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Abstract: This paper deals with the design of a DC motor speed control implemented by an embedded
controller. The design is simple and brings some important changes to the traditional Ziegler–Nichols
tuning. The design also includes a novel anti-windup implementation of the controller and an
integrated noise-reduction filter design. The proposed tuning method considers all important
aspects of the control, such as pre-processing of the measured signals and filtering (to attenuate
the measurement noise), time delays of the process, modeling and identification of the process,
and constraints on the control signal. Three important aspects of designing PI and PID controllers
for processes with noisy output on Arduino-type embedded computers are considered. First, it
deals with the integrated design of the input filter and the controller parameters, since both are
interdependent. Secondly, the method of setting the controllers from step responses by Ziegler
and Nichols is modified for the case of digital signal processing (without drawing the tangent),
while it recommends the suitability of its modification in terms of the use of both integral and static
models. Third, the most suitable anti-windup solution for the given controller structure is proposed.
In summary, the paper shows that an appropriate design of the embedded controller can achieve
excellent closed-loop performance even in a noisy process environment with limited control signals.

Keywords: filtration; multiple real dominant pole method; PI and PID control; derivative action;
anti-windup; digitization

1. Introduction

The introduction of simple single-chip microcomputers has revolutionized process
control, which no longer depends on hardware alone. The combination of multiple func-
tionalities in one device makes it possible to bypass the traditional division of the control
loop into sensor, controller and actuator. At the same time, the integrated design al-
lows for simplified and accelerated solutions, resulting in increased control performance
and robustness.

The concept of PI and PID controllers has been developed in several stages. After
their discovery more than a hundred years ago, PI controllers were considered a highly
valued commodity, forming a control loop together with sensors and actuators. In the
1930s, a derivative component (called Pre-Act) was added to the PI controllers. The terms
proportional-integral or proportional-integral-derivative, from which the abbreviations PI
and PID are derived, came later in history. The modular industrial control loops, originally
based on pneumatic, hydraulic and electromechanical solutions, changed over time with
the advent of transistors, analog integrated circuits and digital technology. The introduction
of cheap and powerful embedded computers made it possible to process control algorithms
and sensor signals simultaneously. The benefits of integrated design of control algorithms
and process signal filtering are so great that they can change the traditional clichés found
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in control engineering textbooks. The assertion “for noisy systems, it is not appropriate
to use controllers with derivative action” [1] is no longer valid and should be changed to
“for noisy systems, controllers with derivative action should be used in conjunction with
appropriate filtration” [2].

Since its publication, the method for tuning controller parameters by Ziegler and
Nichols [3] has been one of the most popular and widely cited, and has inspired many
subsequent improvements [4–11]. Originally, the method focused on the best possible
suppression of disturbances, to which was also adapted the choice of more “aggressive”
settings of controllers, leading mainly to oscillating transients with the so-called “quarter
amplitude damping”. With the advent of digital computers, the tuning methods were first
discretized by introducing the discrete-time transfer functions of the controllers [12], to
allow using with longer sampling periods. Later, the numerically sensitive computation
of the tangent drawn through the inflection point of the measured step responses was
replaced by simpler approximations of the initial segment of the setpoint step responses [13],
generalizing the method to higher-order models as well. In this paper, we will focus on
digitization yielding two types of linear models obtained from the step responses. The
method is further refined to ensure fastest possible transients without overshoot and to
allow generalization to higher-order approximations [14].

The systematic design of controllers for noisy systems requires several crucial steps.
The first is to appropriately quantify the performance achieved when evaluating transients.
The use of traditional statistical tools does not seem appropriate here, since relevant conclu-
sions can only be drawn after a very lengthy investigation (large amount of processed data).
On the other hand, the controller must guarantee the required control performance for all
considered control processes without requiring a high number of repetitions. Moreover,
the noise of the process measurements (sometimes with considerable amplitudes) must be
taken into account at the initial stage of the control design, since high peaks in the noise
signals could affect the lifetime of the installed electronic devices. The appropriate criteria
for evaluating the performance of the achieved process and control transients are based on
the early work of Feldbaum [15] in the field of time-optimal control. In [15], it was shown
that n control intervals at the process input are generally required for an nth-order system
to make a time-optimal transition from one steady state to another, with the control signal
alternately changing value between two control signal boundaries. Although Feldbaum’s
theorem was later forgotten with the advent of linear PID controllers (several alternative
approaches to constrained control of time-delayed systems may e.g., be found in [16,17]), it
is noted that the theorem is becoming increasingly important as the dynamics of transients
increase. This fact was already highlighted in the context of PID control [18] and led to the
concept of dynamic classes of control [14,18,19]. Indeed, when designing PID controllers, it
is necessary to define the dynamic class of control for which it is proposed.

In the case of a PI controller for a stable first-order system, the ideal course of the
control signal following the step of the reference variable to the new constant value may be
monotonic, but also with one pulse (1P), i.e., consisting of two monotonic sections separated
by an extreme. Instead of a single extreme point, the monotonically increasing/decreasing
segments can be separated by a section at a control signal saturation limit. With unstable
systems, only the second option is possible. However, the same input and output shapes
can be achieved using a PID controller. When designing PID controllers for second-order
systems, a third possibility will be added, when the optimal course of the control signal
following a setpoint or input disturbance step will consist of two impulses (2P), i.e., three
monotonically increasing or decreasing sections separated by two extremes or sections at
saturation limits. This means that several types of controllers from the same dynamic class
can be designed for the same system, but sometimes several controllers of the same type
from different dynamic classes. Examples of controller tuning for second-order systems can
be found in [13,20–26]. A broader collection of different approaches gives [27]. Quantitative
criteria for evaluating deviations from ideal shapes of transients of process input and output
signals have been developed based on deviations from monotonicity [14,28]. In the context
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of this work, we restrict the design of PI and PID controllers to obtaining a 1P control signal
after setpoint and input disturbance steps.

In [3], the relationships for setting the regulators were determined empirically for a
wider batch of processes. Given that PID controllers at the time represented a dominant
part of the existing supply of industrial regulators, such a procedure could have been
natural. However, today’s offer, especially if we take into account practically universal
programmable embedded controllers, already allows a closer adaptation of the optimal
design to a specific type of process. From this point of view, we do not consider the efforts of
some newer modifications of the method for universally valid settings [8,9] to be justified.
The given trend of narrowing the processes for which the design was optimized can be seen
already in the work [12], in which the IPDT system model plays an important role. Given
that the IPDT model did not allow a simple explanation of several aspects of the original
work of Ziegler and Nichols, in our contributions we also focused on the analysis of other
type processes, such as integrator + time constant delay [6,7], double integrator + dead
time [13,20,26], or (following the example of the work [29]) approximations with higher-
order time constants and transport delay [14]. Instead of numerically ill-conditioned
determination of the inflection point and problems with evaluation of steady states, we
also preferred the digitization of the method based on the best possible approximation of
the introductory part of the measured step response by FOTD and IPDT models. From
the closed-loop transients, we expected to reach the highest possible speed under the
given control constraints, with the minimal deviations from ideal shapes of piecewise
monotonic responses [13,20]. The paper, which is an amalgamation of several publications
on the subject (see, e.g., [2,30–48]) provides a refinement of the original step-response-
based method of Ziegler and Nichols in terms of the nearly time-optimal responses to step
setpoint and input disturbances changes in systems with limited control action also under
the influence of measurement noise. It is written pragmatically with the aim of making
the subject accessible to the widest possible audience. It is organized as follows: After the
basics of system modeling based on approximations of their process response curves by
IPDT and FOTD models in Section 2, Section 3 discusses the optimal integrated design of PI
and PID controllers with input filters and control signal limitations. Section 4 gives criteria
for evaluating the optimality of the closed-loop transients achieved. Section 5 describes
an experiment with an electromechanical system. The obtained results are evaluated in
Section 6 and summarized in the Conclusions.

2. Possible Approximations of Stable Setpoint Step Responses

The measured process output signal must be filtered before it is further used in the
PID controller (see Figure 1) to remove unwanted noise that could reduce the lifespan
of the motor and its driver circuitry. Therefore, in addition to the filter, voltage limiters
(implemented by diodes) are added to the input of the circuit.
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Figure 1. A 2nd-order binomial filter of the measured variable ym(t) proceeding an anti-windup
implementation of PID controller with proportional and derivative gains Kp, Kd, with the integral
time constant Ti, with the reference setpoint w(t) and a prefilter Fp(s).



Sensors 2021, 21, 6157 4 of 26

2.1. Input Filter Design

To obtain a filtered velocity signal from the motor (y f (t)) or even its phase vector
components y f , ẏ f , ÿ f , . . . yn−1

f from raw velocity measurements (ym(t)), a binomial low-
pass filter Qn(s), n > 1 is used, which is given by the transfer function

Qn(s) =
Y(s)

Ym(s)
=

1(
Tf s + 1

)n =
a0

sn + an−1sn−1 + · · ·+ a1s + a0
;

ak =
n!

(n− k)! k! Tn−k
f

; n = 1, 2, . . . ; k = 0, 1, 2, . . . , n; n! = n(n− 1)(n− 2) . . . 3 ∗ 2 ∗ 1
(1)

Please note that Ym(s) is the Laplace representation of the raw signal ym(t). The coeffi-
cients ak are calculated by the Pascal’s triangle. Please note that for a quasi-continuous-time
filter implementation with a sampling period Ts, Tf must satisfy the following condition:

Ts << Tf (2)

Then, the integration block labeled 1/s in Figure 1 can be replaced by a summation
performed by a control program implemented in the Arduino environment. The equivalent
time delay of the filter can be represented by its average residence time (ART) [1]

TART = nTf (3)

Please note that as the order of the filter n increases, the value of Tf satisfying the con-
dition TART = const decreases down to the sampling period Ts, which is the fundamental
constraint for the choice of n. In the rest of the paper, the filter parameters are calculated
according to the process and sensor analysis. To simplify the design of the controller, the
identification of the process will include the built-in filter.

2.2. Measuring Input-Output Steady-State Characteristic

When designing controllers for stable systems, it is always important to obtain the
steady-state input-output characteristics (IOSSCH) of the process and determine the limits
of the system variables. These limits are considered in the identification phase and in
the evaluation of the efficiency of the control system. Based on the limits, an appropriate
anti-windup protection is also applied. It should be noted that the overall control design
also depends on the signal-to-noise ratio.

In the identification phase, the dynamic characteristics of the process are determined.
The accuracy of the model is usually evaluated using various quantitative criteria, such
as the sum of the squares of the difference between the output of the real system and
its model. However, the obtained model is best verified by evaluating the closed-loop
transients obtained with the controller designed according to the determined model. As
mentioned earlier, the main objective of measuring the IOSSCH of the process is to obtain
limit values for the process input and output. The output of the controller is then limited
according to the measured process limits. The process limits can be determined in the open
loop configuration. If the process is too slow, the closed-loop configuration can be used
with a stable control. When the process settles, the pairs of values of process input and
process output should be recorded. If the IOSS curve y f = F(u) is not linear, it is useful
to use the inverse characteristic at the controller output to linearize it. Two examples of
measuring the IOSSCH together with measured (ym) and filtered (y f ) output signals are
shown in Figure 2.
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Figure 2. IOSSCHs of a mechatronic system with a measured output ym, a filtered output y f and a process input pulse-width
u measured before and after maintenance (bearing lubrication).

The use of embedded controllers is often associated with the use of the simplest on-off
amplifiers working with pulse-width modulation. In such situations, at a constant power
supply amplitude, the pulse width is a variable IOSSCH measurement parameter. Two
examples illustrating the measurement of the IOSSCH together with the display of the
immediately measured and filtered output signals ym and y are shown in Figure 2. They
document the high time instability of mechatronic devices, which significantly depend on
the performed maintenance (bearing lubrication). This instability is one of the motives for
the introduction of automatic control and points to the need for a robust control design,
which should ensure the minimum required level of control performance independent
of such maintenance. As the human factor is also an important element of the design of
automatic control, one of the most important goals of the INDUSTRY 4.0 initiative [49,50]
is the digitization and automation of the overall control design.

2.3. Approximation of Stable Step Responses According to Ziegler and Nichols

One of the most commonly cited methods for approximating stable step responses,
inspired by Ziegler and Nichols [3], can be summarized in the following steps.

First, set an allowable initial value (u1) of the control variable (plant input) and hold it
constant until the transients decay. Measure the corresponding (filtered) value of the output
y f 1. If the filtered value is still noisy, calculate y f 1 by averaging several last measurements.
Then reset the time t0 = 0 and change the plant input from the value u1 to the new value
u2 and record the filtered output (graphically or as a series of samples in the computer’s
memory) until the transients decay (until t = tmax). Measure the new steady-state value of
the output y f 2 and calculate the static gain of the system K

K =
y f 2 − y f 1

u2 − u1
(4)

For a chosen input step ∆u = u2 − u1, calculate the normalized setpoint response
yn(t) from y f (t) with time t ∈ [0, tmax] (Figure 3), considering y(t) = 0 for t ≤ 0:

yn(t) = ∆y f /∆u; ∆y f (t) = y f (t)− y f (0); t ∈ [0, tmax] (5)



Sensors 2021, 21, 6157 6 of 26

Figure 3. Approximation of a normalized stable step response based on a tangent drawn through the
inflation point according to Ziegler and Nichols [3].

From the parameters obtained by drawing the tangent line at the inflection point
of yn(t), one can immediately compute two different linear models of the system. In
the conventional linear model, which is locally approximated by the first-order transfer
functions with time delay (FOTD)

Sa(s) =
∆Y(s)
∆U(s)

=
Ke−Tds

Ts + 1
=

Kse−Tds

s + a
; (6)

the three parameters obtained are the transport delay Td, the time constant T and the static
gain of the system K. For a 6= 0, the model (6) can also be characterized by

Ks = K/T; a = 1/T. (7)

However, it is possible to construct an even simpler “ultralocal” integrating process
model with parameters Ks (which gives the slope of the linearly increasing response given
by the tangent line applied to the inflection point) and the dead time Td

S0(s) =
∆Y(s)
∆U(s)

=
Kse−Tds

s
; (8)

Here, the third parameter T = 1/a → ∞, which corresponds to a → 0, cannot be
evaluated at all.

Remark 1 (Different types of standardized setpoint responses). If we want to use model (6),
we must compute the static gain K and therefore wait until the transients decay. In contrast,
model (8) can be obtained without determining the static gain, so the experiment can be shorter.

Remark 2 (Local and ultralocal linear models). The term “ultralocal” model is used in papers
dealing with the design of model-free control using integral models based on the flatness theory
elaborated by M. Fliess and colleagues. In previous work [51,52], the two linear (i.e., local) models (6)
and (6) were denoted by the indices 1 or 0 depending on the number of terms in the Taylor series of
the considered feedback nonlinearity.

• The fundamental weakness of both solutions with the model parameterization as
shown in Figure 3 is the drawing of the tangent line through the inflection point. This
was relatively easy to do with a traditional manual (graphical) solution. However,
with numerical solutions, this is one of the most ill-conditioned tasks.

• The second weakness is the instability of the steady states in the system, which
are sensitive to various disturbances from the environment. An example of such a
step response is shown in Figure 4. The long measurement times can lead to large
fluctuations in the process step response due to disturbances. The requirement for
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a steady-state measurement without disturbances can be a significant limitation in
many applications.

• The third weakness is related to the fact that the obtained models (8) and (6) rep-
resent only linear, i.e., local models, which can no longer be sufficiently accurate
when a larger range of operating points is applied due to the nonlinearity of the
process. Therefore, it is meaningless to require “infinite” measurements to reach the
steady state.
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Figure 4. Norming one segment of the step response y f (t) corresponding to Figure 3 with the change
of the input from u = 0.5 to u = 0.6.

2.4. Local Identification of Local Linear Models

When we model a system, we must always keep in mind the purpose of the model.
In our case, the purpose is to design controller that provides a tracking response of the
process output that is as fast as possible, but at the same time sufficiently smooth, ideally
without overshoot. From this point of view, the process model should have the highest
accuracy in the mid to higher frequency range corresponding to the initial response of the
process step response in the time domain. The time responses of models (6) and (8) when
the step change is u(t) = 1 are:

y0(t) = Ks(t− Td), t > Td; y0(t) = 0, t ≤ Td (9)

ya(t) =
Ks

a
(1− e−(t−Td)/T), t > Td; y0(t) = 0, t ≤ Td (10)

In the following time interval:

t ∈ [0, ta]; Td < ta ≤ tmax (11)

the parameters of the models (9) and (10) are computed by searching over a grid of
predefined values (defined, e.g., in Matlab as Ks = Ksmin : dK : Ksmax, Td = Tdmin : dT :
Tdmax, a = amin : da : amax) such that the corresponding squares of the deviations

S0 =
N

∑
i=0

(yni − y0i)
2; S1 =

N

∑
i=0

(yni − yai)
2 (12)

take the smallest possible values [13]. In (12), the values yni = yn(iTs), y0i = y0(iTs) and
yai = ya(iTs) correspond to the measured yn, y0 and ya at the sampling interval Ts.

Therefore, in addition to selecting the appropriate model parameters grid size and
fragmentation, the time interval of the process response ta used for model identification
should also be selected. It is obvious that ta > Td. No control will occur until Td expires, so
you need to prepare for the worst-case scenario. Therefore, when searching for parameters
for models (6) and (8) at different values of ta, the models with the highest value of Td
should be chosen. Such an approach takes into account that the value of Td plays a crucial
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role in tuning the controller parameters to achieve smooth transients without overshoot.
For the process model (6) (based on ya(t) in the time domain), higher values of ta are
generally expected to be used. However, if ta and the process noise are too large (as in the
Figure 5b), regarding the accuracy of determining the fastest mode, the obtained model
may not be accurate enough.
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Figure 5. Approximations of an initial part of a normed step response y(t) for ta ≤ 1 (a) and ta ≤ 5 (b) with model
parameters corresponding to the maximal values Td from particular “optimal” solutions fulfilling conditions (12).

Remark 3 (Approximating the fastest mode). Regarding the accuracy of determining the fastest
mode, we can formulate a hypothesis that the approximation length ta should be chosen so that the
optimal parameters Ks and Td are similar for both Sa(s) (6) and S0(s) (8).

3. PI and PID Controller Tuning by the MRDP Method
3.1. 2DOF PI and PID Controllers

Although PID controllers are an industry standard, the possible implementation
variants have not been sufficiently explored. There are at least two forms (structures) of
PID controllers.

One of them is an ideal series PID controller:

C(s) =
U(s)
E(s)

= Kp
(1 + sTi)(1 + TDs)

sTi
= Kp

(
1 +

1
Tis

)
(1 + TDs) (13)

where Kp is the controller gain, Ti is the integral, and TD is the derivative time constant.
The second form is an ideal parallel PID controller:

C(s) =
U(s)
E(s)

= Kp
1 + sTi(1 + TDs)

sTi
= Kp

(
1 +

1
Tis

+ TDs
)

(14)

Please note that the parallel form is more general, since any series structure can be
represented by the parallel structure, while the converse is not true. Please note that the
optimal controller parameters for one structure are not optimal for the other (the parameters
must be recalculated). As soon as we use both controllers at the same time, their parameters
will need to be clearly distinguished by a suitable choice of symbols (see Section 3.4). The
PI controllers are simplified PID controllers corresponding to TD = 0. The 2DOF PID or
PI controllers represent an extension of a PID controller C(s) with one degree of freedom
(1DOF) by a setpoint prefilter Fp(s). The prefilter is added to speed up setpoint responses
and avoid overshoot of the process output.

The anti-windup solution for the series PID controller is realized with the structure
modeling pneumatic regulators, which were created before the Second World War with the
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original name “Pre-Act”. The integral action is accomplished by positive feedback from
the controller output through the first-order filter with a time constant Ti (see Figure 1 and
note that Kd = KpTD). If the limitations of the control action are neglected, we obtain a
combination of PD controller Kp(1+ TDs) and positive feedback with a delay of 1/(1+ Tis),
yielding the transfer function (13)

C(s) =
U(s)
E(s)

=
Kp(1 + TDs)

1− 1/(1 + sTi)
= Kp

(1 + Tis)(1 + TDs)
Tis

(15)

In the analysis of anti-windup controllers (see e.g., [53,54]), it is necessary to distin-
guish two modes of behavior—“control” mode, when the limitation is not active and
the dynamics is determined by the transfer function C(s), and “tracking” mode, which
is activated after reaching saturation limits, when the controller state is tracked so that
it matches given inputs and outputs. With the scheme used, the tracking time constant
Tt = Ti, which according to [53] represents an unnecessarily large value, leading to the
output overshooting. However, the overshooting can be avoided if, in the factorization
of the numerator C(s) discussed in Section 3.4, we choose as Ti the smaller one of two
possible values.

3.2. Optimal PI Tuning by TRDP Method

The goal of the Multiple Real Dominant Poles (MRDP) method is to avoid slow domi-
nant closed-loop poles by choosing equal multiple closed-loop poles (see, e.g., [23,55–57]
and references therein). The existence of an MRDP solution must be supported by a suit-
able controller structure and a sufficient number of equations to determine the controller
parameters. If there are several possible solutions with multiple dominant poles, the most
stable solution is chosen, i.e., the solution that lies in the left complex half-plane closest to
the imaginary axis. The transfer function of the closed loop using the PI controller and the
FOTD system (6) is

Fcl(s) =
C(s)S(s)

1 + C(s)S(s)
=

KpKs(1 + Tis)
Tis(s + a)eTds + KpKs(Tis + 1)

(16)

The “optimal” controller tuning must achieve a triple real dominant pole (TRDP) of
the characteristic quasi-polynomial:

P(s) = Tis(s + a)eTds + KpKs(Tis + 1) (17)

when it is possible to write P(s) = (s− so)3P0(s), by satisfying the conditions

P(so) = 0, Ṗ(so) = 0, P̈(so) = 0 (18)

The optimal controller parameters, denoted by the subscript o, can be calculated as
follows [30]

so = −
Ad + 4− Sd

2Td
, Ad = aTd , Sd =

√
A2

d + 8

Kpo =
Ko

KsTd
; Ko = (Sd − 2)e(Sd−Ad−4)/2

Tio = τiTd; τi =
2(2− Sd)

A2
d + 2Ad + 28− (Ad + 10)Sd

(19)

Denominator of an optimal prefilter

Fp(s) =
1 + bs
1 + Tis

(20)
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cancels the zero of the closed-loop transfer function (16). Then, the transients of the closed
loop can be sped up by cancelling one of the optimal dominant poles (so). This results in its
optimum tuning bo as

bo = −
1
so

=
2Td

Ad + 4− Sd
(21)

For the IPDT model (8), much simpler tuning formulas can be derived since
a = 0 [55,58] and

so = −(2−
√

2)/Td ≈ 0.586/Td;

Ko = 2(
√

2− 1)e
√

2−2 ≈ 0.461; τi = (2
√

2 + 3) ≈ 5.828; bo =
Td

2−
√

2
≈ 1.707Td

(22)

3.3. Calculation of the Optimal Parallel PID Parameters

The optimal parallel PID setting for a FOTD system, which results in a quadruple real
dominant pole (QRDP) in the closed-loop system, is described in [31]. Considering the
closed-loop system

Fcl(s) =
C(s)S(s)

1 + C(s)S(s)
=

KpKs(1 + Tis(1 + TDs))
Tis(s + a)eTds + KpKs(1 + Tis(1 + TDs))

(23)

the characteristic quasi-polynomial is

P(s) = TiseTds(s + a) + KpKs(TiTDs2 + Tis + 1) (24)

The “optimal” parameters Kpo, TDo and Tio satisfying the conditions P(so) = 0,
Ṗ(so) = 0, P̈(so) = 0 and

...
P(so) = 0, are given as

so = −
6 + A− S

2Td
, A = aTd , S =

√
A2 + 12

Kpo =
Ko

KsTd
; Ko =

S(A + 12)− (A2 + 2A + 36)
2

e(S−A−6)/2

TDo = τDTd; τD =
S− 2

S(A + 12)− (A2 + 2A + 36)

KDo = KpoTDo =
S− 2
2Ks

e(S−A−6)/2

Tio = τiTd; τi =
2(36 + 2A + A2 − (A + 12)S)

A3 + 12A2 + 36A + 288− (A2 + 12A + 84)S

(25)

3.4. Calculation of Optimal Series PID Parameters

For the series PID controller, the optimal QRDP position so is the same as for the
parallel controller (25). To avoid tedious calculations and to highlight the main difference
in tuning the parallel and series controllers, we obtain the parameters of the series PID
controller from the parallel controller by equating the transfer functions C(s) of both
controllers. By comparing the coefficients at equal powers of ‘s’ in (13) and (14) and using
the indices “s” and “p”, we can derive the following relations.

KpsTip = KppTis; Tis + TDs = Tip; TisTDs = TipTDp (26)
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Based on the solution of the last two equations with respect to Tis, the following
is obtained

Tis = [Tip ±
√
(T2

ip − 4TipTDp)]/2

Kps = Kpp[Tip ±
√
(T2

ip − 4TipTDp)]/(2Tip) = Kpp[0.5±
√
(0.25− TDp/Tip)]

TDs = Tip ∓
√
(T2

ip − 4TipTDp)]/2

(27)

The expressions (27) show that there are two optimal sets of parameters for the series
PID controller. We have already pointed out this ambiguity in [44], and the conclusion
was that it has no practical impact when the system is linear. However, it turns out to be
important for the design of an anti-windup PID structure with integral action generated by
a positive feedback from the output of the constrained controller with time constant Ti, as
shown in Figure 1 (all parameters of the controller correspond to the series PID). On the
other hand, the optimal setting of the series PID controller is much simpler using the IPDT
model (the subscript “s” is omitted for simplicity). The MRDP method yields for (8)

so = (
√

3− 3)/Td; Ko = KpoKsTd = 0.7239

τi = Tio/Td = 3.4475; τD = TDo/Td = 0.284
(28)

Let us now consider an ideal series Ca(s) controller

Ca(s) = Kpa
(1 + Tas)(1 + Tbs)

Tas
=

= Kpa

(
1 +

1
Tas

)
(1 + Tbs) => Ti = Ta; TD = Tb

(29)

with parameters Kp, Ta, Tb satisfying the closed-loop quadruple real dominant pole con-
dition, where Ta has been interpreted as Ti and Tb as TD. This controller is obviously
equivalent to the controller

Cb(s) = Kpb

(
1 +

1
Tbs

)
(1 + Tas)

Kpb = Kpa
Tb
Ta

; => Ti = Tb; TD = Ta

(30)

Although the first set of parameters (28) was chosen to yield values for τi and Ko
that are close to PI control (22), the coefficients in (30) yield the second alternative with
significantly different parameters (Ko = 0.0596). The importance of this ambiguity can be
shown in the case of constrained control (with the controller output limitations).

3.5. Prefilter Calculation

When changing from a parallel to a series PID controller, it is also necessary to change
the calculation of the optimal prefilter, which is assumed as follows

Fp(s) =
1 + bs + cs2

(1 + Tis)(1 + TDs)
(31)

In the simplest case, it is designed to compensate for the zeros of the closed-loop
transfer function

Fcl(s) =
C(s)S(s)

1 + C(s)S(s)
=

KpKs(1 + Tis)(1 + TDs)
Tis(s + a)eTds + KpKs(1 + Tis)(1 + TDs)

(32)
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With the trivially chosen setpoint weights

b0 = c0 = 0 (33)

the entire control transfer function becomes an I-PD controller. In the general case, the
prefilter parameters can be derived from the polynomial equations

N1(s) = (1− s/so) = 1 +
2Td

6 + A− S
s , A = aTd , S =

√
A2 + 12

N2(s) = (1− s/so)2 =

(
1 +

2Td
6 + a− S

s
)2 (34)

to cancel out one or two dominant poles so. For (8) the result is

b1 = 0.7887Td; c1 = 0;

b2 = 1.5774Td; c2 = 0.6220T2
d .

(35)

In the experimental evaluation, we preferred to maintain the continuity of the course
of the reference signal and so we worked only with c = 0.

4. Time and Shape-Related Performance Measures

The integral of absolute error (IAE) is often used to evaluate the speed of closed-loop
response:

IAE =
∫ ∞

0
|e(t)|dt ; e = w− y . (36)

Since the controller optimization based on the IAE criterion leads to overshoot of
the output in most cases, additional constraints must be applied to achieve a monotonic
response. In this work, the additional optimization constraints are considered in the form
of shape-related constraints [2,14]. These are based on the concept of monotonicity, where
the monotonicity measure is proposed as

TV0(y) =
∞

∑
i=0
|yi+1 − yi| − |y∞ − y0| (37)

i.e., as the difference between the total signal path (y) (sum of increments |yi+1 − yi|) and
the minimum possible path required to change the signal from the initial state (y0) to
the final state (y∞). For monotonic responses (with no overshoot or undershoot of y(t)),
TV0(y) = 0. Otherwise, TV0(y) > 0.

The evaluation of signal shapes based on deviations from monotonicity can be
viewed as a generalization of the evaluation approaches used in the early stages of au-
tomatic control in relay time-optimal control. In this context, references to Feldbaum’s
theorem [14,15,59,60] can be found in the older literature. According to this theorem, to
move the output of an nth-order system (with full relative order) from one steady state to
another, n control intervals are required in which a controlled variable changes its values
from one limit to the opposite. Such a rectangular pulse can be considered to be a limiting
case of two monotonically increasing/decreasing responses separated by an interval with a
constant value of the constraint. For example, a simple integrator requires an input signal
consisting of two monotonic intervals for a monotonic output transition of the steady
state [58].

To evaluate deviations from such an ideal single-pulse waveform (1P) [58] consisting
of two monotonic intervals separated by an extreme value um /∈ (u0, u∞) that lies outside
the interval of the initial and final output values u0 and u∞, the measure TV1(u)

TV1(u) = ∑
i
|ui+1 − ui| − |2um − y∞ − u0| (38)
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can be used. To separate the measured deviations due to the change of the steady state
from the deviations caused by the process noise, the evaluation interval can be restricted
to the time at which the process response practically settles (|e(t)| ≤ e0, where e0 is
chosen according to the noise level). Simpler relationships for the IPDT model can be
used to demonstrate the effect of Td on the rate of transients. For example, in the PID
control yielding ideal shapes (with zero deviations at the plant output), the optimal IAE
values characterizing unit setpoint step responses can be calculated using the Laplace
transform [44] as integral of error (IE) values, when

IAE = Ti + TD − b (39)

With the simplest prefilters (33) and (35)

IAE0 = 3.732Td; IAE1 = 2.9433Td; IAE2 = 2.1546Td (40)

The results of the analysis of the influence of Td on the speed of transients in the design
using MRDP method make it possible to formulate the following note.

Remark 4 (Motivation to search for models with a maximum dead-time value). If we used
a smaller Td than the actual one when setting the controller, the transients would be accelerated.
However, since the TRDP corresponds to a limit setting at which oscillations do not yet occur, this
would be at the cost of disrupting the ideal waveforms. To avoid this, we look for the IPDT model
with the largest Td value when identifying the plant.

5. Illustrative Example

Mechatronics is an initiative started in Japan around 1970 that aims to improve the
functionality of various products by making them more accurate, flexible, adaptable, or
user-friendly - all with the goal of reducing production costs. With similar goals in mind
and to test the dynamics of electric vehicle models, in 1982 we built a low-cost speed control
system with three commutator DC motors. The mechanical construction of the vehicle
model was made using the Meccano kit from Merkur (Figure 6). At that time, the device
was controlled by a HP-85 computer, which allowed the use of self-adjusting and adaptive
controllers. The sampling time was between 0.1 and 0.3 s, which is reasonable given the
main time constant of the system (about 5 s).

From a mechanical point of view, the car model was not very close to the actual
car, but it was suitable for testing and improving the self-adjusting and adaptive control
algorithms mentioned above, including the study of nonlinear and constrained systems,
time-varying systems, measurement and quantization noise, resonances, etc., which were
later applied to various systems. The advent of embedded computers with much higher
computational power in recent decades enabled the experimentation of various control
approaches, which were previously not possible due to the limited computational power
of microprocessors. Here, the aforementioned electromechanical system proved to be a
suitable candidate to demonstrate recent advances in control approaches and to show that
many control shortcomings of the past can be easily addressed today.

The device consists of a DC motor driven by a pulse-width modulated (PWM) motor
driver that converts the process input voltage into 7V high pulses of the same frequency
and varying duty cycle. The displayed process input value u is normalized between 0 and
1, where 1 means a duty cycle of 100% or constant 7 V and 10 ms at the motors. The process
output is the rotational speed of the system measured by the third DC motor. To attenuate
the significant measurement noise (see Figure 2), highlighted due to the use of a simple
motor instead of a special tachodynamo, the 2nd order filter in Figure 1 was extended to the
4th order binomial filter (1) used with time constant Tf = 50 ms at sampling period Ts = 0.1
ms, which satisfies condition (2). It should be borne in mind here that the sampling period
Ts cannot be reduced arbitrarily, even if the signal processing speed would allow it. As Ts
decreases, also useful output changes per sampling period decrease, increasing the effect of
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quantization noise. At the selected Ts value, the effect of output level quantization against
measurement noise was still negligible. The sampling period used for the control algorithm
was Ts = 10 ms. For all measurements, the output speed of the process is normalized to the
fastest speed, which is 13.7 revolutions per second (RPS). Therefore, the indicated speed in
the diagrams is between 0 and 1. Experiments with the built device complement similar
research carried out with a speed system consisting of a DC motor with an incremental
speed sensor [61]. Thanks to very simple construction enabling the work with a higher
moment of inertia and a larger mechanical time constant (and an easy verification of the
presented research by the readers), the sampling period can be chosen in a wide range. With
the chosen experiment setup, we do not want to question the advantages of incremental
sensors, but to explore the possibilities of improving the noisy output from analog sensors,
which are still important in a high number of practical applications. The sensing of the
speed by the commutator tachodynamo leads to the examination of a substantially different
situation with a different character of the acting noises. The source of the signal fluctuation
is mainly the rotation of the rotor winding in a variable magnetic flux and the switching
of individual coils. By shortening the sampling period and increasing the inertia of the
filters, we obtain a roughly constant speed signal from the measured signal at a constant
rotational speed. The experimental results fully confirm these expectations.

Figure 6. Components of the considered electromechanical Arduino-Due-based speed system.

When evaluating the individual step responses in Figure 2, it is clear that the system
is nonlinear and time-varying: After prolonged experimentation, the motor characteristics
change with time due to the increased motor temperature. They also change significantly
after each lubrication of the bearings. The variations in velocity in the vicinity of steady
states are mainly due to imperfect mechanics and resonances that occur. This means that
the steady-state identification may not be accurate enough and repeatable to achieve a
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reliable design of the desired closed-loop dynamics. Therefore, the classical identification
methods introduced by Ziegler and Nichols [3] should be modified.

5.1. Specifying the Local and Ultralocal Linear Process Approximations

The analysis and modifications of Ziegler and Nichols’ method have been a constant
since the 1940s. Let us mention here at least the modifications concerning the digitization
of the model transfer function [12]. Here we will further develop the model specifications
according to [13]. However, the actual list may be more extensive as new approaches are
developed regularly. The basic motivation for the proposed modifications is to increase
the reliability in real life (applications) and to obtain more efficient closed-loop transients.
We add to them the need for the widest possible digitization of the overall design. To
achieve this, the new methods of controller design and the new criteria for evaluating the
performance of transients are used. However, the fundamental problem of these methods
is the reliable determination of the model parameters (in our case (6) and (8)). The design
of a controller can be concise only if the model used in its design approximates with suffi-
cient accuracy the fastest components of the transients, which corresponds to an accurate
estimation of the process in the higher frequency range. If we accurately approximate slow
components with it (i.e., if we focus on estimation of the process model at low frequencies),
the design can be completely degraded by the behavior of fast components. The fact that
a model used excellently approximates the measured process reaction curve over a wide
time, can be irrelevant for a fast and smooth setpoint tracking.

The models in Figure 5a were obtained by searching for optimal parameters on the
grid defined by the intervals:

Td ∈ [0, 50Ts], ∆Td = Ts;

Ks ∈ [0.1, 1.5], ∆Ks = 0.01;

T ∈ [2, 8], ∆T = 0.1.

(41)

In the presence of measurement noise, the basic way to refine the model parameters is
to extend the evaluated interval. However, this does not apply indefinitely. For example,
consider an identification interval specified by t ∈ [0, ta]. Since optimal results cannot be
expected for every identification interval, consider several approximations with ta ∈ [0.5, 1],
all of which have specific parameter values (41). The optimal setting in each case must
satisfy conditions (12). The global optimum can be sought under the condition of the
maximum value of Td, since the dead time is usually the most limiting parameter of the
controller design. Figure 5a shows that for ta ≤ 1, the responses of both models are
practically the same. Therefore, the values of Ks and Td of the two transfer functions (6)–(8)
considered are approximately the same:

IPDT, ta ≤ 1 : Ks = 0.15; Td = 0.18; a = 0; tao = 0.8

FOTD1, ta ≤ 1 : Ks = 0.16; Td = 0.19; a = 0.125; T = 1/a = 8; tao = 0.85
(42)

Here tao denotes the identification interval that yields the optimal parameter set. If we
extend the possible length of the identification to ta ∈ [0.5, 5], we obtain

IPDT, ta ≤ 5 : Ks = 0.15; Td = 0.18; a = 0; tao = 0.8

FOTD5, ta ≤ 5 : Ks = 0.17; Td = 0.27; a = 0.213; T = 1/a = 4.7; tao = 4.6
(43)

The IPDT model has not changed, but the FOTD model, which estimates the process
response more accurately, leads to significantly larger values of all determining parameters
than for ta ∈ [0.5, 1].
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5.2. Experimenting with PI Control

By choosing the identification interval ta ≤ 1 the parameters of the PI controllers
(19)–(22) are

PI0 : KPo = 17.07995526; Tio = 1.049116873; bo = 0.3072792204

PIa1 : KPo = 14.99317409; Tio = 1.034359438; bo = 0.3179322586
(44)

Comparing the controller parameters obtained from both models, it can be seen that
the biggest difference is in the gains KPo. Repeating the identification in a larger interval
ta ≤ 5, the parameters corresponding to FOTD5 are as follows

PIa5 : KPo = 9.771989345; Tio = 1.338369226; bo = 0.4395610608 (45)

In this case, the controller parameters obtained from the IPDT and FOTD models
differ significantly.

Figures 7 and 8 show the setpoint responses of the PI controllers designed according
to the two considered models and identification intervals. A slight overshoot of the output
responses corresponding to the FOTD model with ta ≤ 1 is a consequence of the limitation
of the control signal and the nonlinearity of the process. Indeed, the overshoot does not
occur for smaller setpoint changes. However, it should be noted that the overshoot would
be much larger without anti-windup protection.
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Figure 7. PI control: setpoint responses corresponding to FOTD approximations of an initial part of a
normed step response yn(t) for ta ≤ 1 (42) with the parameters (44) (above) and for ta ≤ 5 (43) with
the parameters (45) (below).
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Figure 8. PI0 control: setpoint responses corresponding to IPDT approximations of an initial part of
a normed step response yn(t) (42) with the parameters (44) and with emphasis on areas including
overshooting output requiring compensation by an additional input pulse.

In the case of the FOTD model over a longer identification interval ta ≤ 5, a lower
controller gain leads to lower TV1(u) values (see Table 1). A small overshoot of the output
occurs in both process models used. It is obvious that neither the transients nor the
performance measures are better when a more complex FOTD model is used (for both
ta ≤ 1 and ta ≤ 5).

5.3. Experimentation with PID Control

The calculated PID control parameters (19)–(22) for ta ≤ 1 are

PID10 :
KPo = 26.80948841; Tio = 0.6205422427; TDo = 0.05122690297; bo = 0.1419615242

PID20 :
KPo = 2.213172556; Tio = 0.05122690297; TDo = 0.6205422427; bo = 0.1419615242

PID1a1 :
KPo = 23.61125885; Tio = 0.6289503085; TDo = 0.05389188106; bo = 0.1484626127

PID2a1 :
KPo = 2.023140996; Tio = 0.05389188106; TDo = 0.6289503085; bo = 0.1484626127

(46)

The largest differences in the controller parameters exist for the gain KPo in both
models. Performance measures of the responses corresponding to the FOTD model in
Table 1 show that despite the large differences in the controller parameters, the differences
in the closed-loop responses are relatively small. The responses corresponding to the IPDT
model in Figure 9 are very close to the responses obtained with a more complex FOTD
model. However, a closer look at the responses reveals that we obtain monotonic (and
nearly time-optimal) process output responses and 1P control signal responses only for the
second set of controller parameters with a smaller value of Kp. The control loop responses
corresponding to the first set of parameters exhibit small overshoots of the process output
responses (increased PO values in Table 1 and slightly increased TV0(y) values) and the
second impulse on the controller output response.
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Table 1. Performance measures IAE, TV0(y) and TV1(u) corresponding to three steps for all experiments; PO—percentage
overshoot; minimum—blue; maximum—red.

Step from 0 to 0.4 Step from 0.4 to 0.6 Step from 0.6 to 0.3

IAE TV0(y) TV1(u) PO IAE TV0(y) TV1(u) PO IAE TV0(y) TV1(u) PO
PI0 1.023 0.096 1.154 8.00 0.314 0.110 1.678 6.00 0.656 0.066 0.870 6.00
PIa1 1.043 0.106 1.158 8.25 0.312 0.094 1.296 6.00 0.667 0.092 1.096 7.67
PIa5 1.064 0.098 0.584 8.75 0.311 0.088 0.744 5.00 0.679 0.072 0.480 7.33
PIa20 1.127 0.086 0.918 8.00 0.316 0.064 0.972 6.00 0.710 0.074 0.874 6.33

PIa20X 1.078 0.118 3.000 6.00 0.324 0.102 3.060 8.00 0.729 0.080 2.298 4.67
PID10 1.056 0.080 2.530 5.50 0.319 0.126 4.204 6.50 0.693 0.066 2.062 4.67
PID20 1.105 0.056 2.372 1.00 0.342 0.086 3.578 1.50 0.701 0.032 1.730 0.33
PID1a1 1.061 0.106 2.920 6.25 0.326 0.106 3.464 5.50 0.681 0.054 1.922 4.33
PID1a5 1.101 0.094 1.646 5.75 0.342 0.094 2.476 3.00 0.699 0.056 1.140 3.67
PID2a1 1.084 0.078 2.740 1.25 0.334 0.116 3.974 4.00 0.663 0.054 2.026 1.00
PID2a5 1.342 0.032 1.944 0.25 0.583 0.068 2.620 1.50 0.886 0.034 1.834 0.33
PID1a20 1.143 0.072 2.066 5.25 0.322 0.076 2.758 6.00 0.703 0.068 2.456 5.00
PID2a20 1.168 0.032 1.628 0.50 0.337 0.044 2.572 1.00 0.711 0.044 2.170 0.67

PID1a20X 1.012 0.104 3.026 5.25 0.334 0.160 5.438 7.50 0.740 0.078 2.468 4.67
PID2a20X 1.065 0.072 2.776 1.00 0.332 0.144 5.592 5.00 0.764 0.042 1.452 0.67
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Figure 9. PID control: setpoint responses corresponding to IPDT approximation of an initial part of a
normed step response yn(t) for both possible sets of the controller parameters (46) with emphasis on
areas with overshooting output and with excessive input pulse of PID10.
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By evaluating the controller parameter for ta ≤ 5 we obtain

PID1a5 :
KPo = 13.24788546; Tio = 1.408562174; TDo = 0.07048046952; bo = 0.1484626127

PID2a5 :
KPo = 0.6628867394; Tio = 0.07048046952; TDo = 1.408562174; bo = 0.1484626127

(47)

In this case, the difference of the controller parameters, except for the setpoint weight-
ing factor b, is again obvious.

As can be seen in Figure 10, the differences in the control responses are relatively
small despite the large differences in the controller parameters. The response of the PIDa52
controller is slightly less overshooting than that of PIDa51. The responses with PIDa52 are
already slightly overdamped—the control signal does not go into saturation during the
second and third setpoint changes. As a result, the IAE values increase.
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Figure 10. PID control: setpoint responses corresponding to FOTD approximations of a longer initial
part of a normed step response y(t) for ta ≤ 5 with both possible sets of the controller parameters (47).

6. Discussion

The performed experiments can be summarized in the groups of conclusions.

6.1. Step-Response-Based Plant Modeling

In Remark 4 we explained the motivation to look for approximations with a maximum
value of Td. We implemented the reasoning itself for the IPDT model, because for the FOTD
model the corresponding relationships are too complex. In addition, the rate of transients
depends on another parameter (a). However, the experimental results show that a different
criterion will have to be sought to select the optimal FOTD model.

By analyzing the approximations at different ta (ta = 1: 0.1: 20) and choosing the
maximum value of Td, the optimal approximation IPDT (42) was found for ta = 0.8 and the
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optimal FOTD5 model (43) was obtained at ta = 4.6. Extending the approximation with
the criterion formulated in this way no longer brings some improved results.

However, what do the FOTD approximations evaluated for higher values of ta bring?
For example, the parameters of the FOTD20 model, obtained by least squares for ta = 20
and parameter grid (41) are

FOTD20, ta = 20 : Ks = 0.15; a = 0.161; T = 1/a = 6.2; Td = 0.18 (48)

This model then yields parameters of the PI and PID control

PIa20 :
KPo = 16.84; Tio = 0.965; bo = 0.311

PID1a20 :
KPo = 26.45; Tio = 0.594; TDo = 0.051; bo = 0.148; co = 0

PID2a20 :
KPo = 2.266; Tio = 0.051; TDo = 0.594; bo = 0.148; co = 0

(49)

The corresponding transients with PI control and both options of PID control in (see
Table 1) just confirm the previously discussed properties: PI control and the first option of
PID control show slight output overshooting and an additional control pulse at the input.
Monotonic output changes correspond just to the 2nd set of controller parameters (49).
However, when decreasing the steps in looking for the optimal least squares responses
in the parameters Ks and T (41) to one half and repeating the optimal model search with
ta = 20 and ta = 30, we may see that with respect to FOTD20, the model FOTD20X changed
significantly, whereas (considering the same number of decimal places) FOTD30X is nearly
identical with FOTD20

FOTD20X, ta = 20 : Ks = 0.145; a = 0.155; T = 1/a = 6.45; Td = 0.1

FOTD30X, ta = 30 : Ks = 0.150; a = 0.161; T = 1/a = 6.20; Td = 0.18
(50)

That is, the parameters a (or T = 1/a) and Td may vary in a relatively broad range,
whereas the parameter Ks remains roughly constant. All the newly calculated values of
Td are now smaller than Td = 0.27, obtained at ta = 4.6. Figure 11 shows that the time
response of the FOTD1 and FOTD5 models resemble the actual time response of the process
only in the first few seconds. Therefore, the approximation intervals ta ≤ 1, ta ≤ 5, ta = 20
or ta = 30 used are still short with respect to the total measurement time to steady state
tmax = 60 (in Figure 4), whereas the settling time is roughly 30 s. Responses corresponding
to FOTD20X and FOTD30X are graphically difficult to distinguish, but this is no longer the
case for T and Td values and even less for controller parameters.

On the one hand, this means that repeating the task for several values ta, with match-
ing the obtained values according to (12), loses its meaning for longer ta. On the other
hand, above results show that from a numerical point of view, the method of identifying
FOTD model is poorly conditioned and should be avoided. If we extend the length of
the approximation further, the more the effect of the various perturbations will become
apparent, and we could perhaps reach completely unusable results and conclude that the
Ziegler and Nichols method may not be practically applicable.
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Figure 11. FOTD approximations of a normed step response yn(t) calculated for ta ≤ 1, ta ≤ 5,
ta = 20 and ta = 30.

We may continue this analysis with evaluating parameters of the controllers cor-
responding to the obtained models FOTD20X and FOTD30X. For the PI controller we
obtain parameters

PIa20X : KPo = 31.56; Tio = 0.557; bo = 0.168

PIa30X : KPo = 16.84; Tio = 0.966; bo = 0.300
(51)

If we mentioned above the high numerical sensitivity of determining the parameters of
FOTD models, this is even more true for determining the parameters of PI controllers. In
the case of graphically difficult-to-distinguish approximations of measured responses, we
obtain almost double the differences in terms of determining the optimal controller gain. In
addition, there are big differences in other parameters as well, which finally lead to much
more oscillatory responses in Figure 12.
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Figure 12. PI control: setpoint responses corresponding to FOTD20X approximation (50) achieved
with ta = 20 for a modified grid of parameters (41) with two times finer steps for T and Ks and the
controller parameters (51).
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Even greater differences are shown in the case of the PID controller. Here we obtain

PID1a20X :
KPo = 35.67; Tio = 0.495; TDo = 0.011; bo = 0.078

PID2a20X :
KPo = 0.782; Tio = 0.011; TDo = 0.495; bo = 0.078

PID1a30X :
KPo = 26.45; Tio = 0.594; TDo = 0.051; bo = 0.140

PID2a30X :
KPo = 2.266; Tio = 0.051; TDo = 0.594; bo = 0.140

(52)

Also these parameters lead to much more oscillatory responses in Figure 13.
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Figure 13. PID control: setpoint responses corresponding to FOTD20X approximation (50) achieved
with ta = 20 for a modified grid of parameters (41) with two times finer steps for T and Ks and the
controller parameters (52).

So the basic question here is how do we recognize the most advantageous FOTD
model? Surprisingly, the settings of both PI and PID controllers resulting from the FOTD20
and FOTD30X models are very close to the parameters calculated using the IPDT model.
With the field of results of experimental verification, this points to the already mentioned
principle (see Remark 3) that when determining the parameters of the FOTD model, we
should consider their compliance with the parameters from the IPDT model as a criterion
of their aptness, i.e., regarding the accuracy of determining the fastest mode, the optimal
FOTD model has to be specified in such a way that its parameters Ks and Td are similar
for both Sa(s) (6) and S0(s) (8) and thus yield also similar controller parameter values.
Of course, when evaluating the suitability of the PID parameters (52) resulting from the
FOTD20X model, another question arises as to what extent the selected sampling period
Ts = 0.01 s is sufficient for their implementation.
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6.2. Two Options in PID Parametrization

Additionally, the paper comes to the conclusions that the use of a more complex PID
controller can give faster transients with smaller output deviations from ideal shapes, even
in the case of heavily noisy processes, than can be obtained with simpler PI controllers.
This example is important regarding numerous applications in mechatronics, where great
emphasis is placed on the fastest possible monotonic step responses without overshooting.
When achieving such transients, control action constraints usually also apply. From this
point of view, the use of anti-windup I-action accomplished in the form of feedback from
the constrained output of the controller (as in Figure 2) proves to be interesting. It is realized
with a delayed time constant Ti. However, when using a PI controller, output overshoot
almost always appears. This can simply be avoided using a series PID controller but only
with one of the two possible controller parameterizations. This fact was first pointed out
in [44]. The realized experiments fully confirmed expectations from [44] and so they are
definitely not a result of random parasitic effects and uncertainties arising under real-time
control. Although it may seem surprising and counter-intuitive that a circuit that under
linear control, gives the same transients for both possible sets of controller parameters,
gives different properties in limiting the control action. It should be noted, however, that
to examine the effect of a nonlinear saturation block (representing a special case of sector
nonlinearity), the control loop must be transformed into an equivalent canonical circuit
with saturation and a linear part [17,59,60,62]. In such a case, however, different controller
parametrization corresponds to different transfer functions of the linear part, which may
explain the different behavior. However, since the works in this area focus on stability,
while not paying attention to the monotonicity of transients, given the limited scope of
this article and its focus on experiments with the Arduino computer, we will avoid more
detailed considerations here. The benefit of the new solution with PID control is even more
valuable because traditional anti-windup controllers based on conditioning techniques [63]
always lead to overshooting [2].

6.3. Final Recommendations

Finally, if we try to summarize the results of the carried-out experiments quantified by
Table 1 into the final recommendations, regarding the emphasized advantages, they will
be different:

If a nearly time-optimal transient responses (low IAE) with well-damped steady
states (low TV1(u)) are required, while overshooting up to 10% is not a problem, PIa5
appears to be the most appropriate solution. PIa1 and PI0 offer roughly the same output
at approximately twice the excessive input increments (TV1(u)). The number of samples
needed to determine the model has been reduced for PI0, which makes it possible to
shorten the identification of the system. The use of FOTD20, FOTD20X or FOTD30X
models with a significantly longer identification phase and more demanding parameter
evaluation does not bring any obvious advantages. Rather, it is accompanied by a problem
which of the obtained models, which lead to a considerable variance of the controller
parameters, is actually preferred. If it is necessary to reduce output overshooting and
excessive output increments as much as possible, PID controllers corresponding to the
second option parameters prove to be the most advantageous. For the upwards steps,
PID2a5 and PID20 are most preferred, while when jumping downwards, PID20 is the best.
Again, the use of models with a longer approximation interval does not bring obvious
advantages. If further smoothing of the responses is needed, it would be even more
necessary to reduce the sampling period Ts.

7. Conclusions and Future Work

In the paper, some modifications to the oldest and most frequently cited method of
setting the parameters of PI and PID controllers [3], resulting from the need to digitize
them, have been proposed and tested. When trying to digitize the whole design, the first
modification avoids the digital determination of the inflection point of the step response
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curve of the process. The proposed solution is not only numerically more stable, but also
allows more accurate identification of the relevant process parameters. Instead of the
original quarter-amplitude-damping, performance was evaluated based on deviations
from ideal input and output responses formulated based on monotonicity. The optimal
controller parameters are determined using the Multiple Real Dominant Poles method
applied to PI and series PID controllers. The applied anti-windup protection ensures
that the input and output responses of the process are close to the ideal shapes even for
constrained systems. The study also showed that more complex FOTD process models offer
little or no improvement over the IPDT models in the experiments provided. Moreover, the
use of simple integrating process models, avoiding the identification of internal feedback
parameters (and denoted therefore also as model-free control), is a cornerstone of modern
control methods, such as advanced disturbance rejection control.

The third modification is the implementation of a low-pass filter on the measured
process output. By reducing measurement noise, the filter improves the accuracy of
process identification and significantly reduces the controller output noise during control.
Therefore, the PID controller is also suitable for noisy processes. As already stated in some
works [2,14], the control performance for noisy and uncertain processes can be further
improved using controllers with higher-order derivatives.
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