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Abstract: Supramolecular fibrous materials in biological systems play important structural and
functional roles, and therefore, there is a growing interest in synthetic materials that mimic such
fibrils, especially those bearing enzymatic reactivity. In this study, we investigated the self-assembly
and enzymatic post-modification of short aromatic peptide amphiphiles (PAs), Fmoc-LnQG (n = 2 or
3), which contain an LQG recognition unit for microbial transglutaminase (MTG). These aromatic
PAs self-assemble into fibrous structures via π-π stacking interactions between the Fmoc groups and
hydrogen bonds between the peptides. The intermolecular interactions and morphologies of the
assemblies were influenced by the solution pH because of the change in the ionization states of the
C-terminal carboxy group of the peptides. Moreover, MTG-catalyzed post-modification of a small
fluorescent molecule bearing an amine group also showed pH dependency, where the enzymatic
reaction rate was increased at higher pH, which may be because of the higher nucleophilicity of the
amine group and the electrostatic interaction between MTG and the self-assembled Fmoc-LnQG.
Finally, the accumulation of the fluorescent molecule on these assembled materials was directly
observed by confocal fluorescence images. Our study provides a method to accumulate functional
molecules on supramolecular structures enzymatically with the morphology control.

Keywords: self-assembly; peptide amphiphile; enzymatic reaction; pH-responsiveness; post-modification

1. Introduction

Supramolecular fibrils formed through molecular self-assembly are abundant in bi-
ological systems; examples include extracellular collagen matrices, intracellular actin
filaments, and microtubules. They play important structural and functional roles. Syn-
thetic approaches to fabricate materials that mimic such fibrils have been developed using
various molecules [1,2]. Peptide amphiphiles (PAs) are one promising class of synthetic
molecules used to fabricate such fibril-mimicking materials because of their design diver-
sity and bio-functionality [3–8]. Artificial extracellular matrices, as well as drug delivery
carriers with varied morphologies, mechanical properties, and biological epitopes have
been reported thus far.

One important feature of these supramolecular materials is their responsiveness to
external stimuli [9,10]. Since supramolecular organizations are dependent on relatively
weak noncovalent interactions, they can be susceptible to external stimuli, such as light,
temperature, and pH. PAs often contain pH-responsive side chains or an N- or C-terminus;
therefore, pH is one of the most common stimuli used to control the assembly [11,12].
Indeed, many studies have shown pH-induced changes in morphology [13] and mechanical
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properties [14], which resulted in functional materials, such as drug-releasing capsules [15,
16] and injectable cell delivery vehicles [14].

The use of enzymatic reactions to control morphologies or assembly formation is a
relatively new concept in supramolecular materials [17,18]. Here, the chemical conversion
of molecular structures is induced by an enzyme. There is a growing interest in such
systems not only because of their analogy to biological systems, but also their control-
lability under biocompatible conditions. Various enzymes, including proteases [19,20],
phosphatases [21], kinases [22], and tyrosinases [23] have been used to demonstrate this
concept. In contrast, post-modification of supramolecular fibrils by enzymatic reactions
is limited to a few reports [24–26]. This strategy contributes to adding functions or con-
trolling hierarchical structures, or both, in biological systems [27,28]; however, there are
limited number of enzymes capable of performing this task. Cross-linking enzymes, such
as transglutaminase [29] and sortase [30], are some of the few limited enzymes.

We have previously reported on novel short aromatic peptide amphiphiles, 9-
fluorenylmethoxycarbonyl-(Leu)n-Gln-Gly (Fmoc-LnQG, n = 2 or 3) [25]. These PAs contain
a microbial transglutaminase (MTG)-reactive Gln residue. MTG catalyzes cross-linking re-
actions between the γ-carboxyamide of Gln and primary amines; thus Fmoc-LnQG enables
post-modification of the self-assembly structures with amine-containing molecules by the
MTG reaction. A significant achievement from this work was that the post-modification
was performed on different self-assembled structures, and the structure was depending on
the number of Leu residues: specifically, narrow fibrils were formed by Fmoc-L2QG, and
wide, flat tapes from Fmoc-L3QG.

In this study, we focused on the pH responsiveness of these assemblies. Since the
free acid of the C-terminus shows different ionization states depending on the pH, the
self-assembly of Fmoc-LnQG should be influenced by the pH. We first investigated the
self-assembly of Fmoc-LnQG at four different pH values from pH 5 to 8. We then evaluated
the enzymatic reaction on the Fmoc-LnQG assemblies at various pH values. Our results
showed that both the self-assembly and enzymatic reaction are highly dependent on the
pH, while both were maintained (Figure 1).
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Figure 1. Conceptual diagram of this study. Short aromatic peptide amphiphiles bearing enzymatic
reaction sites first self-assemble into different structures, then post-modification of the structures was
achieved by the enzymatic reaction.

2. Results and Discussion
2.1. Change in Self-Organization Behavior of Fmoc-LnQG (n = 2, 3) Depending on pH
2.1.1. Evaluation of Interaction between Fmoc Groups by Fluorescence Spectroscopy

Since the aromatic stacking interactions of short aromatic peptides have a large impact
on the self-organization, we first evaluated the interaction between the Fmoc groups
of Fmoc-LnQG (n = 2, 3) at pH 5–8 by fluorescence spectroscopy below and above the
critical aggregation concentrations (CAC values were 0.14, 0.20, 0.092, and 0.53 mM for
Fmoc-L2QG and 0.089, 0.041, 0.14, and 0.091 mM for Fmoc-L3QG at pH 5, 6, 7, and 8,
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respectively: Figure S2). For Fmoc-L2QG in a monomeric state (0.005 mM), the maximum
monomeric fluorescence was observed at 316 nm (Figure S3a). The peaks were shifted
to 318 nm in an assembled state (2.0 mM; Figure 2a) under all pH conditions (pH 5–8),
indicating the presence of excimers of fluorenes [31]. In addition, a broad peak at a longer
wavelength around 450 nm was observed (Figure 2a), which corresponded to multiple
aromatic stacking interactions (π-π interactions) between the Fmoc groups. While the
fluorescence intensity around 450 nm decreased as the pH increased, with a significant
decrease at pH 8, the intensity of the excimer fluorescence (~318 nm) increased at higher
pH, indicating the change in the π-π interaction mode from long-range to short-range
interaction. In Fmoc-L3QG, the maximum wavelength of the monomeric fluorescence (314
nm at 0.005 mM) (Figure S3b) was shifted to 324 nm at all pHs when the concentration
was above the CAC (Figure 2b). The intensity of the excimer fluorescence increased at
higher pH as well. However, there was almost no broad peak around 450 nm. These
results suggest that the long-range π-π interaction between Fmoc groups contributes to the
higher-order aggregation of Fmoc-L2QG, especially at lower pH, while only a short-range
interaction between Fmoc groups (excimer formation) was observed for the self-assembled
Fmoc-L3QG.
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Figure 2. Fluorescence spectra of Fmoc-L2QG (a) and Fmoc-L3QG (b) at pH 5–8 above their critical
aggregation concentrations (CACs). λex = 265 nm.

2.1.2. Evaluation of Interaction between Peptides by Fourier Transform-Infrared
Spectroscopy (FT-IR)

The formation of hydrogen bonds between peptides is another important factor in the
self-assembly of short aromatic peptides. We used FT-IR to evaluate the effect of pH on the
hydrogen bonding between peptides (Figure 3). The amide I band derived from the C = O
stretching vibration of the amide groups is an indicator of the strength of hydrogen bonds
between peptides. Both Fmoc-L2QG and Fmoc-L3QG assemblies showed an amide I band
around 1635 cm−1, indicating the formation of a β-sheet structure (Figure 3a,b). Fmoc-
L3QG assemblies showed absorption at lower wavenumbers than Fmoc-L2QG assemblies.
Moreover, the band shifted to a lower wavenumber as the pH increased (Figure 3c). These
results indicate that the hydrogen bonds formed between the peptides are stronger in
Fmoc-L3QG assemblies, especially at higher pH. An additional peak around 1690 cm−1

corresponds to the organized carbamate structure of the Fmoc groups.

2.1.3. Evaluation of the Self-Assembled Structure of Fmoc-LnQG in Response to pH by
Transmission Electron Microscopy (TEM)

We observed how the self-assembled structures of Fmoc-LnQG (n = 2, 3) changed
with pH using transmission electron microscopy (TEM) (Figure 4). Fmoc-L2QG assemblies
formed narrow fiber-like structures with a twisted morphology at all pH regions between
5 and 8 (Figure 4a–d). The diameter of the fibers remained almost identical (ca. 10 nm),
while the twisting was most pronounced at pH 5 (Figure 4a). Similarly, Fmoc-L3QG formed
fibrous assemblies with a twisted structure at pH 5 and 6 (Figure 4e,f). However, as the pH
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increases, a wide, flat, tape-like morphology appeared (Figure 4g,h). At pH 8, almost all
assemblies were transformed into tape-like structures with a width of ca. 200 nm, which
was ca. 12.5-fold wider than those at pH 5 (Figure 4h).
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Figure 4. Transmission electron microscopy (TEM) images of Fmoc-L2QG (a–d) and Fmoc-L3QG (e–h) at pH 5 (a,e), 6 (b,f),
7 (c,g), and 8 (d,h). Fmoc-L2QG assemblies formed a narrow fibrous structure with twisting (a–d). Fmoc-L3QG assemblies
formed a similar structure at pH 5–6 (e,f), while they transformed into a wide, flat tape-like structure as the pH increased
(g,h). Arrow in (g) indicates the flat tape-like structure. Bars: 200 nm.

In Fmoc-L2QG assemblies, long-range π-π interactions between the Fmoc groups
operate, while (relatively) weak hydrogen bonds between the peptides are also in play. In
contrast, in Fmoc-L3QG assemblies, the π-π stacking interactions are only effective at a short
range, and strong hydrogen bond formation is the main driving force of the self-assembly.
Although the self-assembled morphologies of Fmoc-L2QG at pH 5–8 and Fmoc-L3QG
at low pH (pH 5 and 6) look similar, the molecular organization may differ. Moreover,
Fmoc-L3QG at pH 8 showed a drastic morphological change to tape-like structures. This
may stem from the additional interaction between the hydrophobic peptide sequence, L3,
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as a result of the stronger hydrogen bond formation, leading to the formation of hierarchical
assemblies between fibers.

2.2. Enzymatic Modification of Fmoc-LnQG (n = 2, 3) Assemblies with Small
Fluorescent Substrates
2.2.1. Conjugation of Fmoc-LnQG and Oregon Green 488 Cadaverine (OG) by
MTG Catalysis

Next, we evaluated the enzymatic reaction rate of MTG using Fmoc-LnQG and a
small fluorescent substrate with a primary amine, Oregon green 488 cadaverine (OG) at
different pHs. Assemblies of Fmoc-LnQG were formed, and the MTG reaction with OG
was performed at 25 ◦C for 2 h. The conjugation of OG with Fmoc-LnQG was confirmed by
Matrix Assisted Laser Desorption/Ionization Time Of Flight Mass Spectrometry (MALDI
TOF MS) (Figure S4). Analysis by HPLC indicated that the enzymatic reaction rate increased
as the pH increased for both Fmoc-LnQG assemblies (Figure 5). Given that the enzymatic
activity of MTG measured by the hydroxamate method [32] was almost identical under all
pH conditions between pH 5 and 8 (Figure S5a,b), the difference in the reaction rates is a
result of the substrates, Fmoc-LnQG or OG.
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state. The enzymatic reaction was performed with Oregon green 488 cadaverine (OG) as an amine substrate. n = 3, * p < 0.05,
** p < 0.01, **** p < 0.0001.

To investigate the influence of the electric charge of the amine substrates, OG was
changed to tetramethylrhodamine cadaverine and sulforhodamine cadaverine, which
have cationic properties on their aromatic rings. Similarly to OG, the enzyme reaction
rates increased at higher pH (Figure S6a–d), suggesting that the net charge of the amine
substrate does not directly affect the enzymatic reaction. However, a possibility remains
that the pH dependency in the enzymatic rates was because of the amine substrate and its
nucleophilicity, which has an intrinsic pH dependency. In fact, initial velocities of the MTG
reaction using a simple amine substrate, acetyl-L-lysine, were highly dependent on pH
when Fmoc-LnQG in an unassembled state or Z-QG was used as the glutamine substrate
(Figures S7 and S8).

In the case of the assembled glutamine substrate, Fmoc-LnQG assemblies, we evalu-
ated the apparent pKa values by a titration method. Although the theoretical pKa value of
the carboxy group of a C-terminal amino acid of Fmoc-LnQG, glycine is ca. 3.5, the value
can shift because of the influence of neighboring molecules in an assembled state [31]. The
apparent pKa values indeed shifted to 6.2–8.1 and 5.8–7.9 for Fmoc-L2QG and Fmoc-L3QG,
respectively, with the inflection point around 7 (Figure S9). Considering that the pI of MTG
is 8.9, the accessibility of MTG to Fmoc-LnQG assemblies may increase above pH 7. In ad-
dition, enhanced hydrogen bonding between the peptides at higher pH (Figure 3) increases
the apparent concentration of the Gln substrate at the enzymatic reaction site, which may
increase the affinity to MTG. Taken together, higher pH optimized the environment for the
enzymatic reaction for both the amine and assembled glutamine substrates, which results
in the higher reaction rates found in Figure 5.
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2.2.2. Confocal Fluorescence Microscope Images of OG on Fmoc-LnQG Peptide Assemblies

Finally, we confirmed the accumulation of OG on the Fmoc-LnQG assemblies by
observation with confocal laser scanning microscopy (CLSM) [33]. In both PA assemblies,
green fluorescence from OG was observed at the overlap region of thioflavin T (ThT)-
stained PA assemblies after the MTG reaction (Figure 6a,b; right panels). In contrast, in the
control samples without an MTG reaction, no fluorescence from OG was observed on the
PA assemblies (Figure 6a,b; left panels). Despite the low reaction rates at low pH, especially
for Fmoc-L3QG (Figure 5), a sharp contrast in the fluorescence of OG between with (right
panels) and without (left panels) MTG reaction samples was observed. The contrast was
more obvious with samples that showed high reaction rates, such as Fmoc-L2QG at pH 7
and 8, where the green fluorescence derived from OG was uniformly found throughout the
peptide assembly structures (Figure 6a, right panels). These results suggest that the specific
accumulation of OG on the Fmoc-LnQG assemblies was achieved by the MTG reaction
under all the pH conditions examined, though the accumulation ratio depended on the
reaction rates, and the accumulation was directly observed using a CLSM technique.
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3. Experimental Section
3.1. General

Amino acid reagents and resin for the synthesis of PA, Fmoc-Gly-Alko-resin, Fmoc-Leu-OH,
Fmoc-Gln(Trt)-OH, O-(1H-benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophos-
phate (HBTU), 1-hydroxy-1-H-benzotriazole hydrate (HOBt), N,N-diisopropylethylamine
(DIEA), piperidine, trifluoroacetic acid (TFA), Nα-acetyl-L-lysine(acetyl-L-Lys), and tri-
isopropylsilane (TIS) were purchased from Watanabe Chemical Industries (Hiroshima,
Japan). Reagents for the Kaiser test were purchased from Kokusan Chemical (Tokyo, Japan).
Methanol, dichloromethane, diethyl ether, acetonitrile (ACN), Nile red, sodium hydro-
genphosphate dodecahydrate, and trizma base were obtained from Wako Pure Chemical
Industries (Osaka, Japan). N,N-dimethylformamide (DMF), N-ethylmaleimide (NEM),
dimethyl sulfoxide (DMSO), triethylamine (TEA), acetic acid (AcOH), citric acid, sodium
dihydrogenphosphate dihydrate, and hydrochloric acid were purchased from Kishida
Chemical (Osaka, Japan). Oregon green 488 cadaverine, fluorescein cadaverine, and sul-
forhodamine cadaverine were purchased from Thermo Fisher Scientific (Waltham, MA,
USA). Tetramethylrhodamine cadaverine was purchased from Cosmo Bio (Tokyo, Japan).
Thioflavin T (ThT) was obtained from Sigma Aldrich (St. Louis, MO, USA). Trifluoroethanol
(TFE) was obtained from Tokyo Chemical industry (Tokyo, Japan). Tri-sodium citrate di-
hydrate was purchased from Nacalai Tesque (Kyoto, Japan). All chemicals and solvents
were used as received. In this study, the following buffer solutions were used: sodium
citrate buffer for pH 5, phosphate buffer for pH 6 and 7, and Tris-HCl buffer for pH 8. The
concentrations of buffer were set to 10 mM except for that shown in Figure S5b.

3.2. Synthesis of Aromatic Peptide Amphiphiles

Fmoc-LnQG (n = 2, 3) were synthesized by the standard 9-fluorenylmethoxycarbonyl
(Fmoc) solid-phase peptide synthesis method. Fmoc-Gly-Alko Resin was immersed in
dichloromethane for 30 min. The protective Fmoc group was removed using 20% piperi-
dine in DMF. The deprotection was confirmed by Kaiser tests. Coupling reactions of
each amino acid were conducted by adding a mixture of coupling reagents (Fmoc-amino
acid:HBTU:HOBt:DIEA = 3:3:3:6 mol equivalent to reactive sites on resin) in DMF to the
resin and shaken for 1 h. After coupling reactions, the protective Fmoc group was removed
by 20% piperidine in DMF except for the last amino acid. The aromatic peptides were
cleaved from the resin using a mixture of 95% TFA, 2.5% TIS, and 2.5% water for 1.5 h.
After removing the solvents under reduced pressure, the peptides were precipitated and
washed with cold diethyl ether.

The crude peptide solids were collected, dissolved in the mixture of DMSO, TFE, and
a 0.1% aqueous solution of TEA/AcOH (11:2 (v/v)) with 2:2:6 (v/v/v) ratio, and purified
by reverse-phase high pressure liquid chromatography (HPLC) on Inertsil ODS-3 column
(GL Science, Tokyo, Japan) using a gradient of water and acetonitrile both containing
0.1% TEA/AcOH. The fractions with each PA were collected, lyophilized, and stored at
−20 ◦C until use. The purified peptides were analyzed by HPLC (Inertsil ODS-3 column,
GL science, Tokyo, Japan) and MALDI TOF MS (Autoflex-III, Bruker, Billerica, MA, USA)
using α-cyano-4-hydroxycinnamic acid (CHCA, Sigma-Aldrich (St. Louis, MO, USA)) as
the matrix.

3.3. Preparation of MTG

MTG was recombinantly prepared in Escherichia coli BL21 star (DE3) as previously
reported [34]. Briefly, a chimera protein of maltose-binding protein and tobacco etch
virus protease (MBP-TEV) was fused to the N-terminus of Streptomyces mobaraensis MTG.
The TEV protease recognition sequence (ENLFYQS) was inserted between the propeptide
domain and the catalytic domain of MTG. Two mutations, K10R and Y12A, were introduced
to the propeptide domain. The active MTG without the propeptide domain was prepared
by a self-cleavage reaction of the MBPTEV-propeptide-MTG. The expressed active MTG
was purified with a NiNTA column (HisTrap FF Crude, 5 mL, Cytiva, Tokyo, Japan), and a
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size-exclusion column (HiLoad 16/600 Superdex 75 pg, Cytiva) using standard protocols.
The amino acid sequence of the active MTG prepared is shown below.

SGGGGSDSDDRVTPPAEPLDRMPDPYRPSYGRAETVVNNYIRWQQVYSHRDGRKQQ
MTEEQREWLSYGCVGVTWVNSGQYPTNRLAFASFDEDRFKNELKNGRPRSGETRAE
FEGRVAKESFDEEKGFQRAREVASVMNRALENAHDESAYLDNLKKELANGNDALR
NEDARSPFYSALRNTPSFKERNGGNHDPSRMKAVIYSKHFWSGQDRSSSADKRKYGD
PDAFRPAPGTGLVDMSRDRNIPRSPTSPGEGFVNFDYGWFGAQTEADADKTVWTHG
NHYHAPNGSLGAMHVYESKFRNWSEGYSDFDRGAYVITFIPKSWNTAPDKVKQGW
P

3.4. Critical Aggregation Concentration (CAC)

Various concentrations of Fmoc-LnQG (n = 2, 3) samples were prepared in 10 mM
buffer at pH 5–8. For each peptide solution, the fluorescent dye, Nile red, was added at a
final concentration of 1 µM and incubated overnight at room temperature. The fluorescence
intensity at 635 nm (excitation wavelength 560 nm) of each sample was measured using
a microplate reader (SpectraMax i3x, Molecular Device, San Jose, CA, USA) and plotted
against the peptide concentration to create a CAC plot.

3.5. Fluorescence Spectra

Fmoc-L2QG (0.005 or 2.0 mM) and Fmoc-L3QG (0.005 or 1.0 mM) were prepared
as the self-assembled (2.0 and 1.0 mM for Fmoc-L2QG and Fmoc-L3QG, respectively) or
un-assembled (0.005 mM) samples. Fluorescence spectra were acquired from 270 to 550 nm
by exciting at 265 nm. Fluorescence spectra were measured using an LS55 fluorescence
spectrometer (PerkinElmer, Waltham, MA, USA).

3.6. Fourier-Transform Infrared Spectroscopy (FT-IR)

Fmoc-L2QG (2.0 mM) and Fmoc-L3QG (1.0 mM) were prepared in 10 mM buffer at pH
5–8 and lyophilized. Fourier-transform infrared (FT-IR) spectra were recorded on Spectrum
Two (PerkinElmer) in ATR mode. A resolution of 2 cm−1 was used.

3.7. Transmission Electron Microscopy (TEM)

Fmoc-L2QG (2.0 mM) and Fmoc-L3QG (1.0 mM) were prepared in 10 mM buffer at
pH 5–8. Three microliters of each sample were drop-cast onto a hydrophilized STEM grid
with an elastic carbon film (Okenshoji, Tokyo, Japan). After 1.5 min of incubation, the
excess solution was removed and then stained with 2% uranyl solution for 2 min. The
transmission electron microscopy (TEM) images were taken by JEM-2010 (JEOL, Tokyo,
Japan) with an accelerating voltage of 120 kV.

3.8. Conjugation of Fmoc-LnQG and Oregon Green Cadaverine (OG) by MTG Catalysis

A reaction sample of each self-assembled PA was prepared in 10 mM buffer at each pH
([Fmoc-L2QG] = 2.0 mM, [Fmoc-L3QG] = 1.0 mM, Fmoc-LnQG:OG = 10:1 (mol:mol)). MTG
(0.3 U/mL) was added to the samples, and the reaction was allowed to proceed at 25 ◦C
for 2 h. After the reaction, NEM at a final concentration of 1 mM was added to inactivate
the MTG. The enzymatic reaction rate at each pH was evaluated by HPLC analysis on an
Inertsil ODS-3 (4.6 × 250 nm) column. The gradient was from 40% to 80% with 0.1% TFA
ACN solution, and the flow rate was 1 mL/min. The OG-containing-eluents were detected
at 488 nm.

3.9. Confocal Fluorescence Microscope Images of OG on Fmoc-LnQG Peptide Assemblies

An aqueous solution of ThT at a final concentration of 10 µM was added to the reaction
samples. The droplets of samples (2.5 µL) were transferred into multi-well glass-bottom
dishes (Matsunami Glass Ind., Osaka, Japan), and 2.5 µL of 10 mM CaCl2 solution was
added. The confocal images were taken using LSM700 (Carl Zeiss, Oberkochen, Germany)
with diode lasers (405 nm for ThT, 488 nm for OG).
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4. Conclusions

In this study, we used two short aromatic peptide amphiphiles with MTG reactivity,
Fmoc-L2QG and Fmoc-L3QG, to examine the pH responsiveness of their self-assembly and
enzymatic reactions. These PAs self-assemble via π-π stacking interactions between the
Fmoc groups and hydrogen bonds between peptides. The intermolecular interactions were
influenced by pH; a change in π-π stacking mode from long-range to short-range interaction
and an increase in hydrogen bonding were observed when the solution pH was increased
from pH 5 to 8. A dramatic morphological change was observed for Fmoc-L3QG from
twisted fibers at pH 5 to wide, flat, tape-like structures at pH 8. In the post-modification of
a small fluorescent substrate, Oregon green 488 cadaverine, on these Fmoc-LnQG assem-
blies, the rate of modification increased at higher pH, presumably because of the higher
nucleophilicity of the amine group and increased accessibility of MTG to the assembled
Gln substrates. Finally, direct observation of the accumulation of OG on the Fmoc-LnQG
assemblies was achieved using CLSM. Our study demonstrates the functionalization of
supramolecular fibrous materials while also controlling their supramolecular structures.
This will provide a new strategy to engineer functional biomimetic nanomaterials for
various applications in the biomedical field.
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