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Abstract

Viral myocarditis is a serious disease, commonly caused by type B coxsackieviruses (CVB).

Here we show that innate immune protection against CVB3 myocarditis requires the IFIT

(IFN-induced with tetratricopeptide) locus, which acts in a biphasic manner. Using IFIT

locus knockout (IFITKO) cardiomyocytes we show that, in the absence of the IFIT locus,

viral replication is dramatically increased, indicating that constitutive IFIT expression sup-

presses CVB replication in this cell type. IFNβ pre-treatment strongly suppresses CVB3 rep-

lication in wild type (wt) cardiomyocytes, but not in IFITKO cardiomyocytes, indicating that

other interferon-stimulated genes (ISGs) cannot compensate for the loss of IFITs in this cell

type. Thus, in isolated wt cardiomyocytes, the anti-CVB3 activity of IFITs is biphasic, being

required for protection both before and after T1IFN signaling. These in vitro findings are rep-

licated in vivo. Using novel IFITKO mice we demonstrate accelerated CVB3 replication in

pancreas, liver and heart in the hours following infection. This early increase in virus load in

IFITKO animals accelerates the induction of other ISGs in several tissues, enhancing virus

clearance from some tissues, indicating that–in contrast to cardiomyocytes–other ISGs can

offset the loss of IFITs from those cell types. In contrast, CVB3 persists in IFITKO hearts,

and myocarditis occurs. Thus, cardiomyocytes have a specific, biphasic, and near-absolute

requirement for IFITs to control CVB infection.

Author summary

Viruses can infect the heart, causing inflammation–termed myocarditis–which is a seri-

ous, and sometimes fatal, disease. One way to combat the infection is by stimulating our

immune system, encouraging it to fight the virus. However, the treatment that is currently

used “revs up” many different parts of our immune system, including some that play little

or no role in clearing the virus, and this wide-ranging activation increases the risk of

potentially-harmful side effects. We want to identify the parts of the immune system that

fight virus infections of the heart, so that we can improve the treatment of viral
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myocarditis by selectively stimulating only those immune responses, thereby retaining the

benefit of treatment (i.e., clearing the virus) while reducing its cost (i.e. lowering the risk

of harmful side effects). In this paper, we demonstrate that a family of proteins called

IFITs play a role in protecting many tissues against these infections, but are particularly

important in heart muscle cells, in which they are indispensable. Thus, IFITs represent a

possible target for the treatment of viral myocarditis.

Introduction

Myocarditis, which can cause serious, and sometimes fatal, complications including heart fail-

ure, cardiac arrest, and dilated cardiomyopathy, is commonly caused by infection and, most

frequently, by viruses including coxsackievirus B3 (CVB3) [1, 2]. This enterovirus infects mice

and humans, replicates to high titers, and causes acute viral myocarditis through two major

pathological mechanisms; virus-mediated direct lysis of the infected cells and immune-medi-

ated tissue damage (immunopathology). Limiting virus infection by activating the immune

system through type I interferon therapy (T1IFN) has shown promise [3, 4], but comes

with an increased risk of immunopathology, because T1IFNs have strong and pleiotropic bio-

logical effects. Therefore, it is important to better understand how T1IFNs exert their anti-

enteroviral effects, with the aim of retaining their biological benefits while reducing concomi-

tant immunopathology.

T1IFNs (mainly, ~12 subtypes of IFNα and the sole IFNβ in human and mouse) are impor-

tant innate immune mediators against virus infection. T1IFN production is initiated in a

virus-infected cell by the tripping of series of innate immune sensors; the resulting down-

stream signaling upregulates the transcription of genes encoding T1IFNs and pro-inflamma-

tory cytokines, which are secreted from the infected cell [5]. After secretion, all of the T1IFN

proteins signal through a common heterodimeric receptor, the T1IFN receptor (T1IFNR),

expressed by the great majority of somatic cells. T1IFN binding to this receptor activates the

JAK-STAT pathways, leading to the induction of a large number of interferon-stimulated

genes (ISGs), which then exert various effects including innate immune antiviral action and

modulation of cytokine production. Mice lacking this receptor rapidly succumb to CVB3

infection [6, 7], as do IFNβ knockout (KO) mice [8], demonstrating the essential role played

by T1IFNs in protecting against this virus. We recently generated inducible conditional knock-

out mice (CMMCM T1IFNRf/f mice) in which the administration of tamoxifen efficiently

deleted T1IFNR expression specifically in cardiomyocytes and, using these mice, we revealed

the importance of local T1IFN signaling into cardiomyocytes during CVB3 infection. Without

such signaling, at ~2–3 days post-infection (p.i.) we observed increased cardiac titers; myocar-

ditis was accelerated, and virus clearance was delayed [7]. These data raised several questions:

during CVB3 infection, which ISGs are induced in cardiomyocytes in response to CVB3 infec-

tion, which of these ISGs are needed to suppress virus replication, and which ISGs regulate the

rapid influx of inflammatory cells into the heart?

We show here that, following CVB3 infection, IFIT (IFN-induced with tetratricopeptide)

family genes are highly induced in cardiomyocytes in vivo. The IFITs are a large family com-

prising six murine (Ifit1, Ifit2, Ifit3, Ifit1b, Ifit1c and Ifit3b) and five human (IFIT1, IFIT2,

IFIT3, IFIT5 and IFIT1B) members [9]. These genes exert antiviral responses against various

different viral species by binding to both host and viral molecules [9–11], but the role of IFIT

locus genes in enterovirus infection and the consequent pathogenesis have not been previously

investigated. In this study, we use mice lacking the entire IFIT locus (IFITKO mice), several
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primary cell types from these mice, and cardiomyocytes modified by CRISPR/Cas9-mediated

gene editing. Both of these approaches—in vivo and in vitro–indicate that the IFIT locus acts

biphasically, and in a cardiomyocyte-specific manner. During the first phase, constitutive IFIT

expression is required for suppressing early CVB3 replication in several tissues and cell types.

In the second phase, which follows T1IFN signaling, the upregulation of IFITs is vital for

CVB3 clearance from cardiomyocytes, and for the prevention of myocarditis. We conclude

that the second phase of IFIT activity is cardiomyocyte-specific because the T1IFN-driven

induction of IFITs is expendable in other cell types. In these cells–unlike in cardiomyocytes–

other ISGs can provide compensatory anti-CVB3 activity, offsetting the absence of IFITs.

Results

Ifit1, 2, 3 and 3b are highly induced in cardiomyocytes during CVB3

infection

To identify which ISGs are expressed in normal cardiomyocytes during CVB3 infection in
vivo, we exploited CMMCM T1IFNRf/f mice [7]. Two weeks after receiving a Tamoxifen injec-

tion, Cre- or CMMCM T1IFNRf/f mice were challenged with 500 PFU CVB3 intraperitoneally

(i.p.). Two days later, a time point when the cardiac virus titers are still comparable in both

groups [7], the animals (and uninfected controls) were sacrificed, and ISG expression in the

hearts of the four different data groups (Fig 1A) was determined by PCR array. CVB3 infection

induced multiple ISGs in the genetically-intact heart (Fig 1B, left), but this was largely abol-

ished by T1IFNR deficiency in cardiomyocytes (Fig 1B, right), indicating that ISG upregula-

tion in the heart is limited mainly to those cells. By comparing the PCR signals of Cre- and

CMMCM hearts, we estimated the extent to which various ISGs were upregulated in cardio-

myocytes (Fig 1C). IFNβ mRNA was ~20-fold more abundant in the hearts of Cre- mice, dem-

onstrating that (i) cardiomyocytes are the major source of IFNβ during CVB3 infection and

(ii) CVB3 infection triggers abundant IFNβ production by cardiomyocytes only if these cells

can receive (or have already received) T1IFN signals. This is consistent with a previous report

in which, using HL-1 cells (a murine cardiomyocyte cell line [12]), the authors showed that

CVB3 infection did not directly trigger IFNβ production [13]. We have independently con-

firmed this finding (see S1 Fig). In addition to ISGs that been described previously (Ifnb1,

Socs1, Isg15 and Il6) [8, 14–16], we found that several of the IFIT family genes were up-regu-

lated in cardiomyocytes at 2 days p.i. (small arrows, Fig 1C; this PCR array assayed only Ifit1,

Ifit2 and Ifit3). As described above, a broad spectrum of cellular functions of individual IFIT

family genes, including antiviral effects, has been reported previously [9–11], but little is

known about the collective importance of the IFIT locus, and less still about its role during

enterovirus infection in vivo. Therefore, the remaining experiments reported herein focused

on the role of this gene family in responding to CVB3 infection. To confirm the PCR array

results in vitro, and to extend them to IFIT family members not covered in the PCR array, we

isolated primary cardiomyocytes from C57BL/6 (B6) mice. CVB3 could efficiently infect, and

replicate in, this cell type (Fig 1D). Real-time PCR analysis of CVB3-infected cardiomyocytes

showed that, in the absence of exogenous T1IFNs, there is a substantial (> 30 hour) delay in

IFIT expression, but by 72 hours p.i. there is robust induction of Ifit1, Ifit2 and Ifit3, and also

of one previously-uncharacterized family member, Ifit3b. However, there was little, if any,

induction of Ifit1b and Ifit1c at 72 hours p.i. (Fig 1E). Thus, our in vivo and in vitro data indi-

cate that, by 48–72 after CVB3 infection, 3–4 members of IFIT family genes (Ifit1, Ifit2, Ifit3
and Ifit3b) are highly induced in cardiomyocytes.

Next, we infected B6 mice with CVB3 (104 pfu, i.p.). The animals (and uninfected controls)

were sacrificed at 2 days after CVB3 infection, and IFIT family gene expression in 11 different
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tissues was analyzed by real-time RT-PCR (Fig 1F). Similar to cardiomyocytes, at this time

point after CVB3 infection, Ifit1, Ifit2, Ifit3 and Ifit3b were induced in most tissues. Up-regula-

tion of the other two family members is more tissue-restricted: Ifit1b is induced almost exclu-

sively in kidney, liver and pancreas, and Ifit1c in liver and pancreas. In uninfected B6 mice,

expression of most of the IFIT family mRNAs was low but detectable in most tissues (S2A

Fig). We also determined the constitutive expression of the mRNAs in three primary cell types

isolated from B6 mice (cardiomyocytes, peritoneal macrophages and cardiac fibroblasts), and

found that all were expressed in uninfected cells (S2B Fig). The expression pattern of IFIT

mRNAs differed between the two cardiac-derived cell types, reflecting others’ findings that

basal levels of ISG expression–including IFIT1 –can be detected in both cell types, and that the

expression pattern is cell-type-specific [17]. The relative levels of IFIT1 expression differed

between the cited study and our own data; we speculate that this might result from unidenti-

fied differences in culture conditions. In contrast to the marked induction of most IFIT

mRNAs at 48–72 hours after CVB3 infection in vivo and in vitro (Fig 1B, 1C, 1E and 1F),

barely any increase was observed in mouse hearts at 24 hours p.i. (S2C Fig), supporting our

Fig 1. Ifit1, 2, 3 and 3b are highly induced in cardiomyocytes during CVB3 infection. Type I IFN-related gene expression was quantified by PCR array in the hearts

of CVB3-infected (500 pfu i.p.) mice at 2 days p.i. (A) Schematic representation of the four different data sources subjected to PCR array analysis. (B and C) Only genes

that are induced at statistically significant levels (P< 0.05) and more than 2-fold difference between Cre- and CMMCM mice are shown (n = 4–5, means ± SEM). (B)

Heat map showing the fold-change of gene expression (compared to uninfected mice) after CVB3 infection in Cre- mice (left column) and CMMCM mice (right

column). (C) Cardiomyocyte-specific changes in gene expression (left column of heatmap divided by right column of heatmap; IFIT genes are arrowed). (D and E)

Primary cardiomyocytes were isolated from C57BL/6 (B6) mice and infected with CVB3 at MOI of 1. At indicated hours p.i., supernatants and cells were collected. (D)

Infectious virus titers in the supernatant were determined by plaque assays and represented as PFU/ml. Data are representative of two independent experiments (n = 2,

geometric means ± SD). (E) Real-time RT-PCR analysis of each IFIT family gene expression in primary cardiomyocytes. Each value was normalized to the values of

Gapdh and divided by the values of uninfected controls (n = 1). (F) B6 mice were infected with 104 PFU of CVB3 i.p., and IFIT mRNA expression was analyzed 48

hours later by real-time RT-PCR. Each value was normalized to the value of Gapdh, and divided by the values of uninfected controls (n = 3, means + SEM).

https://doi.org/10.1371/journal.ppat.1007674.g001
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observation that there was little increase at 30 hours p.i. (Fig 1E). Taken together, these data

indicate that CVB3 infection of cardiomyocytes does not, in itself, drive the rapid and abun-

dant expression of ISGs (including IFITs and T1IFNs); rather, the induction of ISGs depends

on the cardiomyocytes having been primed by T1IFN signaling. Basal levels of IFIT2 and

IFIT3 proteins were detectable in the liver and heart of naïve B6 mice, and both were markedly

up-regulated following the in vivo administration of recombinant IFNβ (S2D Fig, left panels).

Low constitutive expression of IFIT2 and IFIT3 proteins also was detectable in primary cardio-

myocytes, and was up-regulated after 24 hours of IFNβ treatment (S2D Fig, right panels).

Thus, we conclude that: (i) IFITs are constitutively expressed in many tissues / cell types; (ii)

the constitutive expression pattern of the various IFIT genes can vary among cell types; (iii)

CVB3 infection causes a robust increase in expression of most of the IFIT family genes, but

(iv) in cardiomyocytes, this takes at least 30 hours to occur, suggesting that the increase

depends upon these cells having received signals by systemic T1IFNs which, perhaps originate

from other cell types, e.g. dendritic cells in vivo.

T1IFN signaling into cardiomyocytes inhibits CVB3 infection in vitro

To study the antiviral effect of T1IFNs on CVB3 infection in vitro, we first employed HL-1

cells, which we modified using the CRISPR/Cas9 system [18]. To validate the approach, we

began by transfecting HL-1 cells with a vector encoding a single guide RNA targeted to exon 2

of the Ifnar1 gene, which encodes one of the heterodimeric T1IFN receptor proteins (Fig 2A).

HL-1 cells did not expand after selection / single cell dilution, preventing us from developing

HL-1 clonal lines. Therefore, we relied on bulk edited and selected HL-1 cells, in which

T1IFNR protein expression was dramatically decreased (Fig 2B). Effective functional depletion

was demonstrated by treating these cells, or their wt counterparts, with IFNβ; Ifit1, Ifit2 and

Ifit3 mRNA induction was ablated in Ifnar1-edited HL-1 cells (Fig 2C). Western blotting

showed that IFIT proteins were constitutively expressed at similar levels in wt and Ifnar1-

edited HL-1 cells, but that IFNβ-driven induction of IFIT family gene products was ablated in

the latter (Fig 2D). Finally, exogenous IFNβ pre-treatment reduced the production of infec-

tious CVB3 by ~2,300-fold in WT HL-1 cells but had no suppressive effect in Ifnar1-edited

HL-1 cells (Fig 2E). A further conclusion can be drawn from the data in this panel. There is no

statistically-significant difference in virus titers between the non-treated WT and Ifnar-1-

edited HL-1 cells, indicating that, during the time of infection, the cells did not produce suffi-

cient IFNβ to confer any antiviral effect. This provides additional evidence that CVB3 infection

of resting cardiomyocytes does not directly trigger abundant IFNβ production; if it did so,

then one would have predicted that this endogenously-synthesized IFNβ would have sup-

pressed viral replication in the WT cells to a level below that observed in Ifnar-1-edited cells,

which are unable to respond to the cytokine. These findings confirm the in vitro data in S1 Fig,

as well as our in vivo observations made using the CMMCM T1IFNRf/f mice; (i) T1IFN signal-

ing into cardiomyocytes markedly inhibits CVB3 infection [7] and (ii) unless they receive

T1IFN signals, cardiomyocytes do not produce abundant T1IFNs following infection by CVB3

(Fig 1). When combined with our demonstration that T1IFNs drive the strong up-regulation

of IFIT expression in cardiomyocytes, these data raise the question: do IFIT genes participate

in the observed T1IFN-mediated protection of cardiomyocytes against CVB3?

The IFIT locus is required for anti-CVB3 innate immune response in

cardiomyocytes in vitro

To address this question, we again applied the CRISPR/Cas9-mediated bulk gene-editing

approach to HL-1 cells, this time deleting the entire IFIT locus. HL-1 cells were transfected

IFITs protect against enterovirus infection of cardiomyocytes
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with two CRISPR/Cas9 expression vectors expressing the indicated sgRNAs (Fig 3A) and, after

drug selection, we confirmed the deletion of entire IFIT locus on genomic DNA of IFIT locus-

edited HL-1 cells by PCR analysis (Fig 3B); the combination of primer P1 + reverse primer did

not generate a detectable PCR product on WT DNA, because the two primers are separated by

~100 kbp, but a ~500 bp amplicon was present when DNA from the sgIFITs edited cells was

used, indicating that these cells contained IFIT locus KO DNA. However, the bulk-edited and

selected population was not 100% pure, because PCR using the reverse primer together with

the P2 primer (which is absent from the KO DNA) produced an amplicon. To determine the

impact of IFIT locus editing on IFIT protein content, IFIT2 and IFIT3 protein levels in HL-1

cells were determined by western blot without or with prior stimulation with recombinant

IFNβ (100 U/ml). As shown in Fig 3C, robust induction of IFIT2 and IFIT3 was observed in

WT cells, and this was markedly reduced in the sgIFIT population, although some protein was

detected, consistent with the conclusion that the population contains some cells with intact

IFIT genes. We then infected both populations of HL-1 cells with CVB3 (multiplicity of infec-

tion (MOI) of 1) in the presence or absence of IFNβ pre-treatment (100 U/ml). 72 hours p.i.,

virus titers in the supernatant of these cells were determined by plaque assays (Fig 3D). When

cells were not pre-treated with IFNβ, infectious virus yield in the supernatant of IFIT locus-

edited HL-1 cells was higher than in WT HL-1 cells at all time points, and became ~70-fold

Fig 2. T1IFN signaling into cardiomyocytes inhibits CVB3 infection in vitro. (A-D) Generation of Ifnar1-edited (sgIfnar1) HL-1 cells, and characterization of

uninfected cells. (A) Diagram of the Ifnar1 gene locus relevant to this study. Closed box = exon. The location of the sgRNA target sequence for Ifnar1 locus is

shown. (B) IFNAR1 protein expression of HL-1 cells that were transfected with control vector, or vector encoding the sgRNA, was determined by flow cytometry

(blue = IFNAR antibody; red = isotype control). Representative histograms are shown, along with a graph displaying the delta MFI for each population (Mean

Fluorescent Intensity with IFNAR1 antibody—MFI with isotype control antibody). (C) Fold gene induction of Ifit1, Ifit2 and Ifit3 in WT and Ifnar1-edited HL-1 cells

after 16 hours of IFNβ (100 U/ml) treatment. Each value was normalized to the values of Gapdh gene and divided by the values of untreated cells in each group (n = 3,

Means + SEM). Note, y axes differ among the three graphs. (D) Western blots of the WT and Ifnar1-edited HL-1 cells showing constitutive and IFNβ induced IFIT

protein expression. GAPDH was detected as internal controls. (E) WT or Ifnar1-edited (sgIfnar1) HL-1 cells were incubated with or without recombinant IFNβ (100

U/ml). 16 hours later, cells were infected with CVB3 at an MOI of 1. 72 hours p.i., infectious virus titers in the supernatant were determined by plaque assays. Data are

combined from two independent experiments (n = 4, geometric means). Each symbol represents an individual value.

https://doi.org/10.1371/journal.ppat.1007674.g002

IFITs protect against enterovirus infection of cardiomyocytes

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007674 April 8, 2019 6 / 22

https://doi.org/10.1371/journal.ppat.1007674.g002
https://doi.org/10.1371/journal.ppat.1007674


higher at 72 hours p.i. (p<0.0001) (Fig 3D, left panel). As shown in Fig 3D, right panel, IFNβ
pre-treatment of WT HL-1 cells very effectively suppressed the infectious virus yield through-

out the 72 hour time course (black symbols), whereas the virus still replicated to high titer in

IFNβ-treated IFIT locus-edited HL-1 cells, in which the virus titer was significantly higher as

early as 6 hours p.i., and ultimately became ~40,000-fold higher than in IFNβ pre-treated WT

HL-1 cells (p = 0.0008). This viral titer data was reflected in analyses of virus RNA (Fig 3E). In

the absence of IFNβ treatment, we found ~30-fold higher quantities of virus RNA in IFIT

locus-edited HL-1 cells compared to WT cells (p<0.0001), and IFNβ pre-treatment reduced

virus RNA in both cell populations, but much more so in the WT (P< 0.01). Parallel findings

came from analyses of virus protein accumulation (Fig 3F). In summary, these data indicate

that control of CVB3 infection by IFITs in HL-1 cardiomyocytes is biphasic: in the first phase,

the constitutive (T1IFN-independent) expression of IFITs helps to constrain viral replication

and in the second phase, T1IFN-driven up-regulation of IFIT expression in cardiomyocytes

maintains this protection. The minimal antiviral effect of IFNβ on IFIT locus-edited cells

Fig 3. The IFIT locus is required for anti-CVB3 innate immune response in cardiomyocytes in vitro. (A-C) Generation of IFIT locus-edited (sgIFITs) HL-1 cells,

and characterization of uninfected cells. (A) Black arrows = IFIT family genes. The locations of the PCR three primers (P1, P2 and Reverse) and sgRNA target sites

spanning the IFIT locus are shown. (B) PCR results for the wt and bulk gene edited HL-1 cells are shown. (C) Western blots of the WT and IFIT locus-edited HL-1

cells. Some cells were treated for 16 hours with recombinant IFNβ (100 U/ml) to induce IFIT family proteins. GAPDH was detected as internal controls. (D-F)

Phenotypical analysis of infected HL-1 cells. WT or IFITs-edited (sgIFITs) HL-1 cells were pre-treated with or without recombinant IFNβ (100 U/ml). 24 hours later,

cells were infected with CVB3 at an MOI of 1. 72 hours p.i., cells and the supernatants were collected and used for subsequent studies. (D) Infectious virus titers in the

supernatant were determined by plaque assays and represented as PFU/ml. Data are combined from three independent experiments (n = 3–10, geometric means).

Each symbol represents an individual value. (E) Virus RNA accumulations in the cells at 72 hours p.i. were determined by real-time RT-PCR analysis. Each value was

normalized to the values of Gapdh. Data are combined from two independent experiments (n = 6, geometric means). Each symbol represents an individual value. (F)

Western blots of virus proteins (VP1, 3Dpol and 3A). GAPDH was detected as internal controls. (G-I) Virus titers in primary cells. Primary cardiomyocytes (G),

peritoneal macrophages (H) and primary cardiac fibroblasts (I) were isolated from B6 and IFITKO mice and infected with CVB3 at MOI of 1. Then, some cells were

treated with recombinant IFNβ (100 U/ml). 72 hours p.i., virus titers in the supernatants were determined by plaque assays. Data are combined from two independent

experiments (n = 6–8, geometric means). Each symbol represents an individual value.

https://doi.org/10.1371/journal.ppat.1007674.g003
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(Fig 3D & 3E) indicates that, in cardiomyocytes, other ISGs are unable to confer substantial

protection against CVB3.

To corroborate our HL-1 cell findings, we isolated primary cardiomyocytes from B6 mice

and from IFIT locus-deleted (IFITKO) mice, which were generated in the laboratory of one of

the authors (GCS) and will be described in detail in a separate paper. These IFITKO mice lack

all of the IFIT family genes (Ifit1, Ifit2, Ifit3, Ifit1b, Ifit1c and Ifit3b), and the successful dele-

tion is demonstrated by the fact that cardiomyocytes isolated from these IFITKO mice did not

express any of the IFIT family genes, even after recombinant IFNβ treatment (S3 Fig). Primary

cardiomyocytes from B6 and IFITKO mice were infected with CVB3, then recombinant IFNβ
was (or was not) added to the culture media. 72 hours p.i., virus titers in the supernatant of

these cells were determined (Fig 3G). These data confirmed the biphasic activities of IFITs in

cardiomyocytes. CVB3 titer in the supernatant of primary cardiomyocytes (not treated with

IFNβ) was significantly higher in IFITKO than B6 mice, and IFNβ treatment suppressed

infection in WT cells, but not in IFITKO cells. Thus, in primary cardiomyocytes as in HL-1

cells, (i) IFIT locus genes appear to constitutively suppress CVB3 replication, (ii) IFN-driven

IFIT up-regulation is required to maintain and extend this protection, and (iii) other ISGs,

induced by exogenous IFNβ, appear unable to exert independent antiviral effects. We exe-

cuted similar experiments with peritoneal macrophages, and with cardiac fibroblasts, from B6

and IFITKO mice (Fig 3H & 3I respectively). In both cell types, in the absence of exogenous

IFNβ, virus yield was significantly increased in the IFITKO cells, similar to what was observed

for cardiomyocytes. However, in contrast to cardiomyocytes, IFNβ treatment strongly

inhibited infectious virus production by IFITKO macrophages and cardiac fibroblasts,

although a stronger effect was observed for the former cell type. These data indicate that:

(i) constitutive IFIT expression plays a role in suppressing CVB3 replication in cardiomyo-

cytes, cardiac fibroblasts and peritoneal macrophages, and (ii) the second, T1IFN-induced,

phase of IFIT activity shows cell specificity; if IFITs are absent, other ISGs can confer antiviral

protection in macrophages, but not in cardiomyocytes, with cardiac fibroblasts showing an

intermediate phenotype. Sherry and colleagues have previously proposed that cardiomyo-

cytes, being non-replenishable cells, may have developed near-unique mechanisms to cope

with viral challenges [19], and our observations support and extend this suggestion. Studies

are ongoing to identify the precise mechanism(s) by which the IFIT locus mediates its anti-

CVB3 activity.

The IFIT locus limits early virus replication, contributes to subsequent

mortality, and is required for a successful response to IFNβ
Next, we investigated the in vivo consequence of the loss of the IFIT locus during CVB3 infec-

tion. B6 and IFITKO mice were challenged with 104 pfu of CVB3, i.p., and their body weights

were monitored daily (Fig 4A). An early, and statistically-significant, loss of body weight was

observed in IFITKO mice. Nevertheless, IFITKO mice survived significantly longer than B6

mice (Fig 4B). The CVB3-infected animals were sacrificed at 12 days p.i., and the two strains

displayed dramatic macroscopic differences in the small intestine, pancreas, and liver (Fig 4C).

The small intestine of CVB3-infected IFITKO mice was swollen and fulfilled with gas, and

their pancreata were smaller than those of their B6 counterparts. In contrast, the livers of the

IFITKO mice looked grossly normal, while those of B6 mice were pale, and confocal analyses

revealed numerous apoptotic hepatocytes (S4 Fig), possibly contributing to the higher mortal-

ity in the WT animals (Fig 4B). This is consistent with the recent demonstration, by others,

that hepatic disease may contribute significantly to the mortality associated with CVB3 infec-

tion [20]; we speculate that, in WT mice, the antiviral activity of IFITs in the liver may
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contribute to hepatic immunopathology that is detrimental to survival. No obvious macro-

scopic differences were observed in the hearts, but histological analyses were revealing (see

below).

To analyze the in vivo impact of loss of the IFIT locus on CVB3 replication, we measured

the virus titer in the pancreas, liver and heart of both groups at different time points over the

course of CVB3 infection. At day 1 p.i., there were higher amounts of CVB3 in IFITKO mouse

Fig 4. The IFIT locus limits early virus replication, contributes to subsequent mortality, and is required for a successful response to IFNβ. (A-G; black = B6;

green = IFITKO mice) B6 and IFITKO mice were infected with CVB3 (104 pfu/mouse, i.p.). (A) Body weight changes were monitored over a 7-day period. Body

weights at the time of infection of each individual are set as 100% (n = 6, Means ± SEM). (B) Survival of both B6 (n = 12) and KO (n = 9) mice was assessed over a

12-day period. (C) Mice were sacrificed at 12 days p.i. and images of internal organs and extracted pancreata and livers were taken. (D-F) Mice were sacrificed at day 1

(n = 7 each), day 7 (B6, n = 7; KO, n = 6) and days 11–12 (B6, n = 3; KO, n = 7) p.i. Virus titers in the pancreas (D), liver (E) and heart (F) are represented as PFU/

gram. The lower limit of virus detection was 10 PFU per gram of tissue sample (shown as dashed line). Each symbol represents an individual value. (G) Fecal samples

were collected and virus titers were determined. (H & I: open circles = PBS-treated; blue circles = IFNβ treated). B6 and IFITKO mice were infected with CVB3 (104

pfu/mouse, i.p.). 24 hours later, mice received either PBS or recombinant IFNβ. (H) Body weight changes were monitored over a 12-day period. Body weights at the

time of infection of each individual were set as 100%. (I) The mice were sacrificed at 12 days p.i., and viral titers were determined in the heart (above) and in pancreata

and livers (S6 Fig). The XY plots show, for the two mouse strains, the relationships among titer, body weight loss, and treatment status (PBS or IFNβ).

https://doi.org/10.1371/journal.ppat.1007674.g004
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pancreas, liver and heart (Fig 4D to 4F), indicating that–as we showed for several IFITKO cell

types in vitro (Fig 3G–3I)–IFIT locus genes are required for restricting very early CVB3 infec-

tion in vivo. However, at later time points (days 7, & 11–12 p.i.) CVB3 appeared to be more

rapidly cleared from the pancreata and livers of IFITKO mice; at day 7 p.i., titers were

~300-fold lower in the IFITKO pancreata, and ~2 million-fold lower in the IFITKO livers (Fig

4D & 4E). We also found accelerated virus clearance in the feces of IFITKO mice (Fig 4G).

These data indicate that, while the IFIT locus is required for immediate virus control in several

tissues in vivo, its absence eventually leads to much more effective viral clearance from most of

those tissues. The heart appears to be an exception: at day 7 p.i., CVB3 titers were high in the

hearts of both mouse strains the small difference observed at this time point (~2-fold higher in

the B6 mice) was far less than the differences observed in pancreata and livers and, by day 11–

12 p.i., titers in IFITKO pancreata and liver were far below those in WT tissues (Fig 4D & 4E),

while the titers in IFITKO hearts were ~20-fold higher than those in B6 mice (Fig 4F). This

conclusion was supported by studies in which mice were challenged with a lower dose of

CVB3 (103 pfu); IFITKO mice showed 100-fold higher cardiac titers compared to B6 mice

(P< 0.05; S5A Fig).

Exogenous IFNβ treatment has been shown to improve CVB3-induced pathogenesis in

mouse models [21, 22] and in some human clinical trials [3, 4]. Since our in vitro data (Fig

3D & 3E) had shown us that the IFIT locus was required for most of the T1IFN-mediated inhi-

bition of CVB3 replication in cardiomyocytes, we next examined whether the IFIT locus is

required for IFNβ-mediated beneficial effects in vivo. B6 and IFITKO mice were challenged

with 104 PFU of CVB3 and, 24 hours p.i., received a single i.p. injection of either PBS or

recombinant IFNβ (2 × 104 units). We monitored the body weight loss of these animals, and

found that IFNβ treatment protected B6 mice from weight loss and overt signs of disease over

a 12 day period of CVB3 infection, but failed to do so in IFITKO mice (Fig 4H). Surviving

mice were sacrificed at day 12 p.i., and virus titers were measured in the pancreas, liver, and

heart. For the heart, data are shown in Fig 4I; data for pancreata and livers are shown in S6 Fig.

Three conclusions may be drawn: (i) in both mouse strains, there was a clear relationship

between substantial body weight loss and high cardiac titers; (ii) most of the B6 mice benefited

from IFNβ (cleared virus from the heart, and showed minimal weight loss); and (iii) most

importantly, for the purpose of our study, no such effects were observed in IFITKO mice (only

one of the IFITKO mice had cleared virus from the heart, and that mouse still had significant

weight loss). These data are consistent with the near-complete requirement for IFITs in cardiac

clearance. Similar conclusions can be drawn from the pancreatic data, but for the liver it is

more difficult to interpret any relationships with virus titer, because the great majority of the

livers in both strains scored negative at this time point p.i. (S6 Fig).

ISG expression is generally increased in IFITKO mice at 48 hours after

CVB3 infection

Next, we sought to determine why virus clearance is accelerated in pancreas and liver, but not

in heart, of IFITKO mice at later time points (days 7 & 11–12 p.i.). Since viral load at early

time points is higher in IFITKO cells (Fig 3D) and in IFITKO mice (Fig 4D–4F), we reasoned

that this might lead to the more rapid induction of innate responses in these mice compared to

B6 animals. Strikingly, at day 1 p.i., several chemokine mRNAs were highly induced in the

hearts of IFITKO mice, but only modestly so in B6 tissues (S7 Fig). We chose to carry out a

more detailed analysis at 48 hours p.i., because we knew that, by this time point, systemic

T1IFNs have driven the upregulation of many ISGs in the infected heart (see Fig 1B & 1C).

PCR array heat maps (Fig 5A) revealed that, at 48 hour p.i. many ISGs appeared to be
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Fig 5. ISG expression is generally increased in IFITKO mice at 48 hours after CVB3 infection. B6 and IFITKO mice (n = 3 per group) were infected with 104 pfu of

CVB3, and were sacrificed 48 hours later. Pancreata, livers and hearts were harvested, RNA was extracted and the expression of 84 ISGs was analyzed using a mouse

T1IFN response profiler PCR array. RNAs from organs of uninfected mice were used as controls. (A) Heat maps showing the fold gene induction (compared to

uninfected tissues) in the three organs from infected B6 and IFITKO mice. The IFIT genes (negative in the heat maps for the IFITKO mice) are enclosed in a dashed

gold box. (B) To more easily visualize the overall expression patterns in the B6 and IFITKO organs, the same data are graphed using a violin plot. Blue line = median;

red lines = 25th and 75th quartiles. Because they are, by definition, absent from IFITKO mice, the IFIT genes were excluded from these violin plots; thus, these plots

compare the expression of 81 ISGs in B6 and IFITKO mice.

https://doi.org/10.1371/journal.ppat.1007674.g005
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expressed at higher levels in IFITKO tissues than in their WT counterparts. Of interest, too,

the pattern of ISG induction differed among the three organs analyzed. To more readily visual-

ize the overall differences between the two mouse strains, the data were re-plotted to compare

the range and extent of ISG up-regulation in all three organs of both strains (Fig 5B). In all

three organs, the highest ISG up-regulation occurred in IFITKO conditions, and the overall

range of ISG expression appeared higher in IFITKO pancreas and heart, and almost equivalent

in livers from both mouse strains. Thus, we consider it likely that this increased ISG expression

may underpin the faster resolution of infection in the pancreas and liver of IFITKO mice (Fig

4D & 4E). This enhanced virus clearance does not occur in the IFITKO heart (Fig 4F) despite

there being increased overall ISG expression (Fig 5B), consistent with the notion that, at least

in cardiomyocytes, other ISGs cannot functionally compensate for the loss of the IFIT locus.

Taken together, these in vivo data indicate that constitutive IFIT expression plays a key role

in restricting CVB3 replication in most/all tissues and, in its absence, virus RNA-driven induc-

tion of the T1IFN response is accelerated; this, in turn, leads to the rapid up-regulation of a

variety of other ISGs in all tissues, and these ISGs quickly control CVB3 replication in all of the

tested tissues, except the heart. Thus, we suggest that the IFIT locus is especially vital for pro-

tecting cardiomyocytes, because these cells lack the functional redundancy that the other ISGs

can provide in most cell types.

The IFIT locus is required for preventing CVB3-induced myocarditis

Finally, we investigated the impact of loss of the IFIT locus on the extent of CVB3-induced

myocarditis. Mice were infected with 104 pfu CVB3 i.p. and, 12 days later, hearts were har-

vested, and paraffin sections were stained (Fig 6A). Immune cell infiltration was quite limited

in the B6 heart at 12 days p.i., while numerous infiltrating cells, and collagen deposition (light

blue), were observed in the hearts of IFITKO mice. These findings were reproducible when

mice were challenged at a dose of 103 pfu of CVB3 (S5B Fig). Since we had observed enhanced

chemokine expression in the IFITKO hearts soon after infection (S7 Fig), we analyzed infiltra-

tion of macrophages by staining heart vibratome sections with an antibody against Iba-1 (Ion-

ized calcium-binding adaptor molecule 1, also known as Aif-1), a protein that is

predominantly expressed on cells of the macrophage lineage [23]. At 12 days post-CVB3 infec-

tion (104 pfu), Iba-1 signals (Fig 6B, red) were brighter and more frequent in the hearts of

CVB3-infected IFITKO mice compared to the WT animals. Our previous work showed that

development of myocarditis in the mice lacking T1IFN signaling into cardiomyocytes was not

only exacerbated but also accelerated [7]. Likewise, we found more myocardial inflammation

in IFITKO than in B6 mice at 7 days p.i. (Fig 6C, yellow arrows indicate immune infiltrates), a

time point when the mice of both groups showed comparably high cardiac virus titers (Fig 4F).

Real-time RT-PCR analysis was applied to RNA extracted from the hearts of both mouse

strains at d7 p.i., to identify genes expressed by immune cells, and revealed a small but signifi-

cant increase of Cd8 RNA, and a massive increase of Ly6G, a marker of granulocytes and

monocytes, in IFITKO hearts (Fig 6D). Therefore, in the absence of the IFIT locus, there is

more rapid inflammatory cell infiltration into the heart. Taken together, these data indicate

that the IFIT locus plays an important role in limiting CVB3-induced myocarditis.

Discussion

The present study was aimed at identifying the genes responsible for T1IFN-dependent antivi-

ral protection in the heart. We report: (i) that the IFIT locus plays a central role in controlling

CVB3 infection in multiple tissues including the heart; (ii) that it does so in two distinct

phases, separated by the onset of T1IFN signaling; (iii) that the first phase, which depends on
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constitutive IFIT activity, impacts all analyzed tissues; but (iv) that the second, T1IFN-induced,

phase of IFIT activity is cell-specific, being almost indispensable in cardiomyocytes, and

redundant in other cell types.

Most cell types can respond to T1IFNs, thereby increasing their ability to resist virus chal-

lenge. However, prior to being stimulated by T1IFNs, many cells also have a constitutive

capacity to withstand virus infection. This has been referred to as “intrinsic antiviral immu-

nity” [24], and here we demonstrate that the IFIT family genes play such a role in protecting

many cell types and tissues against CVB3 infection. Our in vitro observations show that, in the

absence of T1IFN treatment, CVB3 replicates to higher titers in IFIT-deficient cardiomyocytes

(both in HL-1 cells and in primary isolates), peritoneal macrophages, and cardiac fibroblasts

(Fig 3G–3I). Others have reported that, specifically in cardiomyocytes, the mitochondrial anti-

viral signaling (MAVS) pathway is spontaneously activated, resulting in increased basal levels

of IFNβ [25], suggesting the possibility that IFNβ might contribute to the intrinsic immunity

Fig 6. The IFIT locus is required for preventing CVB3-induced myocarditis. C57BL/6 (B6) and IFITKO (KO) mice were infected with CVB3 (104 pfu/mouse,

i.p.). (A) Representative histological sections of hearts stained with Masson’s trichrome (12 days p.i.) are shown. (B) Vibratome sections of the above hearts were

stained as indicated, and were imaged by confocal microscopy. Iba-1 (macrophages) (Red), F-actin (Green), and nuclei (Blue). (C) Representative hematoxylin

and eosin (H&E) -stained sections of hearts stained taken at 7 days p.i. are shown. Yellow arrowheads indicate sites of cellular infiltration. (D) The extent of this

infiltration, and its cellular composition, was assessed using RT-PCR for the four indicated RNAs: Cd4, Cd8b1, Emr1 (F4/80), Ly6G (Gr-1). (B6, n = 6; KO,

n = 8, Means + SEM). Each symbol represents an individual value.

https://doi.org/10.1371/journal.ppat.1007674.g006
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of cardiomyocytes to CVB3 that we report herein. However, as noted above, CVB3 infection

of primary cardiomyocytes does not trigger abundant IFNβ production. Furthermore, it is

intriguing to note that some viral proteases have been shown to cleave MAVS protein, poten-

tially nullifying the pathway’s activity; these include the 3C protease of CVB3 [26], and the

3ABC complex of another picornavirus, hepatitis A virus [27]. Moreover, cytokine responses

to CVB3 appear to be independent of MAVS, and CVB3 titers are not increased in MAVS-

deficient mice [28]. Given that, both before and after IFNβ stimulation, cardiomyocytes dis-

play a near-absolute requirement for endogenous IFITs (Fig 3D–3G), we consider it likely that

one or more of the proteins in the IFIT family play(s) the key role in conferring both constitu-

tive and inducible anti-CVB3 protection in these cells.

The importance of constitutive IFIT expression was confirmed by in vivo studies. IFITs are

constitutively expressed in many tissues and cell types (S2 Fig panels A, B and D, and Fig 2D)

and, compared to WT mice, CVB3 titers at 1 day p.i. were markedly higher in multiple tissues

of IFITKO mice (Fig 4D–4F). By two days after CVB3 infection, mice have transitioned from

the first phase of antiviral immunity (cell-intrinsic resistance) to the second, T1IFN-induced,

phase. At this time point, genetically-intact hearts express many ISGs (Fig 1B & 1C), one of

which is IFNβ, whose abundance is reduced ~20-fold if cardiomyocytes are unable to respond

to T1IFN (Fig 1C). These data suggest that cardiomyocytes are, by far, the major source of

IFNβ in the CVB3-infected heart. Moreover, they demonstrate that extensive T1IFN synthesis

by cardiomyocytes requires that the cells be able to respond to the cytokine–i.e., wt cardiomyo-

cytes exhibit a positive feedback loop in vivo, leading to the escalation of local T1IFN concen-

tration, with consequent rapid and marked induction of numerous other ISGs, including

several IFITs (Fig 1B and 1C). This is consistent with the in vitro and in vivo observations that

suggest that there is a 1–2 day delay in IFIT up-regulation, followed by an explosive increase.

What are the antiviral consequences of T1IFN signaling into cardiomyocytes? As noted above,

we have reported that T1IFNR-deficient cardiomyocytes show delayed clearance of CVB3 in
vivo [7], and here we confirm in vitro the importance of T1IFN signaling in cardiomyocytes;

IFNβ treatment reduced the yield of infectious virus by ~2,300-fold in wt HL-1 cells, while no

such effect was observed using CRISPR/Cas generated T1IFNR-deficient cardiomyocytes

(Fig 2E).

Strikingly, this T1IFN-driven suppression of CVB3 infection in cardiomyocytes is almost

entirely dependent on the IFIT locus. IFNβ-treatment of wt HL-1 cells or wt primary cardio-

myocytes dramatically inhibited CVB3 replication, but equivalent treatment of IFIT-deficient

cardiomyocytes had very little effect, suggesting a near-absolute requirement for the IFIT locus

in this cell type (Fig 3D to 3G). In contrast, IFNβ-treated IFITKO peritoneal macrophages

very efficiently controlled the infection, while IFNβ-treated cardiac fibroblasts showed an

intermediate phenotype (Fig 3H & 3I) indicating that, for both of these cell types, other ISGs

could wholly or partially restore antiviral resistance. Thus, IFITs act in a biphasic manner fol-

lowing CVB3 infection, and the T1IFN-driven second phase shows cell-type specificity. This

mirrors previous reports of neuron-specific antiviral activity of IFIT2 against vesicular stoma-

titis virus [29, 30]. The biological importance of this T1IFN-driven shift, from intrinsic immu-

nity (phase 1) to ISG-mediated antiviral responses (phase 2) at ~1–2 days p.i. is clearly shown

by the prior observations that IFNβKO, T1IFNRKO and CMMCMT1IFNRf/f mice all failed to

control CVB3 infection [6–8], demonstrating that intrinsic immunity alone is insufficient.

Furthermore, our data suggest that intrinsic immunity–or, at least, the intrinsic immunity

conferred by the IFIT locus–can be lost without fatal effects. In IFITKO mice, virus titers were

initially higher than in wt animals–perhaps explaining the early and transient weight loss

that occurred in these mice (Fig 4A)–but at later time points virus clearance was accelerated in

the pancreas, liver and feces (Fig 4D, 4E & 4G). This enhanced virus clearance is probably
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attributable to the more rapid induction of T1IFNs and ISGs in IFITKO mice (Fig 5), presum-

ably driven by the extremely high viral titers that were present at 1 day p.i. Consistent with our

in vitro data, this accelerated CVB3 clearance showed substantial cell (tissue) specificity: it was

not observed in the hearts of IFITKO mice which, at 12 days p.i., still contained much higher

levels of CVB3 than did WT hearts (Fig 4F & 4I). In addition, cardiac CVB3 titers in IFITKO

mice were prolonged even if the mice were treated with exogenous IFNβ (Fig 4I). Taken

together, these findings suggest that other ISGs can substitute for the absence of IFITs in many

tissues, but not in the heart, because of cardiomyocytes’ requirement for IFITs. The inability of

other ISGs to protect cardiomyocytes against CVB3 after ~day 2 p.i., when the T1IFN system

has exerted its effects, appears to render these cells a more hospitable environment for the

virus.

As mentioned in the Introduction, virus-mediated direct cell lysis and immunopathology

are the two major pathological mechanisms of myocarditis. Previous studies in mice in which

the viral receptor (CAR) has been deleted in cardiomyocytes found that the hearts of these

mice are resistant to infection, and the mice are largely protected against cardiac disease [31,

32], demonstrating that virus replication in cardiomyocytes is a prerequisite for myocarditis.

Our data showed that enhanced cardiac virus replication in IFITKO mice was accompanied by

accelerated and exacerbated myocarditis (Fig 6 and S5B Fig). However, in contrast to our tis-

sue culture data, which show clearly that IFIT expression in cardiomyocytes is the key factor,

these in vivo data in IFITKO mice–which show that IFITs protect against myocarditis–are

open to interpretation. It is possible that, in genetically-intact mice, protection against myocar-

ditis is mediated solely by IFITs in cardiomyocytes (paralleling the tissue culture data), but it

also is possible that protection is mediated, at least in part, by the early actions of constitu-

tively-expressed IFITs in multiple tissues. This issue can be resolved in the future by generating

mice carrying a floxed IFIT locus, and crossing them to CMMCM mice [which are described in

ref 7], allowing the inducible deletion of the locus specifically from cardiomyocytes. Which-

ever mechanism is in play, the primary means by which the IFIT locus prevents viral myocar-

ditis in WT animals is to inhibit CVB3 replication, thereby reducing both virus-mediated

direct cell lysis and the immunopathological damage caused by infiltrating cells. In addition,

we observed that the increased early viral load in the IFITKO mice is accompanied by a more

rapid T1IFN response (Fig 5). Interestingly, in Sendai virus (SeV) -infected Ifit2 KO mice,

which show elevated T1IFN induction triggered by uncontrolled virus replication, both SeV

infection and abnormal production of T1IFN are required for the virus pathogenesis [33].

Hence, during CVB3 infection of IFITKO mice, the rapid / robust induction of the T1IFN

response together with the prolonged virus presence in the heart may synergistically promote

the cardiac immune cell infiltration and contribute to the pathogenesis of myocarditis.

In conclusion, we have revealed a key role for the IFIT locus in modulating CVB3 infection.

Through analyzing genetically-manipulated cells and mice, we show that the IFIT locus consti-

tutively limits early virus replication in many tissues, and that its subsequent upregulation by

the T1IFN response plays an especially-important role in cardiomyocytes, delaying or prevent-

ing the development of myocarditis. Future studies to reveal the precise mechanism(s) by

which the IFIT locus acts, and to determine the function of each IFIT family gene, may lead to

new and improved strategies for treating enterovirus-induced disease.

Materials & methods

Ethics statement

All animal experiments were approved by The Scripps Research Institute (TSRI) Institutional

Animal Care and Use Committee (protocol number 09-0131-3) and were carried out in
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accordance with the National Institutes of Health’s Guide for the Care and Use of Laboratory

Animals.

Mice

C57BL/6 mice were purchased from the TSRI rodent breeding colony. Generation of IFITKO

mice by the Sen laboratory will be described in detail elsewhere. CMMCM T1IFNRf/f mice were

described previously [7].

Mouse serum samples

Mice serum was isolated using K3-EDTA coated microvette tubes (Starstedt, Nümbrecht,

DEU) from the blood by centrifuging at 12,000 rpm for 15 min at room temperature, and

stored at -20 ˚C until its use.

Cells

The cardiomyocyte cell line HL-1 [12] was obtained from Drs. William C. Claycomb and Ikuo

Tsunoda at Louisiana State University (Shreveport, USA). The cells were cultured in Claycomb

medium supplemented with 100 μM norepinephrin, 10% fetal bovine serum (FBS) and 4 mM

L-glutamine, in 37˚C, 5% CO2 atmosphere. The Pierce primary cardiomyocytes isolation kit

(Thermo Fisher Scientific, #88281) was used to isolate primary cardiomyocytes and primary

cardiac fibroblasts, following the manufacturer’s instructions with some modifications [17]. In

brief, day 2 post neonate mice were sacrificed and the hearts were isolated. After mincing each

heart into 1–3 mm3 pieces, the tissues were washed twice with HBSS (Hanks-based salt solu-

tion), resuspended and incubated in working solution including primary cardiomyocyte isola-

tion enzymes 1 and 2 (components of the kit) at 37˚C for 30 minutes. The tissues were washed

with HBSS several times and then with DMEM. Cells were plated at a density of 1.25 x 106 per

well in six-well plates for 2 hours in order to separate cardiac fibroblasts (rapidly adhering)

from cardiomyocytes (still floating at 2 hours after plating). Adherent cells were washed with

PBS and cultured for nine days, changing media every 3 days. Then, cell clusters that do not

include any beating cells were collected and used as primary cardiac fibroblasts. For cardio-

myocyte culture, 24 hours after plating the cells, fresh medium was added, with cardiomyocyte

differentiation supplement (another component of the kit). After 7 days’ growth and differen-

tiation with one medium change at day 4, cells were used as primary cardiomyocytes. For peri-

toneal macrophage isolation, mice were injected with aged 3% thioglycollate medium (SIGMA

Aldrich, #T9032) i.p.. Three days later the mice were sacrificed, and peritoneal cells were

recovered by lavage and seeded onto a tissue culture plate. The next day, floating cells were

removed, and the adherent cells were used as macrophages.

Viruses

The wild-type CVB3 used in these studies is a plaque purified isolate (designated H3) of the

myocarditic Woodruff variant of CVB3. Mice were infected intraperitoneally (i.p) with the

indicated dose of CVB3 and their survival and body weight were monitored during the course

of infection. At the indicated times p.i., feces were collected, and at the time of sacrifice, pan-

creata, livers and hearts were isolated, weighed, and homogenized in 1 ml Dulbecco modified

Eagle medium (DMEM). Virus titers were assessed using standard plaque assays as previously

described [34].
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PCR array analysis and real-time RT-PCR

T1IFN-related gene expression in pancreata, livers and hearts was quantified using Mouse

Type I interferon response RT2 Profiler PCR Array (PAMM-016Z, SA Biosciences, Frederick,

MD). For real-time RT-PCR analysis, RNA was isolated from tissue and cell suspensions using

the RNeasy Mini Kit (QIAGEN, # 74104), and 1–2 μg of RNA was reverse transcribed using

iScript Reverse Transcription supermix (Bio-rad, #1708841). Real-time PCR was performed

using Power SYBR Green PCR mastermix reagent (Applied biosystems, #4367659) with spe-

cific primer sets (see S1 Table). All of the values in PCR array analysis and real-time PCR anal-

ysis were normalized to the values of Gapdh.

CRISPR-mediated gene editing

2 x 105 HL-1 cells were seeded onto gelatin/fibronectin-coated plate. 24 hours later, pX459

(ver. 2) encoding either sgIfnar1 or sgIfit1 and sgIfit2 was transfected into HL-1 cells and incu-

bated for further 24 hours. The sequences of the sgIFITs are shown in S1 Table. Then culture

medium was changed to the media containing puromycin (3 μg/ml) and Cas9-expressing cells

were selected for three days. After drug selection, puromycin was removed from culture media

and cells were recovered. These bulk gene-edited cells were used for in vitro studies at early

passage numbers.

Flow cytometry

To determine surface IFNAR1 protein expression, HL-1 cells were analyzed by flow cytometry.

WT or Ifnar1-edited HL-1 cells were incubated in trypsin-EDTA at 37˚C for 5 min. Then, the

reaction was stopped by adding DMEM supplemented with FBS. After washing several times,

isolated cells were incubated with PE-conjugated anti-IFNAR1 antibody or PE-conjugated iso-

type control on ice for 20 min. After washing several times with FACS buffer, IFNAR1 expres-

sion on HL-1 cells was analyzed by flow cytometry using an LSR II (BD Bioscience).

BCA assays and western blotting

Cells were lysed in RIPA buffer (Millipore, #20–188). After centrifugation, cell debris was dis-

carded and protein concentration in the supernatant was determined by Pierce BCA Protein

Assay Kit (Thermo Fisher Scientific, #23225). Colorimetry was measured using plate reader,

Victor X3 (Perkin Elmer). 5 μg of total cell lysates were mixed with Laemmli Sample Buffer

(Bio-Rad, #161–0747) and 10% of 2-Mercaptoethanol (SIGMA Aldrich, #M6250) and used for

western blotting. Blotting of the proteins to membrane was performed using Trans-blot Turbo

RTA Transfer Kit (Bio-rad, #170–4272) as follows. After developed on SDS gels, proteins were

transferred on PVDF membranes (Bio-Rad, a component of the Transfer Kit) by using Trans-

blot Turbo system (Bio-Rad). Membranes were then blocked with 1% skim milk for an hour,

and overnight with the relevant diluted primary antibodies. Then, membranes were washed

three times with Tris buffer Tween 20 (TBST) and incubated with diluted secondary antibod-

ies. One hour later, membranes were washed again three times with TBST, then protein-anti-

body complexes were visualized by Super Signal ELISA Femto Maximum Sensitivity Substrate

(Thermo Scientific, #37074).

Histological analysis

Mice were perfused with Dulbecco’s PBS (DPBS), and tissues were harvested and fixed using

buffered zinc formalin at room temperature (RT) overnight. For standard histological analyses,

tissues were paraffin embedded, and 3-μm sections were cut and stained with hematoxylin-
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eosin or Masson’s trichrome. Images were captured at 10x magnification with an BZ-X710

inverted microscope (KEYENCE) using BZ-X Viewer software (KEYENCE). For confocal

studies, 70 μm sections of liver and heart were cut with a Leica VT 1000S vibratome. Sections

were incubated with primary antibody for 1 hr at RT and then at 4˚C overnight. After washing,

they then were incubated with secondary antibody for 1 hr at RT, washed and then incubated

with Phalloidin 488 at 4˚C overnight to label F-actin. After incubation, sections were washed,

counterstained with Hoechst 33342 and mounted with ProLong Gold Antifade Mountant for

confocal microscopy. Confocal images were captured using a Zeiss LSM 710 Laser Confocal

Scanning Microscope running Zen 2009 Zeiss software suite. Representative regions within

each vibratome section of the tissues were scanned as 8-bit optical sections (1,024 × 1,024

image sizes) and reconstructed for analysis. Exposure and image acquisition settings were

identical for all sections.

Statistical analyses

All data were analyzed using Prism software (GraphPad Prism 8). An unpaired, two-tailed t-

test was used to determine statistically significant differences for in vitro experiments. The

Mann-Whitney test was used to analyze differences in viral burden. Kaplan-Meier survival

curves were analyzed by the log rank test. P values less than 0.05 were considered significant,

and are indicated in figures as follows: � 0.05>p>0.01; �� 0.01�p>0.001; ��� 0.001�p>0.0001;
���� p�0.0001.

Supporting information

S1 Fig. CVB3 infection induces abundant IFN-b transcription in cardiomyocytes only if

the cells have been pre-treated with T1IFN (related to Fig 1). HL-1 cells were pre-treated (or

not) with IFN-b for 16 hours. The cells were washed, and aliquots were infected with CVB3 at

an moi of 10. 3 hours later, the cells were harvested and RNA was isolated. The abundance of

IFN-b transcripts was determined using qPCR. As shown, (i) consistent with published data

(see main text), CVB3 infection alone induces only a small, and statistically non-significant,

increase in IFNβ in cardiomyocytes; (ii) IFNβ alone causes a statistically-significant increase in

its own transcription and (iii) in IFNβ-pretreated cells, CVB3 infection now results in a dra-

matic (25-fold) increase in IFNβ transcript levels compared to untreated, non-infected cells.

Taken together with our in vivo observations (Fig 1B & 1C), these data indicate that both in

vivo and in tissue culture, the abundant transcription of IFNβ requires both T1IFN signaling

and CVB3 infection.

(TIF)

S2 Fig. Constitutive (A & B), virus-induced (C) and IFN-inducible (D) expression patterns

of IFIT family genes in multiple tissues and primary cell lines (related to Fig 1). (A) Unin-

fected B6 mice were sacrificed and RNA was isolated from the indicated tissues. (B) Primary

cardiomyocytes, peritoneal macrophages and cardiac fibroblasts were obtained from B6 mice,

and RNA was isolated. For A & B, expression of mRNAs from the indicated IFIT family genes

were analyzed; each value was normalized to the value for the Gapdh mRNA. (C) B6 mice were

infected with CVB3 (104 pfu/mouse, i.p.) and, 24 hours later, were sacrificed. Fold changes in

the expression of IFIT mRNAs (compared to uninfected hearts) were determined. (D) B6 mice

(left panels) or primary cardiomyocytes (right panels) were treated (or not) with IFNβ (105 U/

mouse or 100 U/ml respectively) and, 24 hours later, liver / heart / cells were harvested, proteins

were isolated, and expression levels of IFIT2 and IFIT3 were determined by western blot.

(TIF)
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S3 Fig. IFIT family gene expression in cardiomyocytes is undetectable in IFIT locus KO

mice, even after IFNβ treatment (related to Fig 3). Primary cardiomyocytes were isolated

from B6 and IFITKO mice and treated with IFNβ (1 kU/ml) for the indicated period. Induc-

tion of the indicated IFIT family genes are shown. Each value was normalized to the values of

Gapdh gene and divided by the values of uninfected controls (n = 1).

(TIF)

S4 Fig. Decreased apoptotic cells and increased Iba-1-positive cells in liver of IFITKO mice

after CVB3 infection (related to Figs 4 and 5). B6 and IFITKO mice were infected with

CVB3 (104 pfu/mouse i.p.). Immunostaining of vibratome sections of liver of the mice (12

days p.i.) were imaged by confocal microscopy. Iba-1 (Red), F-actin (Green), and nuclei

(Blue).

(TIF)

S5 Fig. IFIT locus is required for restricting cardiac virus replication and for preventing

cardiac inflammation at 103 pfu CVB3 challenge (related to Figs 4 and 6). B6 and IFITKO

mice were infected with CVB3 (103 pfu/mouse i.p.) and sacrificed at 12 days p.i. (A) Virus

titers in the heart are represented as PFU/gram. Each symbol represents an individual value

(geometric means). Asterisk indicates statistical significance (�P< 0.05). (B) Histological sec-

tions of hearts stained with Masson’s trichrome of representative mice (12 days p.i.) are

shown.

(TIF)

S6 Fig. The IFIT locus is required for successful IFNβ treatment of CVB3-infected mice

(related to Fig 4). B6 and IFITKO mice were infected with CVB3 (104 pfu/mouse, i.p.). 24

hours later, mice were treated with either PBS (open circles) or recombinant IFNβ (2 × 104

units/mouse, i.p.; blue circles). The mice were sacrificed at 12 days p.i., and body weight loss

and viral titers were determined in the pancreas and liver. The body weight of each individual

mouse was set as 100%. In the non-treated group, the liver titer at day 12 p.i. is slightly lower

than that observed in a separate experiment (see E).

(TIF)

S7 Fig. IFITKO mice accelerated / stronger chemokine responses to CVB3 infection

(related to Fig 5). Fold gene induction of indicated chemokines in the hearts of B6 and

IFITKO mice at 1 day post-CVB3 infection (104 pfu, n = 4, Means + SEM).

(TIF)

S1 Table. The table shows the sequences of oligonucleotides used for PCR and CRISP/Cas9

gene editing. For PCR oligos, both the forward and reverse primers are shown. For CRISPR/

Cas9 oligos, the forward and reverse sequences shown were hybridized, then cloned into the

expression vector. All oligos are written in 5’ to 3’ orientation.
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