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Abstract: Aconitic acid (propene-1,2,3-tricarboxylic acid) is the most prevalent 6-carbon organic
acid that accumulates in sugarcane and sweet sorghum. As a top value-added chemical, aconitic
acid may function as a chemical precursor or intermediate for high-value downstream industrial
and biological applications. These downstream applications include use as a bio-based plasticizer,
cross-linker, and the formation of valuable and multi-functional polyesters that have also been used
in tissue engineering. Aconitic acid also plays various biological roles within cells as an intermediate
in the tricarboxylic acid cycle and in conferring unique survival advantages to some plants as an
antifeedant, antifungal, and means of storing fixed pools of carbon. Aconitic acid has also been
reported as a fermentation inhibitor, anti-inflammatory, and a potential nematicide. Since aconitic
acid can be sustainably sourced from renewable, inexpensive sources such as sugarcane, molasses,
and sweet sorghum syrup, there is enormous potential to provide multiple streams of additional
income to the sugar industry through downstream industrial and biological applications that we
discuss in this review.

Keywords: aconitic acid; polyester; polymer; tissue engineering; plasticizer; cross-linker; antifeedant;
sugarcane; sweet sorghum; molasses

1. Introduction

Aconitic acid, propene-1,2,3-tricarboxylic acid (Figure 1), is listed as one of the top
30 value-added chemicals by the Department of Energy for its use in industry as a chemical
building block and precursor to other important chemicals and polymers [1]. Aconitic acid
also plays a role in biological systems and has numerous applications that will be discussed
herein [2].
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Figure 1. Chemical structure of trans-aconitic acid and its three stepwise carboxylic acid dissociation 
constants in aqueous solution. Cis-aconitic acid is obtained by rotation around the circled double 
bond. Dissociation constants [3,4]. 
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Figure 1. Chemical structure of trans-aconitic acid and its three stepwise carboxylic acid dissociation
constants in aqueous solution. Cis-aconitic acid is obtained by rotation around the circled double
bond. Dissociation constants [3,4].
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In nature, aconitic acid exists in two forms: trans and cis, with the trans-aconitic acid
(TAA) isomer being the predominant, stable form. Aconitic acid is produced by several
higher plants as part of a strategy to balance the redox level, store fixed pools of carbon,
ameliorate the impact of aluminum ions, and regulate reactions of the tricarboxylic acid
(TCA) cycle [5–7]. The cis isomer of aconitic acid (CAA) is a low-level intermediate in the
TCA cycle during the conversion of citrate to isocitrate by aconitase and can be converted
to trans-aconitic acid, as shown in Figure 2. While the trans-form is energetically favored,
the isomer conversion facilitated by the aconitate isomerase is reversible. On an industrial
scale, aconitic acid can be abiotically synthesized from citric acid through a dehydration
reaction with sulfuric acid or methane sulfonic acid [8].
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While abiotically-synthesized aconitic acid is available, there is still considerable
interest in producing or extracting aconitic acid inexpensively from renewable sources for
use as chemical building blocks and precursors. Aconitic acid is the main organic acid
that accumulates in sugar cane (Saccharum officinarum L.) and sweet sorghum (Sorghum
bicolor L. Moench) and can be as high as 0.9–5.5% of dissolved solids [9]. It is present in
the juice from the crushed sugar cane and sweet sorghum stalks as well as in the resulting
syrups and molasses from the refining process [10]. In particular, TAA-rich sugar cane
molasses is an inexpensive, renewable source of TAA. As a high-value chemical, TAA may
provide another revenue stream for the sugar industry due to its industrial and biological
applications [2].

Alternatively, one group has taken the approach of engineering Escherichia coli to
produce aconitic acid through clustered regularly interspaced short palindromic repeats
(CRISPR) interference-based modulation of metabolism pathways to produce high levels
of aconitic acid using glucose as a carbon source for fermentation [11]. Moreover, another
group heterologously expressed aconitate isomerase and aconitate hydratase in E. coli to
produce TAA from citrate [12]. However, using sugar cane molasses or sweet sorghum
syrup as a source of TAA may be more cost-effective and advantageous since these alter-
native renewable resources are readily available without the need for extensive genetic
engineering or fermentation using expensive feedstock [2].
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This review will focus on several different potential applications of aconitic acid in
industry, its role in biological applications and systems, and the recovery of the acid from
sugar crops. To the best of our knowledge, this is the first comprehensive review to cover
aconitic acid research and its chemical and biological applications. The review spans from
the earliest mention of aconitic acid in 1877 to the most recent relevant research in 2022.
Seventy of the references are since 2010, 16 from 2000–2009, and 35 prior to the year 2000.

2. Industrial Applications

The potential use of aconitic acid in industry is impressive, often in the form of a
reactant or precursor in an organic reaction. A summary of potential industrial applications
of aconitic acid are listed in Table 1, which will be expanded on in the next sections.

Table 1. Summary of potential industrial applications of aconitic acid.

Industrial Uses and Applications References

formation of polyesters for tissue engineering [13–16]
bio-derived plasticizer [17,18]

hyperbranched ester polymers [13]
chemical conversion to C5 itaconic acid [1]

polymers to form microparticles for drug delivery [19,20]
cross-linking of polybenzimidazole chains for H2/CO2 separation [21]

cross-linking of starch polymers [18]
production of methylacrylic acid [22]

trans-tri-methyl aconitate in green click reactions [23]
grafting agent to modify chitosan as an adsorbent [24]

production of green surfactant [25]

2.1. Aconitic Acid Esters for Tissue Engineering

Aconitic acid can be widely used in the production of various polyesters due to
the reactivity of its three carboxylic acid groups. Multiple examples are reported in the
literature. For instance, aconitic acid has been used to produce biocompatible polyesters for
bone tissue engineering. TAA, along with glycerol and cinnamic acid, were used to produce
biocompatible polyesters through a polycondensation reaction to form a polymer scaffold
that mimics extracellular matrix upon which bone tissue can be assembled in the presence
of growth factors [15]. Additionally, thin layer polyester film scaffolds were synthesized to
be applicable for skin tissue and wound healing with appropriate growth factors [15,16].

Cao et al. [13] reported the use of aconitic acid in the production of hyperbranched ester
polymers. This was achieved by combining aconitic acid (B3 monomer) and di(ethylene
glycol) (A2 monomer) in a one-pot polymerization reaction. The ester polymers were
formed between the hydroxyl groups of the diethylene glycol and the three carboxylic
acid groups of the aconitic acid, of which the third COOH group (farthest from the C-C
double bond) designated c was the most reactive. This type of polymer may be useful for
tissue engineering since it is biodegradable and compatible with tissues such as ophthalmic,
cardiac, and vascular [13]. Another study utilized chemically produced citric acid-derived
aconitic acid that could be decarboxylated to produce methylacrylic acid (MAA) using a
BaAl12O19 catalyst to give a 51% yield [22]. MAA is useful in the production of biobased
polymers [22].

2.2. Aconitic Acid Esters as Plasticizers

Plasticizers interact with polymers to increase flexibility and softness [26]. Phtha-
late acid esters (PAEs) such as di(2-ethylhexyl)phthalate (DEHP) are commonly added to
polymers such as polyvinyl chloride (PVC) and to plastic films to improve flexibility and
function [27,28]. However, many of these commonly used plasticizers are of environmental
concern. For instance, plastic greenhouse films produced with PAEs are of particular con-
cern because of their widespread use in commercial food production across the globe [29].
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Generally, PAEs are not covalently bound to polymers and gradually disperse to pollute
the air, soil, and fruits or vegetables produced in the greenhouse [30,31]. Leaching of
PAEs from plastic films is a significant health and environmental safety concern [31,32].
In addition, PAEs are known endocrine disruptors linked to problems with reproduction,
fetal development, and carcinoma, which further underscores the need for safe, bio-based
plasticizers [33,34].

Because of the need for safe, bio-based plasticizers that do not contaminate or threaten
the environment or human health, there has been a gradual shift toward harmless, plant-
based options. Progress in bio-based plasticizers has been recently reviewed [17]. Similar to
tri-butyl citrate, aconitic acid esters such as tri-butyl aconitate and tri-ethyl aconitate have
also been reported as bio-based plasticizers [35–37]. In addition, Gilfillan and Doherty [18]
reported that aconitic acid acts as a strong plasticizer for starch films. There are a few old
U.S. patents (1942 and 1947) with limited information on the synthesis of aconitic acid
esters [38,39].

2.3. Trans-Aconitic Acid as a Cross-Linking Agent

Multiple studies have reported that carboxylic organic acids such as malic acid and
citric acid can be used as cross-linking agents for starch [40]. Another report by Gilfillan and
Doherty [18] showed that aconitic acid, as an unsaturated tricarboxylic acid, is an effective
cross-linking agent of starch polymer-based cast films at a low aconitic acid concentration
of 2–5%. These films exhibited lower water solubility and a decreased swelling coefficient.
At higher levels, aconitic acid acted as a strong plasticizer that reduced thermal stability
and tensile strength, which produced a softer, more flexible film [18].

In addition, the carboxylic acid groups on TAA strongly react with amine groups. This
reaction can be used to cross-link polybenzimidazole (PBI) chains with size-sieving ability
to form a cross-linked polymer with improved separation capability. This has possible use
in industrial H2/CO2 separation [21]. Similarly, another group also implemented TAA as a
cross-linker in a poly-esterification reaction with ethylene glycol (ETG), but in microwave
synthesis to form polyesters with varying degrees of cross-linking in under thirty minutes
and without a solvent or catalyst [13,41].

2.4. Role in Microparticles and Grafting Agents

Aconitic acid has applications in the formation of polymers to produce microparticles
and latexes. In one report, a polymer was made from aconitic acid and epoxidized linseed
oil [19]. TAA has also been used to modify chitosan-based microparticles to improve
solubility and bioavailability of salmeterol and fluticasone drugs for lung delivery [20]. The
carboxylic acid groups of TAA can help improve the hydrophilicity of chitosan particles as
well as swelling, which can affect drug delivery [20].

Trans-aconitic acid has been reported as a grafting agent for the modification of chi-
tosan. Chitosan is a polymer derived from the deacetylation of chitin and can be modified
with various functional groups that can be readily tailored to adsorption and removal
of different pollutants such as pharmaceuticals from wastewater treatment facilities [24].
For instance, modification of chitosan with the carboxyl groups of TAA was used for the
adsorption of diclofenac, a widely used anti-inflammatory pharmaceutical that pollutes
water supplies [24].

2.5. Additional Aconitic Acid Uses in Green Chemistry

There are multiple studies incorporating forms of aconitic acid, especially trimethyl-
trans-aconitate, in “green chemistry” reactions. For instance, trimethyl trans-aconitate can
be used in an aza-Michael reaction with primary amines as a “green” click reaction to
produce “tetra-functional N-alkyl- bis-(pyrrolidone dimethylcarboxylate)” as a monomer
for polymer reactions [23]. Furthermore, aconitic acid, along with other polycarboxylates
such as itaconic, fumaric, and malic acids, can be used to produce green surfactants by
addition reactions [25]. Okada et al. [25] employed trimethyl trans-aconitate and alkyl
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mercaptan in an addition reaction to synthesize a polycarboxylate-based surfactant with
S-type linkages that was biodegradable and capable of calcium sequestration [25].

The conversion of aconitic acid to itaconic acid, a C-5 dicarboxylic acid, and another
Top 30 value-added chemical listed by the U.S. Department of Energy, can be chemically
synthesized [1]. However, while the conversion of citrate to aconitic acid by dehydration
followed by decarboxylation to itaconic acid is chemically feasible, it is economically
unfavorable [8,42]. Therefore, from a cost perspective, it is more advantageous to produce
bio-based itaconic acid from hydrolyzed lignocellulosic biomass via microbial fermentations
discussed below.

3. Biological Roles of Aconitic Acid with Applications in Biological Engineering and
Sustainable Agriculture

There are several reports of biological functions or roles of aconitic acid in organisms,
including plants and microbes. These have implications for the production of value-
added chemicals, agriculture, and biological engineering, which are discussed below and
summarized in Table 2.

Table 2. Reported biological roles of aconitic acid.

Biological Uses and Applications Method or Approach References

microbial production of itaconic acid Aspergillus terreus
decarboxylation of CAA [43–45]

microbial production of itaconic acid Ustilago maydis
decarboxylation of TAA [43,46–48]

Pseudomonas sp. use as sole carbon
source

isomerization of TAA to CAA
for TCA cycle [49]

fermentation inhibitor in Saccharomyces cerevisiae,
pH-dependent [50–52]

nematocidal activity Meloidogyne incognita [53]
anti-leishmanial activity Leishmania donovani [54,55]

regulation of TCA cycle TAA-based inhibition of
aconitase [7,56,57]

antifungal defense in plants methyl-TAA acts as a
phytoalexin [58]

antifeedant involved in resistance of some
plants to Nilaparvata lugens [59–62]

defense against aluminum toxicity organic acid chelation of Al [5,6]

anti-inflammatory activity inhibition of TNF-α release by
monocytes [63–65]

antioxidant activity DPPH assay and
nanoliposomes [66–68]

inhibitor of Glycine max Increased H2O2 in roots and
reduced water uptake [69]

inhibitor of quorum sensing ligand inhibitor of PleD [70]

3.1. Microbial Conversion of Aconitic Acid to Itaconic Acid

The production cost of itaconic acid remains high. However, economic feasibility
may be improved through optimization of either fermentation or chemical synthesis meth-
ods. Some options may include using sugarcane molasses, a sugar- and aconitic acid-rich
feedstock, for chemical or enzyme-based decarboxylation or for improved fermentation
conditions. Optimized fermentation conditions may include the use of inexpensive feed-
stocks such as agricultural waste products or through metabolic engineering of microbial
strains to eliminate unwanted pathways and directly increase carbon flux toward itaconic
acid production.
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Some fungi naturally convert aconitic acid to itaconic acid through decarboxylation.
For example, Aspergillus terreus is used in fermentations to produce itaconic acid [43–45,71].
In A. terreus, CAA is first transported by a mitochondrial transporter, At_MttA, from the
TCA cycle in the mitochondria to the cytosol, where CAA is decarboxylated to itaconic
acid by the cis-aconitic acid decarboxylase Cad-A [43,46,72]. Subsequently, itaconic acid is
transported out of the mycelia by a specific transporter, belonging to the major facilitator
superfamily (MFS) type transporter (MfsA) [73]. The genes involved in itaconic acid
production in A. terreus also include a transcription factor, and the four genes are termed
the “itaconate gene cluster” [73]. However, in the corn smut basidiomycete, Ustilago maydis,
the mitochondrial transporter Um_Mtt1, also transports CAA from the mitochondria to
the cytoplasm, but CAA is first isomerized to TAA by aconitate-∆-isomerase, Adi1, then
decarboxylated by trans-aconitic acid decarboxylase, Tad1, to itaconic acid [43,46,47,74].
The “itaconate gene cluster” in U. maydis is induced upon nitrogen limitation [75]. Overall,
the metabolic differences in itaconic acid production by these two fungi is notable because
it demonstrates the possibility of producing itaconic acid from either the trans or cis isomer
of aconitic acid in different organisms [47]. Differential microbial conversions of CAA and
TAA to itaconic acid may also provide insight into ex vivo enzymatic conversion options
with recombinantly expressed decarboxylases.

3.2. Microbial Use as a Carbon Source

Microorganisms such as the soil bacterium Pseudomonas sp. WU-0701 encodes an
aconitate isomerase that catalyzes the reversible isomerization between TAA and CAA,
an intermediate in the conversion of citrate to isocitrate in the TCA cycle [49]. This en-
ables the organism to grow on TAA as a sole carbon source by isomerizing TAA to CAA,
which feeds back into the TCA cycle. Interestingly, others have reported the presence of
various Pseudomonas species in the rhizosphere of sugar cane, while others have reported
that some rhizosphere-associated bacteria may improve plant growth and photosynthesis
under certain conditions [76]. The utilization of TAA as a carbon source by some of these
bacteria could suggest a possible symbiosis between sugar cane and microorganisms in the
rhizosphere involving TAA.

3.3. Aconitic Acid as a Fermentation Inhibitor

There are some reports that aconitic acid may act as an inhibitor in the fermentation of
sugar cane juice, syrup, molasses, and sweet sorghum syrup. When studying the fermenta-
tion of sweet sorghum juice as a function of harvesting time, Day and Sarkar [77] noted
that the yield of ethanol produced by sake and wine yeasts dropped later in the harvest
season, even though the sugar content increased. They speculated that the aconitic acid was
responsible for the reduction in ethanol yield. When increasing the fermentable sugars by
concentrating sweet sorghum juice, Wu et al. [78] reported that the fermentation efficiency
decreased with increasing water removal and speculated that the increase in aconitic acid
levels due to the water removal may have been the reason [78]. In fermentation of sweet
sorghum juice, Gibbons and Westby [79] reported low ethanol yields by Saccharomyces cere-
visiae depending on sweet sorghum variety. They speculated that aconitic acid was partially
responsible for the inhibition, as it varied between varieties. The inhibition also remained
noticeable in the fermentation of mixtures of sweet sorghum juice with hydrolyzed cereal
mash. More inhibition was noted with corn mash than with wheat mash. Another report
showed that the fermentation rate decreased by 29% when comparing the production of
ethanol from sweet sorghum juices containing 0.114 and 0.312% aconitic acid [50]. These
authors attributed the rate reduction to aconitic acid and showed that the intracellular acid
concentration of the yeast increased by a factor of 2 and 4 when the pH is changed from
pH 5.0 to pH 3.5 to pH 2.0. In a detailed study, Klasson [52] showed that it was the undisso-
ciated form of aconitic acid that was responsible for inhibition of ethanol production by
Distiller’s yeast, S. cerevisiae, in the fermentation of sweet sorghum sugars. By controlling
the pH during the fermentation, the inhibition could be overcome, and when the pH was
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controlled above 4.5, the presence of aconitic acid (5 g/L) became slightly advantageous,
and ethanol titer (+4%) and yield (+3%) increased slightly, confirming results of a previous
study in synthetic media [51]. At a fermentation pH > 4.5, the fermentation of diluted
sweet sorghum syrup to butanol by Clostridium beijerinckii did not appear to be inhibited by
aconitic acid [52].

3.4. Nematocidal Activity of Trans-Aconitic Acid

Pathogenic nematodes can be a significant problem for some crops such as sugar beets
and cotton. For instance, the beet cyst nematode, Heterodera schachtii, is especially prob-
lematic for sugar beets, which supply about one-third of the world’s supply of sugar [80].
Finding a sustainable, plant-based source of nematocide that is nontoxic to humans is of
considerable interest. Interestingly, the soil bacterium, Bacillus thuringiensis, produces TAA
as a virulence factor against soil nematodes [53]. Studies with the thuringiensin-producing
strain, B. thuringiensis CT-43 in particular, revealed a chemical product called CT-A, with
nematocidal activity against the major pest root-knot nematode, Meloidogyne incognita [53].
Further study revealed that CT-A contains TAA and that TAA exhibits a significantly higher
nematocide activity than the cis isomer, CAA, in a survival bioassay with M. incognita J2s
after 72 h. A plasmid-encoded operon for TAA biosynthesis was described in B. thuringien-
sis CT-43 that encodes an aconitate isomerase, named TAA biosynthesis-related gene A
(tbrA), and a membrane-bound transporter tbrB that transports TAA out of the cell [53,81].

3.5. Anti-Leishmanial Activity of Trans-Aconitic Acid

Anti-leishmanial activity has also been attributed to TAA against the protozoan
pathogen, Leishmania donovani, the causative agent of visceral leishmaniasis, also known
as kala-azar, thirty years ago, which is potentially fatal and difficult to treat [54,55]. Dur-
ing the lifecycle of this protozoan, the promastigote form is present in the vector during
disease transmission, while the amastigote form is found intracellularly within infected
macrophages of the host. Anti-leishmanial drugs can be problematic due to toxicity. TAA
was investigated as an alternative and in combination with conventional chemotherapy
since TAA is an inhibitor of the aconitase enzyme in the TCA cycle [56]. The L. donovani
amastigote relies on mitochondrial β−oxidation of fatty acids as an important energy
source. During β-oxidation, fatty acids are converted to acetyl-CoA, which feeds into the
TCA cycle to generate ATP for energy, so TAA was of particular interest as an inhibitor
of aconitase in the TCA cycle [57]. Interestingly, 20 mM TAA significantly attenuated
promastigote replication that could be reversed by the addition of 20 mM CAA at 72 h,
indicating divergent biological activity of the two aconitic acid isomers. Furthermore,
2 mM TAA reduced parasitic liver burden in infected hamsters in a dose-dependent man-
ner [54,55]. A dose of 2 mM TAA reduced the number of amastigotes within a macrophage
model by 60% [54]. Five (5) mM TAA, together with anti-leishmanial drugs, sodium
stibogluconate, pentamidine, or allopurinol, completely inhibited amastigote transforma-
tion to promastigote [55]. These reports from L. donovani may provide insight into the
mechanism of action against other organisms such as nematodes.

3.6. Aconitic Acid Production Confers Survival Advantages

The production of TAA by sugarcane, sweet sorghum, and other plants may confer a
survival advantage against pests and help to regulate metabolic processes during rapid
plant growth. Stout et al. [82] assayed 94 species of grasses and non-grasses from rangeland
and found that 47% of grasses and 17% of non-grasses accumulated TAA to high levels.
Furthermore, aconitic acid has also been detected in grasses such as oats, rye, wheat, barley,
and maize [83].
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In higher plants, trans-aconitate is produced and stored as a “tricarboxylic acid
pool” [7]. TAA is produced via two mechanisms connected to the TCA cycle. The first
occurs via the citrate valve and citrate hydratase to form TAA [7]. The second mechanism
occurs with aconitase conversion of citrate to isocitrate via a cis-aconitate intermediate,
which can then be isomerized to TAA via aconitate isomerase [7]. Accumulation of TAA
may play a role in regulating the TCA cycle by inhibition of aconitase [56]. Moreover, this
inhibition can be alleviated by monomethyl esterification by trans-aconitate methyltrans-
ferase TMT1, which has been described in Escherichia coli, Saccharomyces cerevisiae, and
Ashbya gossypii [84–86].

3.6.1. Antifungal Defense

Aconitic acid may also play a role in antifungal defense in some plants. For example,
TAA may accumulate in wheat as part of a protective mechanism against powdery mildew
Blumeria graminis f. sp. Tritici [58]. In particular, TAA and, to a much lesser extent, CAA
can be induced to high levels of accumulation in wheat leaves by potassium sulfate [87].
Moreover, later studies showed that in wheat plants experimentally infected and fed silicon,
TAA was methylated to form methyl TAA, which acts as a phytoalexin to limit disease [58].

Organic acid root exudates such as malic and tartaric acid also appear to inhibit
fusarium wilt, caused by Fusarium oxysporum f. sp. fabae (FOF), in faba beans (Vicia faba).
TAA was only detected in root exudates under nitrogen limitation, while tartaric and malic
acids were detected after nitrogen application. So far, it is unknown what role TAA may
play in faba bean antifungal defense during limited nitrogen conditions [88].

3.6.2. Antifeedant

TAA also appears to function as an antifeedant in some plants, such as barnyard
grass against the brown planthopper (Nilaparvata lugens) [59]. Additional studies further
demonstrated the resistance of barnyard grass and one resistant strain of rice “Babawee”
to feeding by brown planthopper due to the presence of TAA, but not CAA. Furthermore,
TAA was not detected in the susceptible rice strain “Koyonishiki” [59–62]. High levels
of aconitic acid production may also play a role in the resistance of some cereal plants
such as corn, sorghum, and barnyard grass to aphids [89]. For instance, higher levels of
TAA in sorghum leaves corresponded to decreased aphid burden and leaf damage, further
implying that TAA functions as a defensive phytochemical [89–91].

3.6.3. Defense against Aluminum Toxicity

Aconitic and oxalic acids are the predominant organic acids produced in maize.
Aconitic acid appears to protect the maize against aluminum toxicity. The level of or-
ganic acids in maize is high during early harvest and decreases with each successive
harvest [5]. About 60% of the aconitic acid is the trans isomer [5]. TAA is found in both the
shoots and roots of maize and may help protect the plant from Al toxicity through organic
acid chelation [6]. TAA was found to accumulate in the roots to higher levels in response to
Al3+ activity than in the shoots [6].

Interestingly, since TAA-producing grasses such as sugar cane are often part of a crop
rotation strategy with soybeans, and since sugar cane vinasse is sometimes applied to
fields, the effect of TAA on soybean growth was investigated. TAA was found to inhibit
soybean growth by inhibiting photosynthesis and increasing H2O2 in roots, which resulted
in decreased water uptake [69]. It is unknown whether any residual TAA remains in the
soil after harvesting sugar cane or whether TAA rapidly dissipates to negligible levels, but
it is worth considering the possible impact of TAA on crop rotations with soybean.

3.7. Biofilm Inhibition

Aconitic acid may be an inhibitor of biofilm formation. Pestana-Nobles et al. [70]
reported a computational study based on molecular docking and molecular dynamic simu-
lation that screened 224,205 molecules from the natural products ZINC15 database. The



Foods 2022, 11, 573 9 of 18

results predicted TAA as a possible ligand and inhibitor of the PleD protein involved in
bacterial biofilm formation. PleD and its homologs are diguanylate cyclases that contain a
GGDEF domain involved in cyclic di-GMP second messenger formation, a critical signaling
molecule involved in quorum sensing needed for biofilm formation. As such, PleD ho-
mologs are often the target of high-throughput screens for biofilm inhibitors [92,93]. While
TAA was identified computationally as an inhibitory ligand for PleD, to our knowledge, it
has yet to be experimentally validated.

3.8. Anti-Inflammatory Treatment

TAA has also been reported as an anti-inflammatory treatment for conditions such
as arthritis with mucoadhesive microspheres containing TAA [63,64]. For instance, the
medicinal plant Echinodorus grandifloras contains high levels of TAA and is used to treat
rheumatoid arthritis in Brazil. TAA, along with other fractions extracted from Echinodorus
grandiflorus leaves, acts as an anti-inflammatory by inhibiting tumor necrosis factor-alpha
(TNF-α) release during in vitro assay of lipopolysaccharide (LPS)-stimulated, THP-1 human
monocyte cells [65]. Furthermore, the lipophilicity of TAA can be improved by Fisher ester-
ification with an alcohol to form mono- di- or tri-esters of TAA [64]. Improving lipophilicity
of TAA by esterification was used as a strategy to improve the pharmacokinetics and
transport of TAA across biological membranes [94]. The TAA esters were administered
orally and tested in a mouse model of lipopolysaccharide (LPS)-induced arthritis. TAA
diesters were found to be the most biologically active, and the anti-inflammatory activity
increased the longer the aliphatic chain of the alcohol was used for esterification [64].

3.9. Antioxidant Activity

TAA has also been reported to function as an antioxidant. For instance, TAA is
present in Syzygium polyanthum, a plant used in Indonesia as a spice. Plant extracts from S.
polyanthum containing TAA exhibited DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant
activity [66,67]. TAA has also been used as a model antioxidant in the development of
lecithin-based, antioxidant-loaded nanoliposomes [68].

4. Aconitic Acid in Sugar Cane and Sweet Sorghum and Its Recovery

As previously mentioned, TAA is the main organic acid that is naturally present in
sugar cane [95]. Its presence in sugarcane juice was described as early as 1877 [96] and
in sweet sorghum in 1882 [97], and its decrease during sugarcane development has been
proposed as a maturity indicator, decreasing with sugarcane maturity [98].

4.1. Aconitic Acid Changes during Plant Development

The changes during the season in sugarcane stalk juice and extract from tops/leaves
are shown in Figure 3. The limited data show a possible increase in aconitic acid in sugar-
cane juice during the growing season (July to mid-September) and a decrease during the
harvesting season (mid-September to January). The Pearson Product Moment Correlation
showed a statistically significant (p = 0.03) correlation (0.80) between the aconitic acid
in the juice and cane tops/leaves. According to Gil Zapata [27], the aconitic acid in the
sugarcane leaves is approximately 3–6 times higher than in stalk juice, which is consistent
with information reported by others [99]. Ripener had no impact on aconitic acid in stalk
juice but did have an impact in tops/leaves, where those plants treated with ripener had
less aconitic acid [27]. This is consistent with the general understanding that aconitic acid
decreases after maturity [98].
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During an extended sampling campaign during the 2019 harvesting season in Louisiana,
USA, the aconitic acid concentration was very consistent in raw sugar factory crusher juice
with a median of 0.13%, but statistically (p < 0.001) decreased slightly during the harvesting
season, as shown in Figure 4.
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Figure 4. Concentration of aconitic acid in crusher juice during the 2019 Louisiana harvesting season
from one raw sugar factory (data by the authors). The aconitic acid was measured by high-pressure
chromatography as previously described [10], after centrifugation, filtration (0.45 µm pore size), and
6× dilution.

4.2. Impact of Plant Cultivar and Growth Location on Aconitic Acid Content

There is evidence that aconitic acid in sugar cane is impacted by cultivar and growing
region [100]. For example, Gil Zapata [27] reported that variety L 97-128 had less than
half the aconitic acid in tops/leaves when compared with cultivars LCP 85-384 and HoCP
91-555. Among the cultivars, HoCP 96-540, HoCP 04-838, HoCP 09-804, and L 01-299;
HoCP 04-838 had significantly more trans-aconitic acid in the sugarcane juice (0.17%) when
compared to the other cultivars [101,102], while HoCP 09-804 had more cis-aconitic acid
than the others [102]. When a commercial process was developed for the recovery of
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aconitic acid from sugarcane streams, others noted that the sugarcane varieties were not
grown for their high aconitic acid content but could be cultivated if so desired, at the
expense of sucrose [99]. Whether or not varietal differences were the source of variation, it
was reported that molasses from sugarcane grown in Louisiana contains more aconitic acid
than molasses from the tropical climate of Guadalupe [103]. Martin [104] also noted that
tropical molasses contained lower amounts of aconitic acid when compared to Louisiana
molasses. Furthermore, Haines Jr. and Joyner [99] attributed the higher aconitic acid
content in Louisiana sugar cane molasses to the shorter growing season when compared
to Florida-grown cane. Summer fallow had no significant impact on the aconitic acid
concentration in sugarcane juice [102].

Almodares et al. [105] noted that both cultivar and maturity impacted aconitic acid
concentration in sweet sorghum, where a greater maturity resulted in lower aconitic acid
concentration in the plants. They also noted that if nitrogen fertilization was distributed
throughout the maturity, the aconitic acid concentration was less than if nitrogen was only
applied at planting. They inferred that aconitic acid was better consumed in the TCA
cycle when nitrogen was continuously supplied [105]. When studying aluminum toxicity,
others found that cultivars tolerant to aluminum accumulated more aconitic acid in roots
and leaves and that the cation most likely regulated some enzymes causing both malic
and aconitic acid to accumulate when exposed to increased levels of aluminum [106]. It
was suggested that higher levels of these organic acids could internally be involved in a
detoxification mechanism, just as in the case of maize [6]. Others noted a strong relationship
between planting date and aconitic acid content in the sweet sorghum juice at the hard-
dough maturity stage in 23 cultivars and hybrids [107]. Later planting dates (April, May,
or June) resulted in higher aconitic acid concentrations at the same maturity. There was
also a strong correlation with the plant variety. Among the cultivars, N98 had the highest
average juice aconitic acid content (April–June, plantings) of 0.32%. The average among
all the 199 juice samples (variety, planning date, replicates) collected was 0.20%, with a
range of 0.0–0.58%. In plantings over two years, there was no statistical difference in the
aconitic acids in the same 23 cultivars and hybrids [108]. In another study that spanned
two years and 41 samples, the average concentration of aconitic acid in sweet sorghum
juice was 0.30%, with a range of 0.026–0.56% [50].

4.3. Fate of Aconitic Acid during Sugar Processing

In the production of sugar from sugar cane, aconitic acid survives the clarification,
evaporation, and crystallization operation during normal sugarcane juice processing and
is present in the molasses [109]. The only significant loss of aconitic acid occurs in the
scales and in the deposits of evaporators, which can contain 8% aconitic acid [100]. Of the
normal sugar processing by-products, molasses contains the most aconitic acid, where the
concentration can be as high as 4.4% (based on Brix) in C (Backstrap) molasses [109]. If
the molasses contains significant insoluble solids, these solids can contain 16–35% aconitic
acid [109] or even over 50% [100]. A recent report indicates that some of the TAA remains
in the unrefined cane sugar (i.e., raw sugar) as an “unambiguous metabolite” detectable by
1H-NMR spectroscopy, which can be used for differentiation from other sugar products in
foods and useful to detect sugar adulterations [110]. In the processing of sweet sorghum
juice to syrup, the aconitic acid also survives the clarification and evaporation process,
accumulating in the syrup, where the concentration can be as high as 2.8% in unfiltered
samples or 1–1.6% in filtered syrup samples [10,111]. Therefore, just as in the case of
sugarcane juice processing, the evaporator scales in sweet sorghum juice processing contain
aconitic acid [97].

4.4. The Recovery of Aconitic Acid from Sugar Crops

The recovery of aconitic acid from sugarcane molasses has been performed both on
a laboratory and commercial scale. Kanitkar et al. [2] reported up to a 69% recovery of
TAA from Louisiana sugarcane molasses with a 99.9% purity using ethyl acetate extraction.
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Moreover, various liquid-liquid extraction methods have been reported, including those
with butanol [27]. The extraction efficiencies were examined and found to yield varying
aconitic acid quantity and purity; for instance, butanol extraction yields more aconitic
acid but lower purity [15]. Therefore, extraction methods should be carefully weighed
with consideration of downstream applications that may require either high purity or
high yield. The recovery of aconitic acid from sugarcane and sweet sorghum juice, syrup,
and molasses via precipitation has been patented [112–114], as well as a process using
ion exchange [115,116]. The precipitation method from sugarcane molasses was once
the only method by which dicalcium magnesium aconitate was produced for plasticizer
use [99]. The process included dilution, addition of lime and calcium chloride, followed by
centrifugation to recover the precipitate, which was washed, centrifuged, and dried. At the
time, Louisiana backstrap molasses could have served as a source of 10,000,000 pounds of
aconitate, if the process had been fully implemented.

It was also reported that aconitic acid, as well as other organic acids, is present in
stillage (vinasse) from fermented and distilled sugar cane juice and molasses during ethanol
production [103]. Among the organic acids, part of the aconitic acid also remained in the
effluent from the anaerobic digestion of rum vinasse as part of the waste treatment.

4.5. Aconitic Acid Recovery as Part of Fermentation of Sugars

In laboratory studies, Gil Zapata [27] fermented juice from sugar cane tops to ethanol,
extracted the ethanol via evaporation, removed the solids, and attempted to recover the TAA
through ion exchange. Two of the adsorbents were able to remove 86–88% of the aconitate
from the pH 5.1 stillage. A third adsorbent was identified as suitable for aconitic acid
recovery at low pH. Ultimately, the use of the non-ionic Dowex Optipore SD-2 adsorbent
was recommended at pH 2.8 and TAA recovery from the adsorbent with butanol at elevated
temperatures. A weak anionic resin (sulfate form) was used to remove TAA from a sugar
cane-based ethanol distillery by others, where it was noted that while the aconitate can be
removed at stillage pH 4.5, a significant amount of inorganic anions and other materials
were also removed leading to only 39% purity in the purified extract [117]. The elution
from the anionic resin column was done with weak sulfuric acid.

Recovery of aconitic acid after fermentation of sugar cane molasses but before distilla-
tion was studied by Madsen Kanitkar et al. [2], who used ethyl acetate to extract aconitic
acid from spent, centrifuged, and filtered molasses fermentation products. Impressively,
the aconitic acid yield and purity of the material extracted from unfermented and fer-
mented diluted molasses were very similar. The authors suggested that TAA extraction
of fermented molasses would be preferred as ethanol is also generated [2]. Ethyl acetate
was also the selected solvent for TAA extraction from ethanol production vinasse by others,
who extracted the vinasse TAA at pH 2.0 with solvent, evaporated the solvent to form a
solid phase, which was dissolved in water, and then contacted with an anion exchange
column to separate the TAA with 90% purity [118]. After additional purification steps,
including color removal, methylation, chromatography, and hydrolyzation, 99% purity of
TAA was obtained.

While the above work focused on the recovery of TAA during different steps of
fermentation of sugar cane to ethanol, similar recovery systems may also apply for other
sugar feedstocks (e.g., sweet sorghum) and other fermentation systems. Examples of
fermentation products that were produced from sweet sorghum syrup include succinic
acid, acetone/butanol/ethanol, and acetoin, where aconitic acid was present before and
after fermentation (see Table 3). From these results, it appears that succinic acid, acetoin,
and ethanol fermentations retain aconitic acid in the spent fermentation broth, while the
acetone/butanol/ethanol fermentation depleted aconitic acid in the broth.
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Table 3. Aconitic acid before and after fermentation to produce different products from diluted sweet
sorghum syrup. (The original references may not contain the aconitic acid concentrations but have
been added here.).

Fermentation Aconitic Acid before
Fermentation

Aconitic Acid after
Fermentation

Succinic acid using Escherichia coli
AFP 184 [119]

0.11% 0.072%

Acetone/butanol/ethanol using
Clostridium beijerinckii NCP 260 [10]

0.075% (Syrup a)
0.082% (Syrup b)

0.001% (Syrup a)
0.002% (Syrup b)

Acetoin using Bacillus subtillus NFRI
8291 and NFRI 8299 [120]

0.304% 0.325%

Ethanol using Baker’s yeast [121] 0.28% (Clarifier mud) 0.25%

5. Conclusions

In summary, recovered aconitic acid from sugar cane and sweet sorghum waste prod-
ucts could also be further utilized for ex vivo enzymatic reactions using recombinantly
expressed aconitate decarboxylase enzymes, either from A. terreus or U. maydis, for conver-
sion of aconitic acid to itaconic acid or other high-value chemicals. The numerous biological
roles of aconitic acid are promising for the further development of bio-based products
or strategies ranging from pharmaceutical treatments to sustainable agriculture practices.
For instance, the survival advantage conferred by aconitic acid to some plants may also
inform future genetic engineering approaches aimed at improving resistance to fungal
disease and various crop pests. It is also conceivable that sugar cane or sweet sorghum
could be genetically modified for higher aconitic acid production to produce strains tai-
lored for downstream industrial or biological applications. Furthermore, the metabolic
engineering of microbes such as bacteria or fungi to produce high levels of aconitic acid
from inexpensive feedstock could also be advantageous.

In addition, since sugar cane milling only occurs three months out of the year in
subtropical Louisiana, in the remaining months, molasses or vinasse could be used for
recovery of aconitic acid for alternative streams of income. By pairing low-cost, renewable
sources of aconitic acid with high-value applications related to industrial and biological
purposes, there is vast potential for cost-effective production of high-value aconitic acid-
derived chemicals and bio-based products, thereby providing additional income streams to
the sugar industry.
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