We repeated advanced brain imaging on the same 3 Tesla
MRI (Ingenia, Philips Healthcare, Best, the Netherlands)
using the same 16-channel phased array head coil
(Supplementary data for details on acquisition, http://
links.lww.com/QAD/C57). At both time-points, we
assessed two types of outcomes. First, we assessed brain
volumes, and second, we assessed white matter micro-
structure. For brain volumes, we assessed total grey matter
and white matter volume by T1-weighted structural
MRI, and total WMH volume, by T2-weighted fluid-
attenuated inversion recovery (FLAIR). We assessed the
microstructure of white matter by diffusion tensor
imaging (DTI), a technique generally used for this
purpose. We assessed the following DTI measures:
fractional anisotropy, axial diffusivity, radial diffusivity
and mean diffusivity (Supplementary data for details on
MRI data processing, http://links.lww.com/QAD/
C57).

Neuropsychological assessment
All participants underwent neurocognitive assessment by
a well trained neuropsychologist (AMtH) on the same day
the MRI was performed. Neurocognitive assessment
resulted in the following outcomes: intelligence quotient
(IQ), working memory, processing speed, learning
abilities, executive functioning and visual-motor func-
tioning. The details and results of both baseline and
follow-up neurocognitive assessment have been previ-
ously published elsewhere [3,12].

Disease and treatment related characteristics
The Dutch HIV Monitoring Foundation provided data
on historical HIV and cART-related characteristics, such
as age at HIV diagnosis, age at cART initiation, HIV viral
load and CD4þ T-cell counts.

Statistical analysis
We investigated selective dropout in the NOVICE cohort
by comparing MRI outcomes at first assessment between
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PHIV-positive and HIV-negative controls who did or did
not consent to the second MRI assessment. We generated
descriptive statistics for those PHIV and HIV-negative
controls who underwent both MRI examinations and we
compared demographic characteristics using the unpaired
t-test or Mann–Whitney U-test for normally and
nonnormally distributed variables respectively, and
Fischer’s exact test for categorical data.

We performed linear mixed effects model analysis to assess
the association between HIV infection and the rate of
change in total grey matter volume, white matter volume,
WMH volume, fractional anisotropy, axial diffusivity,
radial diffusivity and mean diffusivity over time. We
handled all outcomes as continuous variables. For each
MRI outcome, we used the model to assess cross-
sectional differences between groups at both first and
follow-up assessment. Subsequently, we assessed the
group-by-visit interaction term for each outcome to
evaluate differences in the rates of change over time
between PHIV-positive and HIV-negative controls. We
adjusted all models for the predefined determinants sex
and age at time of first MRI as confounders, as both are
known to be highly associated with brain developmental
trajectories [5]. For interaction terms, we used a
predefined P value cut-off of 0.1. We used a higher
Type I error rate of 10% instead of the traditional 5% to
gain statistical power. When significant, we concluded
that development differs across groups.

We presented least square means and pairwise contrasts
between groups with 95% confidence intervals (95% CIs).
We performed all analyses using R (version 1.1.383) [13].
With respect to white matter integrity, we additionally
performed voxelwise analyses to investigate differences
between groups in specific regions of the brain.

For each neuroimaging outcome that developed signifi-
cantly different between groups, we explored the
association with cognitive development among all
participants. Again, we adjusted for sex and age at first
MRI. Moreover, we analysed possible associations with
HIV and cART-related factors among the PHIV
participants by univariate analysis, given the limited
sample size.

Finally, we performed a sensitivity analysis to determine
whether rates of change over time in those with
detectable HIV viral load were different compared with
the entire PHIV group. We excluded PHIV participants
with episodes of detectable HIV viral load (HIV viral
load), defined as HIV viral load above 200 copies/ml
during follow-up time.

Data availability statement
Data are available from the corresponding author
(M.vdH.) on request, in anonymized form.
Results

Participants’ characteristics
Of the 31 PHIV-positive and 37 HIV-negative controls who
underwent first MRI examination, 20 PHIV (65%) and 23
HIV-negative controls (62%) provided consent for follow-
up MRI. For the 11 PHIV and 14 HIV-negative controls,
reasons to not participate were unwillingness to participate
(nine PHIV and nine HIV-negative), inability to contact
(five HIV-negative) or relocation (two PHIV). PHIV-
positive and HIV-negative controls who consented to
follow-up MRI were not statistically significantly different
at baseline compared with those who did not provide
consent with regards to brain volumetric measures and
fractional anisotropy at the time of first MRI assessment (all
P> 0.05). Table 1 summarizes the characteristics of PHIV-
positive and HIV-negative controls who consented to
follow-up. Three HIV-negative controls were not eligible
for MRI, due to dental braces (n¼ 2), and misfit of the MRI
headcoil (n¼ 1). We performed follow-up MRI after a
mean of 4.6 years (0.3 SD), which was not significantly
different between groups (P¼ 0.694). Participants’ mean
age at timeof follow-up,was 17.0 years (SD3.1). PHIVwere
more often born in sub-Saharan Africa and had more often
been adopted (P¼ 0.008), while the majority of controls
was born in the Netherlands (P< 0.001) to immigrant
parents. The PHIV-positive group had been diagnosed with
HIVat a median age of 1.5 years (IQR 0.8–4.1). Of the 20
PHIV-positive participants, 19 used cARTand had been on
treatment for a median of 15.0 years (IQR 12.3–19.6). At
study entry, children predominantly used an NNRTI-based
regimen (efavirenz). Among the PHIV, 65% had HIV viral
load below 200 copies/ml during the entire period of
follow-up.

Cross-sectional comparisons of brain volumes
and brain white matter integrity at both baseline
and follow-up
Brain volumetric assessment
Total white matter volume was significantly lower among
PHIV than controls both at first MRI (adjusted beta
coefficient �34 ml, 95% CI �63 to �5, P¼ 0.031), and
at follow-up (�32 ml, 95% CI �59 to �5, P¼ 0.032)
(Figs. 1 and 2 and supplementary Tables 1 and 2, http://
links.lww.com/QAD/C57). Grey matter and WMH
volume were not significantly different between groups at
both first MRI (adjusted beta coefficient grey matter
volume �34 ml, 95% CI �74 to 5, P¼ 0.104; WMH
volume 0.090 ml, 95% CI �0.004 to 0.185, P¼ 0.078)
and at follow-up (grey matter volume �15 ml, 95% CI
�51 to 22, P¼ 0.447; WMH volume 0.084 ml, 95% CI
�0.010 to 0.178, P¼ 0.098).

Brain white matter integrity assessment
Regarding whole brain white matter integrity at first
assessment, we found significantly lower fractional
anisotropy (adjusted beta coefficient �0.015, 95% CI
�0.023 to �0.006, P¼ 0.002), higher mean diffusivity
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Table 1. Characteristics of perinatally HIV-positive and HIV-negative participants who underwent two MRI examinations as part of the NOVICE
cohort.

Characteristics n PHIV-positive n HIV-negative P

No. and proportion consenting to second MRI 20/31 (65%) 23/37 (62%)
No and proportion that were eligible for MRI 20 20 (100%) 23 20 (87%)
Interval (y) between MRIs, mean (SD) 20 4.6 (0.3) 20 4.6 (0.3) 0.694
Age at first MRI (years), mean (SD) 20 13.3 (3.4) 20 12.6 (2.7) 0.443
Age at second MRI (years), mean (SD) 20 18.0 (3.4) 20 17.2 (2.7) 0.425
Male sex, No. (%) 20 11 (55%) 20 8 (40%) 0.527
Internationally adopted, No. (%) 20 3 (15%) 20 0 (0%) 0.008
Region of birth, No (%) 20 20 <0.001

The Netherlands 5 (25%) 19 (95%)
Sub-Sahara Africa 12 (60%) 1 (5%)
Othera 3 (15%) 0 (0%)

Ethnicity, No (%) 20 20
Black 16 (80%) 15 (75%) 0.533
Caucasian 0 (0%) 2 (10%)
Other 4 (20%) 3 (15%)

ISCED level of most educated parentb, median (IQR) 20 5.5 (4.8–6) 20 5 (4–6) 0.359
Number of parents with a jobb, No. (%) 18 20 0.228

0 7 (39%) 6 (30%)
1 9 (50%) 7 (35%)
2 2 (11%) 7 (35%)

Height at first MRI (m) 20 1.51 (0.2) 20 1.57 (0.1) 0.204
Height at second MRI (m) 18 1.65 (0.2) 20 1.69 (0.1) 0.303
HIV and cART-related variables
Age at HIV diagnosis (years), median (IQR) 20 1.5 (0.7–4.1)
Nadir CD4þ T-cell z-score, median (IQR) 20 �0.9 (�1.2 to �0.8)
Zenith HIV viral load (log copies/ml), median (IQR) 20 5.5 (4.7–5.8)
CDC category, No. (%) 20

N/A 12 (60%)
B 2 (10%)
C 6 (30%)

Age at cART initiation (years), median (IQR) 17 2.5 (1.2–4.3)
Time between HIV diagnosis and start cART (months), median (IQR) 17 2.5 (1.4–8.3)
Years on cART (years), median (IQR) 17 15.0 (12.3–19.6)
cART at first assessment, No (%) 20 18 (90%)
cART at second assessment, No. (%) 20 19 (95%)
Number of children with VL<200 copies/ml during entire follow-up, No. (%) 20 13 (65%)
MRIs of good quality for assessment

T1-weighted 20 18 (90%) 20 17 (85%)
FLAIR 20 19 (95%) 20 18 (90%)
DTI 20 17 (85%) 20 17 (85%)

ISCED, International Standard Classification of Education.
aOther regions of birth include Latin America and Asia.
bAt first assessment.
(0.025, 95% CI 0.006–0.043, P¼ 0.015) and higher
radial diffusivity (0.026, 95% CI 0.009–0.042, P¼ 0.005)
among PHIV-positive compared with HIV-negative
controls, indicating poorer white matter diffusion in
PHIV. AD was not statistically different between groups at
first MRI (0.023, 95% CI �0.003 to 0.050, P¼ 0.125).
At time of follow-up, fractional anisotropy, radial
diffusivity and mean diffusivity remained significantly
poorer in PHIV compared to controls (adjusted beta
coefficient FA �0.011, 95% CI �0.017 to �0.004,
P¼ 0.004; mean diffusivity 0.016, 95% CI 0.007–0.025,
P¼ 0.002; radial diffusivity 0.017, 95% CI 0.008–0.013,
P¼ 0.001). At follow-up, axial diffusivity was signifi-
cantly higher in PHIV (0.014, 95% CI 0.001–0.028,
P¼ 0.049).

Voxel-wise analysis found no significant differences
between groups regarding fractional anisotropy at first
MRI (P¼>0.05), yet we found significant higher
adjusted measures of axial diffusivity, radial diffusivity
and mean diffusivity in PHIV-positive compared with
HIV-negative participants (all P< 0.05) (data not shown).
At follow-up, voxel-wise analysis showed significant
lower fractional anisotropy, and significant higher axial
diffusivity, radial diffusivity and mean diffusivity in PHIV-
positive adolescents compared with controls (all
P< 0.05).

Longitudinal analysis
Figure 1 and Table 2 show the outcomes for PHIV-
positive adolescents and HIV-negative controls over time.
We found a significant group-by-time interaction for grey
matter volume (adjusted beta coefficient 10 ml, 95% CI
�1 to 20, P¼ 0.078), indicating that grey matter volume
decreased significantly less in PHIV. After we additionally
adjusted for height – as PHIV were consistently, yet not
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Fig. 1. Longitudinal changes over time in brain volumetric and white matter integrity measures. Changes between first and
follow-up MRI measures for perinatally HIV-positive (PHIV) adolescents (in red) and HIV-negative controls (in green). Graphs
show the least-square means with the 95% confidence intervals, adjusted for sex and age at enrolment, and P values for the
adjusted group�time interaction term, cross-sectional comparison between groups at both time-points and within group over time.
significantly shorter compared to HIV-negative controls
– we found that the adjusted interaction term lost
statistical significance (group�time 9 ml, 95% CI �2 to
20, P¼ 0.112). We found no statistically different changes
over time in white matter volume (group�time 1 ml, 95%
CI �6 to 8, P¼ 0.795), nor in WMH volume
(group�time �0.003 ml, 95%CI �0.013 to 0.006,
P¼ 0.507), and in white matter integrity measures (FA
group�time 0.002, 95% CI �0.002 to 0.006, P¼ 0.356;
MD group�time �0.004, 95% CI �0.013 to 0.006,
P¼ 0.480; RD group�time �0.004, 95% CI �0.020 to
0.012, P¼ 0.641; AD group�time �0.004, 95% CI
�0.014 to 0.006, P¼ 0.404).

Associations with cognitive outcomes and HIV
and cART-related factors
Among all participants, the rate of grey matter decline was
not associated with any of the cognitive outcomes
(P> 0.149). Likewise, the rate of grey matter decline
among PHIV-positive participants was not associated
with any historical HIV and cART-related factors
(P> 0.186).

Sensitivity analyses
We repeated the longitudinal model excluding six PHIV
participants with detectable HIV viral load at or between
the two MRI assessments. This did not result in major
changes in the significance of the association between
HIV and any of the brain outcome measures (data not
shown). Initially, we did not adjust for intracranial volume
(ICV), that is cranial size, as we expected ICV volume
differences across groups as part of the effect of HIV. As a
sensitivity analysis, we repeated all models including
adjustment for ICV, which did not result in major changes
in our findings (data not shown).
Discussion

In this unique longitudinal study, we investigated
structural brain development within a cohort of long-
term treated PHIV-positive adolescents and an exten-
sively matched HIV-negative control group over approx-
imately five years. We aimed to understand whether
previously found brain differences are subject to change.
This study suggests that structural brain development, that
is the rate of change over time, in individuals growing up
with PHIV is normal during adolescence. Although this
study may indicate a lower rate of normal grey matter
decline in adolescents living with PHIV, we found no
HIVor cART-related associations, and all other outcomes
of structural brain development appear to develop
similarly.

As expected for normal brain development [14], we
observed an increase in total white matter volume and a
decrease in total grey matter volume, both in PHIV-
positive and HIV-negative study participants who, over a
period of approximately 5 years time, had transitioned
into adolescence and young adulthood. Although the rate
of change in white matter volume did not differ between
groups, white matter volume remained significantly
lower in PHIV-positive adolescents and young adults, as
had been the case during their childhood.

Although our initial analyses suggested that PHIV might
have a slower age-appropriate pruning in total grey
matter, the observed difference between PHIV and
controls appeared largely attributable to variation in
height. In addition, we found no HIV or cART-related
factors determinants of grey matter decline, and no
association with cognitive development. In particular, we
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Fig. 2. Group averages of total white matter, grey matter and white matter hyperintensity volume of perinatally HIV-positive
adolescents and HIV-negative controls at first and second MRI.

Table 2. Longitudinal changes over time in brain volumetric and white matter integrity measures in perinatally HIV-positive and HIV-negative
participants who underwent two MRI examinations as part of the NOVICE cohort.

Group M Time unadjusted Group M Time adjusted

T1-weighted MRI n Coefficient (95% CI) P Coefficient (95% CI) P

Total GM volume 35 10 (–1 to 20) 0.078 10 (–1 to 20) 0.078
Total WM volume 35 1 (–6 to 8) 0.795 1 (–6 to 8) 0.795
T2-weighted FLAIR

WMH volume 37 –0.003 (–0.013 to 0.006) 0.507 –0.003 (–0.013 to 0.006) 0.507
Diffusion MRI

Whole brain FA 34 0.002 (–0.002 to 0.006) 0.356 0.002 (–0.002 to 0.006) 0.356
Whole brain MD 34 –0.004 (–0.016 to 0.007) 0.480 –0.004 (–0.013 to 0.006) 0.480
Whole brain RD 34 –0.004 (–0.014 to 0.006) 0.404 –0.004 (–0.020 to 0.012) 0.641
Whole brain AD 34 –0.004 (–0.021 to 0.013) 0.641 –0.004 (–0.014 to 0.006) 0.404

We present unadjusted outcomes, and outcomes adjusted for sex and age at first MRI. We report total white matter (WM), grey matter (GM) and
white matter hyperintensity (WMH) volume in ml. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD)
represent diffusivity measures. MD, AD and RD values are x 1000.
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did not find an association with executive functioning
development, which we found to be delayed in a previous
analysis in the same cohort [12]. Altogether, this further
supports our previously proposed hypothesis that the
developmental delay in executive functioning might be
explained by brain damage induced during the time these
children were exposed to uncontrolled HIV replication
[12].

Up to now, only two other longitudinal studies have
investigated brain development in PHIV-positive chil-
dren transitioning into adulthood [15,16]. Both studies
were limited by a follow-up time of only one year, as well
as by the fact that they investigated brain development
from a limited perspective, primarily focusing on either
subcortical structures using 1.5T MRI [15] or solely
performing region of interest analysis, studying grey
matter and cortical thickness development [16]. None-
theless, in line with the results of our findings, the effect of
HIV on brain morphology was suggested to be subtle.

This study suggests an increase in WMH volume over 5
years of follow-up in both PHIV-positive and HIV-
negative participants. In general, it is important to realize
that absolute WMH volumes are low. WMHs are
common findings in elderly, positively associated with
age [17], presumed to result from chronic ischaemia
associated with cerebral small vessel disease [18], and
associated with an increased risk of cognitive decline,
stroke, dementia and death [19]. In a young and healthy
population, however, WMHs are not commonly
observed, with a reported prevalence of 5.3% between
the age of 16 and 65 years [20]. Research on WMH in the
paediatric population is scarce and clinical implications
are understudied [11,21–23]. Only a few cross-sectional
studies mention WMHs in PHIV children [11,24], yet
this is the first study that has investigated the development
of WMHs over time.

Although this study makes an important contribution to
research in the field of paediatric HIV due to its
longitudinal design with long-term follow-up of treated
PHIV participants and well matched controls, some
limitations need to be acknowledged. The software of the
scanner was updated between the first and follow-up
MRI. We observed no major differences between time-
points, but this does not fully rule out improved image
quality at follow-up MRI. As this likely would have
occurred for both HIV-positive and HIV-negative
participants, we consider this less of a limitation.
Although the number of participants is considered
substantial in the field of neuroimaging research, we
acknowledge that this may still have been too small to
detect some potentially meaningful differences and also
precluded us from performing extensive multivariable
analyses. Although we used a higher Type I error rate for
interaction terms, this cut-off remains arbitrary and
accordingly results need to be interpreted cautiously [25].
Future studies may benefit from the inclusion of HIV-
exposed but uninfected controls to further elucidate the
impact of prenatal HIV/cART exposure. Moreover, we
encourage future studies to validate our findings by
undertaking longitudinal studies that start at birth.

In conclusion, this longitudinal study paints a fairly
optimistic picture on structural brain development in
adolescents with perinatally acquired HIV on sustained
antiretroviral treatment. Although cross-sectional differ-
ences persist, this longitudinal study suggests that the
development of brain structure during adolescence
appears to be normal.
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