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Molecular estimation of neurodegeneration
pseudotime in older brains
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Anna K. Greenwood1, Solveig K. Sieberts 1, Philip L. De Jager 4,5, Nilüfer Ertekin-Taner6,7,

Gregory W. Carter 2, Lara M. Mangravite1 & Benjamin A. Logsdon 1,9✉

The temporal molecular changes that lead to disease onset and progression in Alzheimer’s

disease (AD) are still unknown. Here we develop a temporal model for these unobserved

molecular changes with a manifold learning method applied to RNA-Seq data collected from

human postmortem brain samples collected within the ROS/MAP and Mayo Clinic RNA-Seq

studies. We define an ordering across samples based on their similarity in gene expression

and use this ordering to estimate the molecular disease stage–or disease pseudotime-for

each sample. Disease pseudotime is strongly concordant with the burden of tau (Braak score,

P= 1.0 × 10−5), Aβ (CERAD score, P= 1.8 × 10−5), and cognitive diagnosis (P= 3.5 × 10−7)

of late-onset (LO) AD. Early stage disease pseudotime samples are enriched for controls and

show changes in basic cellular functions. Late stage disease pseudotime samples are enriched

for late stage AD cases and show changes in neuroinflammation and amyloid pathologic

processes. We also identify a set of late stage pseudotime samples that are controls and

show changes in genes enriched for protein trafficking, splicing, regulation of apoptosis, and

prevention of amyloid cleavage pathways. In summary, we present a method for ordering

patients along a trajectory of LOAD disease progression from brain transcriptomic data.
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Late-onset Alzheimer’s disease (LOAD) is a devastating ill-
ness with no effective disease modifying therapy, owing to a
99.6% failure of clinical trials1. There is a growing consensus

that the most effective treatments will intervene early in disease
progression and halt disease pathophysiological processes prior to
conversion to LOAD2. In addition, there is increasing recognition
that LOAD may in fact be a spectrum of related diseases that have
similar clinical and neuropathological manifestations3,4. Devising
successful therapeutic strategies will likely require targeting
potentially diverse early stage disease processes that occur prior to
a high burden of neuropathology or cognitive impairment.

Current approaches to identify AD affected individuals include
in vivo measures of the pathological hallmarks of disease—
amyloid, tau, and neurodegeneration—via CSF biomarkers for
amyloid and tau5, positron emission tomography for amyloid and
tau6, and structural and functional MRI of neurodegeneration.
Cognitive assessments are used to estimate disease burden7,
although measurable cognitive impairment generally indicates a
sustained burden of neuropathology and advanced neurodegen-
eration. Based on biomarker studies of AD, by the time cognitive
decline becomes detectable, neuropathological changes of AD
have already occurred, first in Aß and subsequently in tau-related
measures8 and therefore cannot be used to select patients for early
disease stage studies. Furthermore, while these measures of dis-
ease progression capture the overall increase in burden of
pathology and cognitive decline, they do not necessarily identify
the dysfunctional molecular mechanisms that lead to neuro-
pathology and cognitive decline. There are likely many inde-
pendent patient-specific molecular pathways present at an early
stage in disease that then contribute to later stage disease
progression9,10. This motivates the need to identify these early
stage molecular mechanisms driving disease progression.

The Accelerating Medicines Partnership-Alzheimer’s Disease
(AMP-AD) consortia have generated genome-wide tran-
scriptomics of postmortem brain tissue from patients across a
broad range of Alzheimer’s disease (AD) neuropathological
progression—including individuals with various stages of AD
neuropathology and those who lack AD neuropathology, but who
may in fact harbor early stage disease molecular processes. We
therefore sought to chart the molecular progression of the disease
as reflected in the aggregate behavior of the brain transcriptome
across these individuals. While standard approaches such as
differential expression or co-expression analyses have proven
informative11–15, these analyses do not infer the relative stage of
disease progression or identify distinct disease subtypes. Here we
propose an approach to analyze population level RNA-seq data
from postmortem brain tissue to learn a tree structured pro-
gression (Fig. 1) that represents distinct subtypes of disease and
the relative progression of disease across patients. With this
approach, we identify potentially generalizable trajectories of
LOAD across heterogeneous patient populations at all stages of
disease. Furthermore, we characterize molecular pathways that
define disease stages—a potential source of biomarkers and
therapeutic interventions for early stage disease processes along
multiple different disease trajectories.

To learn the molecular disease staging and neuropathologic
progression tree we use a manifold learning method16. Manifold
learning refers to a group of algorithms that aim to recover the
low-dimensional subspace underlying a high-dimensional data
set. Previous authors use manifold learning to estimate disease
progression from neuroimaging data17 and to study lineage
commitment of cells during differentiation from single cell RNA-
seq (scRNA-seq)18–21. To our knowledge, manifold learning has
not been used to estimate disease progression and/or disease
stages from bulk RNA-seq data derived from postmortem brain
tissue. Henceforth, we refer to manifold learning and lineage

inference interchangeably in reference to the construction of a
disease progression tree. We demonstrate that these tools can
estimate the disease staging and progression tree (Fig. 2) from
bulk RNA-Seq data collected from postmortem brain tissues in a
case/control cohort. Moreover, these trees show clear LOAD
staging, enable the study of cell-type-specific effects of LOAD,
and allow the identification of genetic factors driving disease
progression.

Results
Manifold learning distinguishes pathologically defined LOAD
from control. We first quantify the bulk RNA-Seq data from the
ROS/MAP and Mayo Clinic cohorts into gene counts and remove
any batch effects introduced due to sequencing runs using stan-
dard count normalization (see “Methods”). The data from the
ROS/MAP cohort are sampled from the dorsolateral prefrontal
cortex (DLPFC), and the data from the Mayo Clinic cohort are
sampled from the temporal cortex (TCX). Patient’s clinical
characteristics are reported in Supplementary Table 1 and
described in “Methods.” The full pipeline we used for RNA-Seq
data generation and quality control was recently reported22. The
entire transcriptome comprises many genes, which do not have
measurable expression or vary across case/control samples, which
we remove in order to reduce the noise in manifold learning19. To
do this, we first perform differential expression analysis between
case/control samples separately for each study and retain
genes that reach an FDR of 0.10. To test if this biased the disease
lineage inference, we also perform manifold learning using only
genes with high variance across samples, and we see a strong
concordance with disease lineages inferred with differentially
expressed genes (Supplementary Fig. 1). Changing the sig-
nificance threshold for the differential expression analysis to FDR
< 0.01 did not materially change these results (Supplementary
Fig. 2). We infer the disease lineage for each brain region on
this subset of retained genes (Fig. 2a, b). Adjusting for post-
mortem interval (PMI) (Supplementary Figs. 3A and 4A), ten
principal components from a principal component analysis
(PCA) of genotype data to account for ancestry effects (Supple-
mentary Figs. 3B and 4B), RNA integrity number (RIN) (Sup-
plementary Figs. 3C and 4C), or all of these variables
(Supplementary Figs. 3D and 4D) did not materially change the
overarching ordering of patients for either the TCX or DLPFC
regions. Furthermore, to assess the general robustness of the
results, we apply leave one out cross validation to infer disease
pseudotime for both DLFPC and TCX brain regions and find
strong correlations between lineages inferred with each sample
removed, and the lineage for the entire sample set (Supplemen-
tary Fig. 5).

We visualize the clinical diagnosis of the samples on the
inferred disease staging tree to verify that there is indeed
separation of AD patients across the tree. To determine if inferred
tree structure is an accurate model of disease progression, we
introduce the notion of disease pseudotime, which is the geodesic
distance along the tree from an inferred initial point to the point
of interest as a quantitative linear measure of LOAD stage. We
scale this estimated disease pseudotime to lie in the range [0,1] to
make the effects comparable between the two studies (and brain
regions). We show that for LOAD cases compared to controls
there is a significant association (P= 0.02 in Mayo and P= 2.0 ×
10−6 in ROS/MAP, logistic regression) between the estimated
pseudotime and AD case/control status (Fig. 2c). These effects are
not abrogated by adjusting for RIN, PMI, or ancestry in either
tissue (Supplementary Fig. 6A–D and Supplementary Table 2).
To assess whether the association between inferred disease
pseudotime is a phenomena in only the Mayo RNA-seq and

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19622-y

2 NATURE COMMUNICATIONS |         (2020) 11:5781 | https://doi.org/10.1038/s41467-020-19622-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


ROS/MAP RNA-seq data, we also apply the lineage inference
approach to expression array data from the Mayo eQTL study23

(see “Methods”). These samples are derived from a completely
independent set of donors than the Mayo RNA-seq study24.
Similarly, we restrict to only female samples, and test for an
association between inferred disease pseudotime and disease
status (Supplementary Fig. 7A, B). We see a significant
association between disease pseudotime and neuropathological
AD diagnosis (P= 2.2 × 10−8).

Furthermore, we observe strong evidence of sex heterogeneity
when performing the manifold learning approach and find that
the manifolds inferred for female only samples show stronger
association with pseudotime than for male samples. This matches
previous observations concerning disease-specific sex heteroge-
neity22. As such, we do not see as statistically significant of an
association between pseudotime and disease diagnosis in male
samples (P= 0.040 in Mayo and P= 0.11 in ROS/MAP, logistic
regression, Supplementary Fig. 8A–D). Similarly, the association
between pseudotime and amyloid, tau, and cognitive diagnosis is
attenuated in male samples in ROS/MAP (Supplementary
Fig. 9A–D). For the combined samples, we see moderate evidence
of disease association with pseudotime (P= 0.003 in Mayo and
P= 0.003 in ROS/MAP, logistic regression, Supplementary
Fig. 10A–D). The association with neuropathological measures
of disease is more robust in the combined sample (Supplementary
Fig. 11A–F), but not as strong as in females only, hence we
restrict to female only analyses for all subsequent reported results.

We test whether genes in loci that have been implicated in
genome-wide association studies of LOAD are associated with

inferred disease pseudotime. We use the prioritized LOAD
GWAS genes25, Supplementary Table 3, and compute the
correlation between their expression and inferred pseudotime
(Fig. 2d). When compared to the background of all genes, we see
that there is a significant increase in positive correlation with
disease pseudotime for implicated LOAD GWAS genes (P value:
7.3 × 10−5 in Mayo and 5.6 × 10−3 in ROS/MAP). This effect is
robust to adjustments for PMI, RIN, or ancestry (Supplementary
Fig. 12A–D). Furthermore, this does not appear to be driven by a
small subset of outlier genes, but by the majority of the
distribution of LOAD GWAS genes. The fact that AD GWAS
loci genes have expression associations with pseudotime likely
implies that the AD risk variants at these are also eQTL as
previously shown26–29 and/or are members of co-expression
networks that are differentially expressed in AD13,30.

To further explore the relationship between inferred disease
stage and LOAD, we test for its association with neuropatholo-
gical and clinical measures of LOAD severity, namely: (1) Braak
score, (2) CERAD score, and (3) cognitive diagnosis. The ROS/
MAP study has numeric scores for these categories available as
covariates for each sample. Braak is a semiquantitative measure
that increases with tau pathology31 and CERAD is a semiquanti-
tative measure of density of neuritic plaques32. We overlay these
scores on the inferred manifold for the DLPFC brain region
(Fig. 3a). We observe a progressive increase in tau, amyloid, and
cognitive burden as we traverse the inferred disease manifold
(Fig. 3a). This is further quantified by characterizing the
relationship between branches of the inferred manifold and
Braak, CERAD, and cognitive diagnosis (Fig. 3b). We observe
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Fig. 1 Overview of manifold learning for unraveling staging in Alzheimer’s disease. a Illustration of steps in manifold learning using reverse graph
embedding DDRTree method. b Illustration of lineage inference process for LOAD. RNA-seq samples with different disease diagnoses were pooled, batch
normalized, and a smooth manifold was learned for each brain region across individuals (each point is an individual). Total sample numbers are indicated
across Mayo RNA-seq TCX and ROS/MAP DLPFC for the different diagnoses in parentheses.
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significant associations between pseudotime and Braak score
(P= 1.0 × 10−5), CERAD score (P= 1.8 × 10−5), and cognitive
diagnosis (P= 3.5 × 10−7). In ROS/MAP, adjustment for Braak
score when fitting the discriminative dimensionality reduction
tree (DDRTree) method attenuates the association between
pseudotime and disease states (P value: 0.214, Supplementary
Fig. 13A, B), though there is still evidence of association with
cognitive diagnosis (P value: 0.03, Supplementary Fig. 13C, D). In
the Mayo RNA-seq study, we have Braak score and Thal Amyloid
scores for only a subset of samples but observe a similar pattern as
in ROS/MAP (Supplementary Fig. 14A, B) for the samples that
we do have data. There is a significant association between Braak
score and pseudotime (P value: 5 × 10−5) as well as Thal amyloid
(P value: 1.7 × 10−5) within this subset with available neuro-
pathology data.

Comparison to other unsupervised learning approaches. We
compare the manifold learning approach to other unsupervised
learning approaches including PCA, t-distributed stochastic
neighbor embedding (tSNE)33, and Uniform Manifold Approx-
imation and Projection (UMAP)34. Correlations between the first
two dimensions of each of these approaches and the DDRTree
learned pseudotimes are shown in Supplementary Figs. 15A–F
and 16A–F for DLPFC and TCX brain tissues, respectively. We
see the strongest correlations between PCA1 and UMAP2 and

pseudotime in both data sets, increasing our confidence that the
overarching ordering of patients along a disease pseudotime is a
robust characteristic of the disease progression as reflected in the
gene expression changes as a function of disease, and not
dependent on the underlying manifold learning approach. This is
further supported by inspecting the association between these
approaches and Braak, CERAD, and cognitive diagnosis (cogdx)
scores for the DLPFC tissue (Supplementary Table 4). Further-
more, the manifold learning approaches (DDRTree and UMAP)
have much stronger associations with Braak, CERAD, and cogdx
scores than either PCA or tSNE. In fact, UMAP has been pro-
posed for lineage inference35, and when we apply UMAP with
lineage inference using Monocle3, we observe similar results
(Supplementary Figs. 17 and 18) as with DDRTree and Monocle
2 (Figs. 2 and 3), though the inferred pseudotimes from Mono-
cle3 are not quite as significant as the association with UMAP2 or
from Monocle 2 with Braak, CERAD, and cogdx (Supplementary
Table 4).

Inferred staging recapitulates known biology of AD. To
demonstrate that the inferred disease pseudotime recapitulates
known biology of LOAD, we test for association between inferred
disease stage and both the cellular response to disease and the
genetics of the disease. A prominent hypothesis in AD is that the
effects of the disease vary across different brain cell types,
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specifically neurons and glial subtypes. Current understanding of
the cell biology of the disease implicates progressive neuronal loss
and increase in gliosis36. To test if the inferred pseudotime aligns
with existing cell-type-specific hypotheses regarding AD, we first
selected from the genes used in lineage construction the marker
genes for four key cell types: neurons, astrocytes, microglia, and
oligodendrocytes based on a previously published brain cell
atlas37 (Supplementary Table 5). We then calculate the normal-
ized mean expression for the marker genes of each cell type and
fitted a linear model to the mean expression with disease pseu-
dotime as the dependent variable. We find that, in both studies,
the cell-specific marker gene levels show a statistically significant
linear dependence on pseudotime (Supplementary Table 6). Fit-
ted effects recapitulate known neuropathologic changes which
occur in AD, namely: (1) a reduction in the neuronal populations
as AD progresses, and (2) an increase in expression associated
with activation of microglia, astrocytes, and oligodendrocytes as
AD progresses (Fig. 4).

Next, we test for association between assigned lineage state in
ROS/MAP (DLPFC) and Mayo (TCX) and APOE e4 status
(Supplementary Fig. 19). For reference, the inferred trees for TCX
and DLPFC each resolve into six branches (Figs. 5a and S20).
Carriers of the APOE e4 allele are significantly enriched on the
State 4 branch in TCX (P value= 0.027, unadjusted), and
suggestively enriched on the State 5 branch (P value= 0.06,
unadjusted), compared to the State 1 branch (logistic regression).
Similarly, in the Mayo eGWAS study, when we perform an
ordinal logistic regression of APOE e4 dosage and disease
pseudotime we see a significant positive association as a function
of pseudotime (P value= 6.9 × 10−4, Supplementary Fig. 7C).

Genetic factors associated with inferred disease staging. Lineage
inference of LOAD transcriptomes provides a quantitative measure
of disease progression for genetic associate testing, and the sig-
nificantly greater correlation between pseudotime and gene
expression for known LOAD risk genes (Fig. 2d) suggests that the
observed differences in disease trajectories are influenced by genetic
factors. To test this hypothesis, we perform single variant analysis
using whole-genome sequencing data for 305 patients from the
ROS/MAP and 131 patients from the Mayo cohort. Despite the
limited sample size, resulting in lack of statistical power to dis-
cover genome-wide significant associations, multiple variants
reach a genome-wide suggestive threshold of P < 1 × 10−5 (Sup-
plementary Table 7). We do not see evidence of population stra-
tification in the analysis (Supplementary Figs. 21–22). Notably, the
most significant association with pseudotime for the ROS/MAP
cohort is observed at the PTPRD locus (rs7870388, P= 1.31 ×
10−6) (Supplementary Fig. 23 and Supplementary Table 7). The
PTRPD locus is associated with the susceptibility to neurofibrillary
tangle independent of amyloid deposition in the ROS/MAP
cohort38. For the Mayo Clinic cohort, known LOAD variants in
the APOE (rs6857, P= 9.18 × 10−6) and BIN1 (rs62158731, P=
4.68 × 10−5) loci overlap with variants associated with inferred
disease stage (Supplementary Fig. 23 and Supplementary
Table 7)39. When comparing our association results for inferred
disease stage with summary statistics from a large-scale case-
control approach, we identify multiple variants that have been
previously associated with LOAD in the International Genetics of
Alzheimer’s Project (IGAP) cohort (Supplementary Table 8).
Furthermore, we identify several genes associated with inferred
disease stage (ADAMTS14, IL7, and MAN2B1) linked to immune
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and lysosomal storage function (Supplementary Fig. 23 and Sup-
plementary Table 7). IL7 has been proposed as an inflammatory
biomarker for LOAD that correlates with disease outcome and

severity40. ADAMTS14 is part of a locus that has been previously
linked with Alzheimer susceptibility and plays an important role
in the regulation of immune function via TGF-beta signaling.
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New disease insights identified from inferred disease lineages.
Another important direction of study in the field of Alzheimer’s is
the identification of disease subtypes, which has so far pre-
dominantly been done using imaging data41. The branches of the
inferred disease trees provide a transcriptomic-based approach to
identify disease subtypes. In both brain regions and in two
separate cohorts, there were two distinct early lineage branches
corresponding to predominantly control samples, which we
interpret as different initial paths toward the disease. Similarly,
both brain regions feature several distinct branches with pre-
dominantly LOAD samples (Fig. 2a, b).

Branch-specific differential expression patterns. To study the
genes and pathways specific to each branch, we perform a
branch-specific differential expression analysis with an ANOVA
model using the branches with the highest proportion of controls
as the reference branch for DLPFC (Supplementary Table 9) and
TCX (Supplementary Table 10). We see many genes are differ-
entially expressed between the control branch and branches that
are enriched in the affected individuals (Supplementary Table 11).
We test for overlap between the differentially expressed gene sets
between the two studies (Supplementary Fig. 24), and find sig-
nificant overlaps in branches enriched for late stage disease cases,
especially between upregulated genes in State 6 of DLPFC and
upregulated genes in State 5 of TCX (P value: 4.1 × 10−108, OR:
4.5, Fisher’s exact test), as well as genes that are upregulated in
State 6 of DLPFC and in State 4 of TCX (P value: 1.8 × 10−14, OR:
1.9, Fisher’s exact test), and more modestly for genes that are

down regulated in State 6 of DLPFC and down regulated in State
3 of TCX (P value: 1.1 × 10−6, OR: 1.6, Fisher’s exact test). Next,
we performed an enrichment analysis on each of these differen-
tially expressed gene sets with the enrichR42 package for Gene
Ontology43 annotations (see “Methods”). The results of this
enrichment analysis for DLPFC and TCX tissues are shown in
Supplementary Tables 12 and 13. Only gene sets with significant
enrichment are shown (FDR adjusted P value < 0.05). Overall, we
see a pattern of loss of expression of basic cell biology mechan-
isms in early stage branches including RNA splicing, mitochon-
dria function, protein transport, and DNA repair. Late-stage
branches were characterized by increased immune response (e.g.,
TGFb/WNT signaling) and apoptotic activity (Tables 1 and 2).

While studying the different branches in the two brain regions,
we observe a branch (Branch 5) that corresponds to a group of
predominantly neuropathological control samples from the Mayo
RNA-seq cohort that were in close proximity to a branch with
predominantly LOAD samples (Branch 4) on the inferred disease
lineage (Fig. 5a). However, most of the samples on Branch 5 are
neuropathological controls as defined by the Mayo diagnostic
criteria. We bi-cluster the mean expression of genes in each
branch and the branches themselves (see “Methods”). This
clustering analysis (Fig. 5b) shows that the closest branch to this
potentially disease resistant branch contains the highest proportion of
AD samples. While the stage proximity implies some transcriptomic
similarity between these controls and nearby cases, we also see a
secondary cluster of genes with increased expression in the resistant
state while having reduced expression in all other states. We perform
an enrichment analysis on this set of genes and find significant GO

Table 1 Pathway enrichments for branch-specific differentially expressed genes in TCX.

Direction Branch Representative enriched Gene Ontology terms

Down 2 prespliceosome (GO:0071010), mitochondrial electron transport cytochrome c to oxygen (GO: 0006123)
Down 3 negative regulation of microtubule, polymerization or depolymerization (GO:0031111)
Down 4 mitochondrial electron transport, NADH to ubiquinone (GO: 0006120), spliceosomal tri-snRNP complex (GO:0097526), negative

regulation of microtubule depolymerization (GO:0007026)
Down 5 axon (GO:0030424), protein kinase C activity (GO:0004697)
Down 6 gamma-tubulin large complex (GO:0000931), U1 snRNP (GO:0005685), mitochondrial respiratory chain complex IV

(GO:0005751), response to cadmium ion (GO:0046686)
Up 3 fatty acid elongase activity (GO:0009922), ubiquitin protein ligase activity (GO:0061630)
Up 4 transforming growth factor beta-activated receptor activity (GO:0005024), hippo signaling (GO:0035329), regulation of extrinsic

apoptotic signaling pathway via death domain receptors (GO: 1902041), regulation of DNA repair (GO: 0006282)
Up 5 regulation of apoptotic process (GO:0042981), leptin mediated signaling pathway (GO:0033210), negative regulation of hippo

signaling (GO:0035331), small GTPase binding (GO:0031267)
Up 6 extracellular ligand-gated ion channel activity (GO:0005230), integral component of mitochondrial inner membrane

(GO:0031305)

Differential expressed genes are identified with a two-sided Tukey’s honest significant difference test (FDR < 0.05), with Branch 1 as the reference, and pathway enrichments that are significant from a
one-sided Fisher’s exact test are shown (FDR < 0.05).

Table 2 Pathway enrichments for branch-specific differentially expressed genes in DLPFC.

Direction Branch Representative enriched Gene Ontology terms

Down 2 DNA repair (GO:0006281), intracellular protein transport (GO:0006886)
Down 3 mismatch repair complex binding (GO:0032404)
Down 5 mitochondrial respiratory chain complex assembly (GO: 0033108)
Up 2 racemase and epimerase activity (GO: 0016857)
Up 3 racemase and epimerase activity (GO: 0016857)
Up 4 vesicle mediated transport (GO: 0016192)
Up 5 NuRD complex (GO: 0016581)
Up 6 microtubule motor activity (GO:0003777), AP-2 adapter complex binding (GO:0035612)

Differential expressed genes are identified with a two-sided Tukey’s honest significant difference test (FDR < 0.05), with Branch 1 as the reference, and pathway enrichments that are significant from a
one-sided Fisher’s exact test are shown (FDR < 0.05).
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terms corresponding to protein transport (GO:0015031), regulation
of mRNA splicing, via spliceosome (GO:0048024), negative regula-
tion of apoptotic process (GO:0043066), and regulation of amyloid-
beta clearance (GO:1900221) (Cluster 4, Supplementary Table 14). It
is possible that these potentially disease resistant individuals have
compensatory mechanisms, which suppress the hallmarks of disease
despite sharing gene expression patterns with pathologically affected
individuals.

To replicate this observation, we perform a differential
expression analysis on individuals in the Mayo eGWAS study
where we consider individuals that are in the top quintile of
pseudotime but are classified as neuropathological controls as
resistant individuals (Supplementary Fig. 7D, see “Methods”). To
test if these individuals also have a similar resistant molecular
endophenotype, we compare the overlap between various
differential expressed gene sets derived from these resistant
individuals and the gene sets identified in the biclustering of the
Mayo RNA-seq data (Supplementary Fig. 25). We observe that
there is a highly statistically significant overlap between genes that
are upregulated in these Mayo eGWAS resistant individuals (P
value: 2.6 × 10−51, OR: 2.9, Fisher’s exact test), and the Cluster 4
genes that are upregulated in the Branch 5 Mayo RNA-seq
samples (Supplementary Fig. 25).

Discussion
Here we proposed an approach to infer the AD severity and
disease subtypes in an unsupervised manner from postmortem
bulk RNA-seq data that gets directly at the challenge of identi-
fying the temporal progression of disease in the disease resistant
tissue. Our strategy utilized a manifold learning approach to infer
a disease progression tree from cross-sectionally collected patient
samples from two different brain regions. The underlying
assumption of our approach is that the inferred disease pro-
gression from cross-sectional samples serves as a proxy for the
unobserved progression of the disease across subtypes of LOAD.
We validated this hypothesis through comparisons with neuro-
pathological measures of disease stage severity and against known
cell-type-specific effects caused by the disease. While one could
argue that the method is merely classifying patients as either
disease cases or controls based on expression signatures of the
hallmarks of disease, we see at least three advantages of this
approach beyond that interpretation. First the application of this
method appears to produce a more quantitative measure of dis-
ease state than strictly neuropathological assessments—as born
out through the identification of distinct genetic loci that repli-
cate based on IGAP summary statistics. This suggests that it may
be adding information related to other aspects of disease such as
the effect of neuroinflammation or neuronal injury. In addition,
we see evidence of neuropathological controls that are disease
resistant given their molecular state in two independent studies
—which would not be detectable with standard neuropatholo-
gical or clinical assessments—and could provide important
molecular clues to mechanisms of disease resistance. Finally,
there is the potential that specific pathways associated with early
stage disease processes can be characterized, which is desperately
needed for hypothesis generation in the field. Furthermore, this
approach provides clues to better understanding the molecular
heterogeneity of disease by identifying specific pathways that are
dysregulated in subsets of patients at different disease stages.
This opens up the possibility of better patient stratification and
precision medicine.

We observed that different biological processes vary as a
function of inferred disease stage, and that early stage disease
processes—include RNA splicing, mitochondrial function, and
protein transport—implicate multiple basic cell biology

mechanisms as potential early stage disease processes for further
study in relevant model systems. Additionally, the manifold
learning method identified six subtypes of LOAD from RNA-seq
(i.e., branches), suggesting the LOAD populations should be
stratified by better biomarkers with tailored treatment strategies.
To identify and test these stratifications future studies could focus
on longitudinal cohorts of patients with rich molecular and
imaging data to identify biomarkers that can accurately and
precisely stratify patients into the underlying molecular subtypes
at different relative stages of disease. Furthermore, we observe a
disease resistant subtype of patients. This disease resistance
should be tested in disease model systems, to identify if neuro-
pathological readouts can be modified by altering the function of
the pathways identified in our analysis (e.g., APP processing,
RNA splicing, apoptosis, and protein trafficking). While this
preliminary observation needs to be validated in another cohort,
it has the potential to be a source of hypotheses for therapeutic
development. Specifically, for constructing better combination
therapy hypotheses that may confer neuroprotection, even in
patients that are mildly affected by disease.

LOAD is a complex and heterogeneous disease encompassing a
broad spectrum of clinical symptoms. Disease progression can
vary widely between patients leading to different rates of cognitive
decline. Several lines of evidence suggest that these differences in
progression are modified by multiple genetic factors affecting the
transition from one pathological state to another44,45. However, it
has remained difficult to assess the role of genetic variants
affecting disease trajectories by case-control approaches alone.
Here, we showed that our expression trait pseudotime might be
used as a molecular phenotype to identify AD loci associated with
different disease progression states across AD patients. Despite a
limited sample size, we identified previously associated AD can-
didate loci in the Religious Orders Study and the Memory and
Aging Project (ROSMAP) (PTPRD) and Mayo (BIN1 and APOE)
cohorts with suggestive significance (P < 1 × 10−5). Variants in
PTPRPD have been associated with the susceptibility to neurofi-
brillary tangles, independent of amyloid burden. This is in line with
the results from the differential gene expression analysis of pseu-
dotime branches showing an enrichment of molecular pathways
implicated in TAU pathology. Furthermore, our analysis revealed
several loci linked to immune function (ADAMTS14 and IL7) and
neurotransmitter signaling (CHRM2 and CHRM3) processes asso-
ciated with disease pseudotime (Supplementary Table 4). Future
studies will be needed to replicate these findings in independent
cohorts of LOAD and validate the role of candidate genes in
LOAD-related disease progression by first identifying peripheral
biomarkers that correspond to this molecular definition of disease
stage, and then testing for GWAS association with that disease
stage. Subsequent results can improve functional interpretation by
linking candidate genes with ordered pathological processes.

Methods
ROS/MAP and Mayo RNA-seq study population characteristics. Detailed
descriptions of cohort and patient characteristics included in this study can be
found in previously published work24,46. Patient characteristics included in this
study are summarized in Supplementary Table 1, stratified by sex. In brief: for
Mayo samples, AD diagnosis was performed according to NINCDS-ADRDA cri-
teria (probable or possible AD); control individuals had Braak NFT stage ≤ 3,
CERAD score < 2.5, and lacked other pathologic diagnoses; Path.Aging are indi-
viduals who lacked any pathologic diagnoses and had Braak NFT ≤ 3 and CERAD
score ≥ 2. Progressive supranuclear palsy (PSP) individuals were diagnosed neu-
ropathologically by a single neuropathologist (for further details, see24). For
ROSMAP samples, AD diagnosis was according to NIA Reagan criteria, which
combines neuropathology and clinical data; control individuals had no signs of
cognitive impairment; and other individuals had MCI, mixed pathology, or other
form of dementia. Age at death was collected for all patients in the ROSMAP study,
though age at first AD diagnosis had a high degree of missingness and thus was not
used as a variable in follow-up analyses (see Supplementary Table 1). Braak stage
indicates the measure of severity of NFT pathology. Stages I and II indicate NFTs
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confined mainly to the entorhinal region of the brain, stages III and IV indicate
involvement of limbic regions, and stages V and VI indicate moderate to severe
neocortical involvement. CERAD score is a semiquantitative measure of neuritic
plaques. 1= definite AD; 2= probable AD; 3= possible AD; 4= no AD. Cognitive
diagnostic category (as determined by neurologist): (1) NCI; (2) MCI and no other
cause of CI; (3) MCI and another cause of CI; (4) AD and no other cause of CI;
(5) AD and another cause of CI; (6) other primary cause of dementia47. Thal
amyloid stages: phases of amyloid deposition. (0) no amyloid; (1) isocortical phase;
(2) limbic phase; (3) basal ganglia phase; (4) basal forebrain and midbrain phase;
(5) pons/medulla oblongata and cerebellum phase. The list of differentially
expressed genes used to create the Monocle objects was based on results which
included the whole data set.

RNA sequencing. The details of the sample collections, postmortem sample
characteristics, the tissue and RNA preparations, the library preparations and
sequencing technology and parameters, and sample quality control filters are
provided in previously published work24,46. For the bioinformatic pipeline to
produce gene-level counts, we applied a standard pipeline22 where sequencing
reads were aligned to the GENCODE24 (GRCh38) reference genome with STAR48,
and gene counts generated using the HTSeq algorithm49. Genes that had more than
one counts per million total reads in at least 50% of samples in each tissue and
diagnosis category were used for further analysis.

Differential expression analysis on Mayo and ROS/MAP cohorts. For gene
filtering, we used false discovery rate of 0.05 from the previously published dif-
ferential expression analysis of Mayo and ROS/MAP RNA-seq data22. Briefly, case-
control status was harmonized across the Mayo and ROS/MAP cohorts, where
controls were defined as individuals with a low burden of amyloid and tau based on
CERAD and Braak scores, and cases with a high burden. Furthermore in ROS/
MAP, clinical diagnosis was also used with controls having to have no cognitive
impairment, and cases have probably AD22. Differential expression analysis was
run on suitably normalized data—using conditional quantile normalization to
account for variation in gene length and GC content, removing sample outliers,
covariate identification adjustment, with sampling abundance confidence estimated
using a weighted linear model with the voom-limma package22,50,51. A fixed/mixed
effect linear model is used to fit the differential expression model on the normalized
data22.

Manifold learning for LOAD. Manifold learning refers to a group of machine
learning algorithms that recover a low-dimensional subspace underlying a high-
dimensional data set. Manifold learning approaches are typically used in data sets
or applications where data samples lie on an underlying low-dimensional latent
space (e.g., a tree, a line, and a curved plane). The low-dimensional space is learned
via a projection from the high-dimensional space of the observed data (e.g., RNA-
seq profiles across hundreds of patient samples) down to a low-dimensional space
with suitable regularization constraints to enforce smoothness and the structural
constraints of the low-dimensional space (Fig. 1a). Due to the necessary assump-
tion of an underlying latent subspace, manifold learning is commonly used in
applications where it is known that the observed data is obtained from a pro-
gression of some kind; e.g., (1) to infer the temporal ordering of a sequence of
images, or (2) to infer the approximate lineage of cells in a differentiation trajectory
using scRNA-seq data (Fig. 1b, c).

Here, we repurpose methods originally developed for learning cell lineage using
scRNA-Seq data, to infer the staging of AD using bulk RNA-Seq data from
postmortem brain samples with known AD diagnosis status. Since bulk RNA-Seq
has many of the same sampling and distributional properties as scRNA-Seq, we
observe that scRNA-Seq methods are applicable with no additional modifications.
As such, we use the DDRTree manifold learning approach available in the Monocle
2 R package19. However, we also show that the estimated staging of disease is quite
similar across some of the other common methods used for scRNA-Seq lineage
estimation (Supplementary Fig. 26–28) including Monocle118 and diffusion
pseudotime52.

The RNA-Seq data used in this study were generated from postmortem brain
homogenate samples, and obtained from two separate studies that are a part of the
Accelerating Medicines Partnership in Alzheimer’s Disease (AMP-AD)
consortium, namely: (1) the ROSMAP53,54, and (2) the Mayo RNA-seq study24.
For this paper, we focused our analysis on the TCX and DLPFC tissue samples.
Within the Mayo RNA-seq study, the TCX samples are derived from individuals
neuropathologically defined as either aged controls, LOAD cases, PSP cases, or
pathological aging cases24. The ROSMAP study is a prospective longitudinal cohort
of an aging population, and has samples from participants with clinical and
neuropathological diagnoses of LOAD46, aged controls, and individuals with mild
cognitive impairment. Furthermore, most results presented in the main paper are
from female samples only unless indicated otherwise, as we observed significant sex
differences in the transcriptomic data consistent with current knowledge of sex
differences in LOAD55,56. For replication, we also consider microarray data
generated from the Illumina DASL gene expression platform from the Mayo
eGWAS study from TCX for N= 186 patients, of which 108 were
neuropathologically confirmed AD Cases and 78 were controls23. Probes were

mapped to genes using BioMart. Data were adjusted for plate using ordinary least
squares regression prior to manifold learning.

Manifold learning using discriminative dimensionality reduction tree
(DDRTree). DDRTree is a manifold learning algorithm that infers a smooth low-
dimensional manifold by an approach called reverse graph embedding. Briefly, the
algorithm simultaneously learns a nonlinear projection to a latent space where the
points lie on a spanning tree. A reverse embedding is also simultaneously learned
from the latent space to the high-dimensional data. The DDRTree algorithm can be
posed as the following optimization problem:
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here fxigNi¼1 2 Rgenes represents RNA-Seq data from each patient sample, fzigNi¼1 2
R2 represents the latent representation of each sample as inferred by the algorithm,
fykgKk¼1 represents the centers of clusters in the data set, W 2 R2 ´ genes represents
an inverse mapping from the latent space to the high-dimensional space of RNA-
Seq data, B 2 RK ´K represents a spanning tree on which the centers of the clusters
lie, and R 2 RN ´K captures the soft clustering information of samples in the data
set. The first term of the optimization problem is responsible for learning a low-
dimensional representation of the data such that an inverse mapping exists to the
high-dimensional data points, the second term learns the tree structure of the points,
and the third term learns a soft clustering for the latent dimension points as well as
the centers of the clusters. Despite the non-convexity of the problem, each individual
optimization variable can be solved for efficiently using alternative minimization57.
This algorithm was implemented using the Monocle package in R19. When fitting the
Monocle objects, we also considered various adjustments to the expression data prior
to manifold learning for ten principal components of genetic ancestry, RIN, PMI, age,
Braak score—among other potential confounds. The code to infer the lineage in Mayo
RNA-seq is available here: https://github.com/Sage-Bionetworks/AMPAD_Lineage/
blob/paper_rewrites_1/TCX_GenerateMonocleDS_new.R, and code used to infer the
lineage in ROSMAP is available here: https://github.com/Sage-Bionetworks/
AMPAD_Lineage/blob/paper_rewrites_1/DLPFC_GenerateMonocleDS_new.R. Code
to perform analysis on Mayo eGWAS study is available here: https://github.com/Sage-
Bionetworks/AMPAD_Lineage/blob/paper_rewrites_ben_april_2020/mayo_egwas_
GenerateMonocleDS_new.R.

Branch assignment and pseudotime calculation for samples. Branch assign-
ment and pseudotime calculation were also performed using the Monocle pack-
age19. Briefly, pseudotime is calculated by first identifying a root point on one of
the two ends of the maximum diameter path in the tree. Then the pseudotime of
each point is calculated by projecting it to its closest point on the spanning tree and
calculating the geodesic distance to the root point. Assigning samples to branches is
done by first identifying the branches of the spanning tree and then assigning
samples to the branch on which their projection to the spanning tree lies on.
Robustness of pseudotime was assessed with leave one out cross validation by
dropping one sample at a time, running the DDRTree method with Monocle, and
then computing the absolute value of the correlation between the pseudotime
estimated with the reduced data set, and the pseudotime estimated with the full
data set. Alternative approaches for performing dimensionality reduction included
PCA, t-stochastic neighborhood embedding (tSNE)33, and UMAP34, which were
all run on the same data set as the DDRTree method was run in R (here: https://
github.com/Sage-Bionetworks/AMPAD_Lineage/blob/paper_rewrites_1/
TCX_GenerateMonocleDS_new.R and https://github.com/Sage-Bionetworks/
AMPAD_Lineage/blob/paper_rewrites_1/DLPFC_GenerateMonocleDS_new.R).

Association of pseudotime with AD status, hallmarks of Alzheimer’s disease,
and cognitive diagnosis. We test for association between disease pseudotime and
AD case or control status with logistic regression with AD case or control status as
the outcome and inferred pseudotime as the dependent variable in both the Mayo
and ROS/MAP studies. We test for association between pseudotime and hallmarks
of disease in the ROS/MAP studies for both Braak (measure of tau pathology) score
and CERAD score (measure of amyloid pathology) with an ordinal logistic
regression model, with the neuropath score as the ordered outcome, and pseu-
dotime as the dependent variable. Finally, we test for association between disease
pseudotime and cognitive diagnosis for the following ordered clinical diagnoses of
no cognitive impairment, mild cognitive impairment, and probable AD with an
ordinal logistic regression model. All code for running these association tests is
available: https://github.com/Sage-Bionetworks/AMPAD_Lineage/blob/
paper_rewrites_1/paper_figures.Rmd.

Inferring cell-type-specific expression patterns given marker gene expression
as a function of pseudotime. List of marker genes for different major cell types in
the brain was curated from a previously published brain cell expression signature
study37. The marker gene list was then pruned to include only genes that were
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included in lineage construction. Each gene’s expression as a function of pseudo-
time was then obtained by smoothing using a smoothing spline of degree of
freedom= 3 and normalized to lie in [0,1]. The smoothing was done to remove the
effects of technical noise introduced due to RNA-Seq and the normalization was
done since the absolute expression levels of genes might be very different from each
other. The smoothed and normalized expression of marker genes for each category
was then averaged to obtain the average marker gene expression as a function of
pseudotime. A linear model was used to test for association between average
expression of a given cell-type expression signature and pseudotime.

Association between GWAS loci and correlation with pseudotime. To test for
association between pseudotime and LOAD GWAS genes, we computed the
Spearman’s correlation between each gene’s expression and pseudotime in the
Mayo and ROS/MAP studies. Next, we considered the 60 highly prioritized genes
(priority score > 4) identified within AD GWAS loci by the IGAP25. We test for a
difference between the correlation with pseudotime of background of all other
genes and the IGAP AD genes using a linear model and see a significant increase in
correlation between gene expression and pseudotime in both the Mayo and ROS/
MAP study for AD GWAS genes.

Branch-specific differential expression analysis. We perform a state-specific
differential expression analysis using a one-way ANOVA model in both the Mayo
and ROS/MAP studies. The branch with the highest proportion of AD controls is
defined as the reference branch for all analyses. We use Tukey’s honest significant
difference method to compute P values for the test for change in expression of a
given gene compared to the reference branch. Genes are grouped based on their
branch and direction of change in expression for further downstream pathway
enrichment analyses. Overlap between differential expressed genes was depicted
using UpSet plots58 (Supplementary Fig. 24). Code to run analyses is available here:
https://github.com/Sage-Bionetworks/AMPAD_Lineage/blob/paper_rewrites_1/
DLPFC_DE_Anova.R for ROS/MAP and here: https://github.com/Sage-
Bionetworks/AMPAD_Lineage/blob/paper_rewrites_1/TCX_DE_Anova.R
for Mayo.

Branch-specific gene expression signatures. Branch-specific expression sig-
nature was obtained by first calculating the average normalized expression for all
genes in each state/branch. This was followed by performing a biclustering using
the pheatmap package in R (https://cran.r-project.org/web/packages/pheatmap/
index.html), which uses hierarchical clustering on both samples and genes. We also
used the pheatmap R package to visualize the state-specific expression signatures.

Disease resistant subgroup validation analysis. After identifying potentially
disease resistant individuals in the Mayo RNA-seq study based on the TCX brain
region (individuals from Branch 5, Fig. 5a), we considered the Mayo eGWAS TCX
data, and defined neuropathological controls with pseudotimes in the top quintile
of all pseudotimes as disease resistant (N= 9). We then performed a differential
expression analysis using linear regression to identify array probes that were dif-
ferentially expressed between resistant and nonresistant individuals, of which there
were more than 5000 probes that were either up or down regulated at an FDR of
0.05. Overlaps were explored between the branch-specific gene clusters from Mayo
RNA-seq (Fig. 5b) and these Mayo eGWAS resistance differential expressed probes
using UpSet plots58 (Supplementary Fig. 25).

Gene set enrichment analyses. For each branch-specific differential expression
gene set (DEGs) in both Mayo RNA-seq and ROS/MAP, we perform a gene set
enrichment analysis against Gene Ontology pathways using the enrichR42 R
package. Only pathways with FDR < 0.05 are reported. The code we used to run the
ROS/MAP DEG enrichments is available here: https://github.com/Sage-
Bionetworks/AMPAD_Lineage/blob/paper_rewrites_1/lineage.Rmd, the code we
used to run the Mayo DEG enrichments is available here: https://github.com/Sage-
Bionetworks/AMPAD_Lineage/blob/paper_rewrites_1/lineageTCX.Rmd, and the
code we used to run the branch-specific gene expression signature pathway
enrichments is available here: https://github.com/Sage-Bionetworks/
AMPAD_Lineage/blob/paper_rewrites_1/resilience.Rmd.

Whole-genome sequencing. Whole-genome sequencing was performed at the
New York Genome Center for all individuals from the ROS/MAP and Mayo
cohorts. Detailed information for both data sets can be accessed via synapse
(https://doi.org/10.7303/syn2580853). Briefly, 650 ng of genomic DNA from
whole blood was sheared using a Covaris LE220 sonicator. DNA fragments
underwent bead-based size selection and were subsequently end-repaired, ade-
nylated, and ligated to Illumina sequencing adapters. Libraries were sequenced
on an Illumina HiSeq X sequencer using 2 × 150 bp cycles. Paired-end reads were
aligned to the GRCh37 (hg19) human reference genome using the
Burrows–Wheeler Aligner (BWA-MEM v0.7.8) and processed using the GATK
best-practices workflow59,60. This included marking of duplicate reads by the use
of Picard tools v1.83, local realignment around indels, and base quality score
recalibration via Genome Analysis Toolkit (GATK v3.4.0). Joint variant calling

files (vcfs) for whole-genome sequencing data for the Mayo and ROS/MAP
cohort were obtained through the AMP-AD knowledge portal (https://doi.org/
10.7303/syn10901595).

Single variant association with pseudotime in two independent cohorts.
Likelihood ratio tests within a linear regression framework were used to model the
relationship between the quantitative expression trait pseudotime and genetic
variants in 436 AD cases. Genome-wide genetic association analysis was performed
for 305 female patients in the ROS/MAP cohort and 131 female patients in the
Mayo cohort for which both genotyping and postmortem RNA-seq data were
available. An efficient mixed model approach, implemented in the EMMAX software
suite, was used to account for potential biases and cryptic relatedness among indi-
viduals61. Only variants with MAF > 0.05, genotyping call rates > 95%, minimum
sequencing depth of 20 reads and Hardy–Weinberg equilibrium P > 10−4 were
considered for analysis. Quantile-quantile plots (Supplementary Figs. 21 and 22) for
the test statistics showed no significant derivation between expected and observed P
values, highlighting that there is no consistent differences across cases and controls
except for the small number of significantly associated variants. Furthermore, the
genomic inflation factor (lambda) was determined to be 0.99 for the Mayo and
0.98 for the ROS/MAP single variant association tests. This highlights that potential
confounding factors, such as population stratification have been adequately
controlled.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All source data analyzed in the study are publicly available22–24,46. Specifically, we use a
version of the RNA-seq data from the ROS/MAP study (https://doi.org/10.7303/
syn8456638.22) and RNA-seq data from the Mayo RNA-seq (https://doi.org/10.7303/
syn8466816.19) run through the same bioinformatic processing pipeline22. The array
expression data from the Mayo eGWAS study are available at: https://doi.org/10.7303/
syn3617054.1. Pseudotimes for ROS/MAP individuals are available for all individuals,
females, and males, respectively (https://doi.org/10.7303/syn23446661.2, https://doi.org/
10.7303/syn22822695.1, https://doi.org/10.7303/syn23446654.3). Pseudotimes for Mayo
RNA-seq individuals are available for all individuals, females, and males, respectively
(https://doi.org/10.7303/syn23446689.1, https://doi.org/10.7303/syn22822691.1, https://
doi.org/10.7303/syn23446688.1). Pseudotimes for female Mayo eGWAS individuals are
available (https://doi.org/10.7303/syn22822690.1). Source data for Fig. 2c (https://doi.
org/10.7303/syn23246577.1), Fig. 2d (https://doi.org/10.7303/syn23246583.1), Fig. 3b
(https://doi.org/10.7303/syn23246585.1), Fig. 5b (https://doi.org/10.7303/
syn22822693.1), and Supplementary Fig. 6A (https://doi.org/10.7303/syn23445580.2),
Supplementary Fig. 6B (https://doi.org/10.7303/syn23445582.3), Supplementary Fig. 6C
(https://doi.org/10.7303/syn23445583.2), Supplementary Fig. 6D (https://doi.org/
10.7303/syn23445584.2), Supplementary Fig. 7B (https://doi.org/10.7303/
syn23246588.1), Supplementary Fig. 8C (https://doi.org/10.7303/syn23446680.1),
Supplementary Fig. 8D (https://doi.org/10.7303/syn23446682.3), Supplementary
Fig. 9D–F (https://doi.org/10.7303/syn23448900.1), Supplementary Fig. 10C (https://doi.
org/10.7303/syn23446681.1), Supplementary Fig. 10D (https://doi.org/10.7303/
syn23446691.1), Supplementary Fig. 11D–F (https://doi.org/10.7303/syn23448904.1),
Supplementary Fig. 12A (https://doi.org/10.7303/syn23446257.3), Supplementary
Fig. 12B (https://doi.org/10.7303/syn23446326.2), Supplementary Fig. 12C (https://doi.
org/10.7303/syn23446331.1), Supplementary Fig. 12D (https://doi.org/10.7303/
syn23446332.1), Supplementary Fig. 13B (https://doi.org/10.7303/syn23450641.1),
Supplementary Fig. 13D (https://doi.org/10.7303/syn23448918.1), Supplementary
Fig. 13E (https://doi.org/10.7303/syn23452920.1), Supplementary Fig. 14B (https://doi.
org/10.7303/syn23468302.1), Supplementary Fig. 17C (https://doi.org/10.7303/
syn23505161.1), Supplementary Fig. 17D (https://doi.org/10.7303/syn23505539.1),
Supplementary Fig. 18D–F (https://doi.org/10.7303/syn23508896.1), Supplementary
Fig. 24 (https://doi.org/10.7303/syn23246590.1), Supplementary Fig. 25 (https://doi.org/
10.7303/syn23246594.1), Supplementary Fig. 28 (https://doi.org/10.7303/syn23246595.1)
are also available.

Code availability
All code is publicly available (https://github.com/Sage-Bionetworks/AMPAD_Lineage).
References to code to perform specific analyses are described in detail in “Methods.”
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