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Figure S1. related to Figure 1: AsiSl-induced DSB mapping by BLESS

(A) Genome browser screenshots representing yH2AX ChlP-seq (4OHT treated
cells) and BLESS (4OHT untreated or treated cells) signal at DSBs located on
chromosome 2, 4 and 19 as indicated.

(B) Dotplot representing BLESS read count in a 1 kb window for the 1211 predicted
AsiSl sites in the human genome. Sites are sorted by increasing signal.

(C) Scatterplot representing read count (from 40HT treated cells) for yH2AX ChlP-
seq (in a 1 Mb window) and BLESS (in a 1 kb window) for the 1211 predicted AsiSI
sites in the human genome (upper panel) and the 80 most cleaved AsiSlI sites (lower
panel).

(D) Dotplot representing MethylCap-seq read count obtained in U20S (Deplus et al.,
2014), on a 200bp window (right panel), H3K9me3 ChlP-seq read count on a 10kb
window (middle panel) for and RNA Polll-S2P ChIP-seq (Cohen et al., 2018) read
count in a 10 kb window (left panel) for each of the 1211 predicted AsiSlI sites in the
human genome. Cut sites are indicated in red.

(E) The 80 DSBs were compared with the chromatin state segmentation track from
hESC and K562 cells (Broad ChromHMM, http://rohsdb.cmb.usc.edu/GBshape/cgi-
bin/hgTrackUi?db=hg19&g=wgEncodeBroadHmm). The proportion of DSBs lying
within active promoters (dark red) or other loci (grey) are shown.
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Figure S2, related to Figure 2 and 3: ChlIP-seq validation and histone
modification changes following AsiSl induction in DIVA cells

(A) ChIP were performed in untreated DIVA cells with all indicated antibodies and
gPCR was performed to assess enrichment at a specific genomic location (chrl:
89458701, hgl9), an AsiSI cut site. Average and SEM of at least 3 independent
experiments are shown.

(B) Average profile for each histone modification obtained in untreated samples over
human genes sorted by expression level (high in red, medium in blue, low in red).
This recapitulate previous findings (Barski et al., 2007; Chen et al., 2012; Gamble et
al., 2010; Gatta et al., 2011; Jung et al., 2012; Krishnakumar et al., 2008; Kuo et al.,
2011; Lo et al., 2011; Millan-Arino et al., 2014; Nelson et al., 2016; Tolstorukov et al.,
2012; Vakoc et al., 2006; Valdes-Mora et al., 2012; Wang et al., 2013; Wang et al.,
2008). See also Table S2 for additional references.

(C) Genome Browser screenshots representing ChIP-seq signals for yH2AX,
ubiquitin, and H1 at 2 DSBs located on chromosome 17 and 6 respectively. Data are
expressed as read count (from 40OHT treated samples) for yH2AXand as a log2 ratio
between 40HT treated and untreated DIVA cells for ubiquitin (FK2) and H1, smoothed
using a 100kb span.

(D) Average profile on a 10 kb window of the H3 normalized enrichment between
40HT treated and untreated DIVA cells for the nine histone modifications that
exhibited significant changes over 80 DSBs (Figure 3). Values are expressed as log2
ratios. Positive and negative values for log2 ratio are respectively represented in red
and blue.
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Figure S3, related to Figure 3: hSAGA can catalyze in vitro H2BK120 acetylation
and deubiquitination, and contributes to DSB repair

(A) ChIP against H2BK120 Ubiquitination was performed in DIVA cells, either left
untreated or treated with 40HT for 1h or 4h as indicated. Enrichment was measured
at a control locus for normalization (TAF12) and at an uncut genomic location (ACTB)
as well as 3 AsiSl-induced DSBs (average = SEM, n=2).

(B) Purification of native human SAGA complex from K562 cells. Cells expressing
SUPT7L-3Flag-2Strep from the AAVS1 safe harbor were engineered and used for
tandem affinity purification from nuclear extracts. The purified fraction was analyzed
on gel (silver stained) and by tandem mass spectrometry to confirm purity and the
copurification of all known SAGA subunits (and paralogs). Total spectral counts
obtained for each subunit are presented in the table and are grouped by functional
modules within the complex.

(C) (Top panel) In vitro histone acetyltransferase assay with purified SAGA complex
with histone H2B. H2BK120 acetylation is measured by western blot analysis using
total H2B signal as control. (Bottom panel) In vitro deubiquitinase assay with purified
SAGA complex and human native nucleosomes. H2BK120 deubiquitination is
measured by western blot using total H4 signal as a control.

(D) RT-gPCR showing the mRNA levels of SUPT7L, GCN5L and PCAF in cells before
and after knockdown using indicated siRNAs. The mean of 3 independent
experiments = SD is shown.

(E) Cell cycle distributions of U20S cells following transfection with the indicated
SiRNA for 72h. The mean of 2 independent experiments £ SEM is shown.

(F) Effect of SUPT7L, PCAF and GCN5L knockdown on DSB repair by HR using a
Cas9/mClover-LMNA1 homologous recombination assay. GFP+(mClover)/iRFP+
cells were measured by FACS and the structured nuclear GFP signal linked to
LMNA1 was confirmed by microscopy. Results represent the percentage of
GFP+/iRFP+ cells from 3 independent experiments (average + SD).

(G) Effect of SUPT7L, PCAF and GCN5L knockdown on DSB repair by NHEJ.
Measurement of I-Scel DSB repair by non-homologous end joining in U20S cells
using an integrated PC222/GFP-RFP reporter. Cells were transfected with the
indicated siRNAs for 36h, infected with 1-Scel adenovirus to induce DSB and then
assessed 48h later by FACS analysis for RFP and GFP expression. Results
represent the percentage of cells that are RFP positive but GFP negative, from 3
independent experiments (average = SD).
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Figure S4, related to Figure 4: Identification HR and NHEJ-prone DSBs

(A) Genome Browser screenshots representing read counts in 4OHT treated cells for
XRCC4, RAD51 and BLESS signal at two DSBs located on chromosome 1 (left) and
17 (right). Close ups are presented on bottom panels.

(B) Pie chart representing the distribution of loops within the different nuclear
compartments (A1, A2, B1, B2, B3, B4 and NA (Rao et al., 2014)). Left panel shows
distribution for all loops identified across the genome (Rao et al., 2014) , middle panel
for loops containing HR-prone DSBs, and right panel for loops containing NHEJ-
prone DSBs. HR-prone DSBs are very significantly enriched (P=1073,
hypergeometric test) in the nuclear A1 compartment.

(C) Genome Browser screenshots representing XRCC4 ChlIP-seq read counts after
1h, 4h or 24h following 40HT addition at three DSBs exhibiting BLESS signal (cut,
left panels) or no BLESS signal (uncut, right panel)

(D) Heatmaps representing the XRCC4 signals on a 40kb window centered around
all AsiSl sites, ordered based on the BLESS level, at 1h, 4h and 24h following 4OHT
treatment.

(E) Box plot showing XRCC4 signal on a 1kb window surrounding uncut or cut DSBs,
following 1h, 4h and 24h 40OHT treatment as indicated.
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Figure S5, related to Figure 4 and 5: Use of DNA Lig IV to confirm HR and NHEJ-
prone DSBs and characterization of HR and NHEJ histone signature

(A) Genome Browser screenshots representing XRCC4 and DNA ligase IV ChIP-seq
read counts after 4h following 4OHT addition at three DSBs exhibiting BLESS signal
(cut, left panels) or no BLESS signal (uncut, right panel). Regions are the same as in
Figure S4C.

(B) Scatterplot showing the level of DNA ligase IV (x axis) and XRCC4 (y axis) on a
1kb window around each annotated AsiSI sites

(C) Genome Browser screenshots (close up) representing read counts in 4OHT
treated cells for XRCC4 and DNA Ligase IV at two DSBs induced by AsiSI

(D) Boxplot representing the ChIP-seq read count in a 4 kb window for each histone
modification in untreated cells for 30 HR (yellow) and 30 NHEJ (grey) DSBs
determined using Rad51/DNA ligase IV ratio instead of Rad51/XRCC4. P-values
were calculated using two-sample Wilcoxon test. *P < 0.05, **P < 0.01; P> 0.05 is
not significant (ns).

(E) Circle plot analysis showing significant changes observed between 4OHT treated
and untreated DIVA cells at HR-prone (bottom) and NHEJ prone (top) DSBs, using
increasing window size. Radius size represents P-values (from two-sample Wilcoxon
test) when comparing ChlP-seq signal for treated and untreated samples. Significant
increases (+40HT>-40HT) are colored in red, while significant decreases (+40HT<-
40HT) are colored in blue. Histone modifications that undergo significant changes
only at HR-DSBs are squared in yellow, those that change at both HR and NHEJ in
purple and those specific for NHEJ in grey.
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Figure S6, related to Figure 7: 53BP1 distribution analyzed by ChlIP-seq

(A) Average profile for 53BP1 ChlP-seq (read count from 40OHT treated cells) for 80
DSBs in a 2 Mb window.

(B) Spearman correlation matrix of ChlP-seq read count (from 40OHT treated cells)
for yH2AX, ubiquitin (FK2) and 53BP1 for 80 DSBs in a 1 Mb window.

(C) Heatmap representing the 53BP1 signal on a 1Mb window centered around 30
HR (top part) and 30 NHEJ sites (bottom part).

(D) FACS profiles indicating the cell cycle distribution for G1- and G2- 53BP1 and
yH2AX ChIP-seq.

(E) Genome Browser screenshots representing 53BP1 ChlP-seq signals (from 4OHT
treated samples) in asynchronous, G1 or G2 synchronized DIVA cells for 2HR and 2
NHEJ-prone DSBs.

(F) Average profiles for 53BP1 (left) and yH2AX (right) ChIP-seq in G1 (red) and G2
(green) synchronized cells (read count from 40HT treated cells) for 80 DSBs in a 1
Mb window.
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Figure S7, related to Figure 2-7: Summary for DSB-induced chromatin changes

Following DSB induction, macroH2A is deposited, H4 is phosphorylated on Serine 1
and H2B undergoes a switch from ubiquitination to acetylation on lysine 120. At DSBs
repaired by NHEJ, this is accompanied by an increase of H4 monomethylation on
lysine 20 and H3 trimethylation on lysine 36. At DSB repaired by HR, which mainly
reside in transcriptionally active chromatin, these chromatin changes are also
associated with the demethylation of H3K79me2, deacetylation of H4 and H2AZ
removal, all previously known to crosstalk with H2BK120 monoubiquitination. HR-
prone DSBs also experience an acute, large-scale chromatin signaling with
accumulation of yH2AX and ubiquitin conjugates, depletion of histone H1, and 53BP1
binding. While yH2AX signaling occurs at all cell cycle phase, 53BP1 mainly
accumulates at HR-prone DSBs during G1. Such modifications on the megabase
scale likely alters chromatin fiber properties to be translated into changes in chromatin
mobility within the nucleus. This could potentially favor homology search and/or
clustering, features of HR-prone DSBs.



chromosome | start end

chrl 9649446 9649452
chrl 40974644 40974650
chrl 89458597 89458603
chrl 110036700| 110036706
chrl 204380453 | 204380459
chrl 224032648 | 224032654
chr2 43358339 43358345
chr2 55509101 55509107
chr2 68384749 68384755
chr2 74734762 74734768
chr2 85822594 85822600
chr2 120124566 | 120124572
chr2 208030728 | 208030734
chr3 52232163 52232169
chr3 98618165 98618171
chr3 99536965 99536971
chra 83934287 83934293
chra 178363576| 178363582
chr5 68462851 68462857
chr5 79784140 79784146
chr5 142785050 | 142785056
chré 27145367 27145373
chré 31105428 31105434
chré 37321812 37321818
chré 49917583 49917589
chré 67704021 67704027
chré 90348187 90348193
chré 135819348 | 135819354
chré 144607569 | 144607575
chré 149888106 | 149888112
chr7 75807507 75807513
chr7 92861491 92861497
chr7 99679508 99679514
chr8 66546348 66546354
chr8 116680632 | 116680638
chr8 124781210| 124781216
chr9 29212800 29212806
chr9 36258514 36258520
chr9 127532106| 127532112
chr9 130693171 | 130693177
chr9 130889408 | 130889414

chromosome | start end

chr10 3110978 3110984
chr10 94051015| 94051021
chrll 24518476 | 24518482
chrll 75525761| 75525767
chrll 85375655| 85375661
chr12 13154718 | 13154724
chr12 22093989 | 22093995
chr12 121975058 | 121975064
chr12 130091881 | 130091887
chri3 105238552 | 105238558
chr13 114894659 | 114894665
chr14 54955826 | 54955832
chrl?7 5390221 5390227
chrl7 38137473 | 38137479
chrl?7 57184297 | 57184303
chr17 61850856 | 61850862
chrl?7 80250841 | 80250847
chrl8 7566713 7566719
chr18 19320805 | 19320811
chr19 2456094 2456100
chr19 30019488 | 30019494
chr19 41903743| 41903749
chr19 42497856 | 42497862
chr19 45932080| 45932086
chr19 46768784 | 46768790
chr20 1207616 1207622
chr20 20032925| 20032931
chr20 30946313 | 30946319
chr20 32032087 | 32032093
chr20 37360269 | 37360275
chr20 42087118 | 42087124
chr21 33245519 | 33245525
chr21 46221790| 46221796
chr22 20850308 | 20850314
chr22 38864102 | 38864108
chrX 1510672 1510678
chrX 45366394 | 45366400
chrX 53111427| 53111433
chrX 72783103 | 72783109

Table S1, related to Figure 1: Genomic coordinates (hg19) of the top 80 AsiSI induced
DSBs identified by BLESS




Chromatin Antibody Amount of References Previous genome-wide
used in this chromatin for Status at DSBs Proposed function in DSB repair 8 .
features profiling
study ChIP
Removal proposed to Increase DNA
accessibility or be a consequence of .
. H3 Abcam 10ug Decreased resection. Unclear given the ability of ChiP-seq in mouse cells
Histone ab1791 [8]
nucleosome to also form on ssDNA and [1-7] .
. . . Same antibody
given that it also occur at DSB repaired by
NHEJ
Proposed to be incorporated to promote
. NHEJ. Prevents unlimited resection and
Abcam Transiently the use of Alt-NHEJ and SSA. Needs to be ChlIP-seq in human cells
H2AZ ab4174 10ug i‘fc’?(‘l’s'::izcgd removed by INO8O and ANP32E to [9-15] [16]
q Y promote Rad51 foci formation and HR. In Same antidody
yeast, promotes the anchoring of
persistent DSBs to nuclear periphery
Polyubiquitinated at DSB by RNFS,
Abcam phosphorylat.e.d bY DNA-PK and Parylated. ChIP-chip in human cells
H1 50ug Decreased All modifications may loosen its
ab17677 . ) ) [17-22] [23, 24]
interaction with DNA. Removal proposed Different antibodies
to stimulates repair by C-NHEJ and HR and
retention increases Alt-NHEJ
Promote homologous recombination and . .
Millipore 07- BRCA1 recruitment/Establishment of a ChiP-chip and ChiP-seq in
macroH2A 50ug Increased N T [25-28] human cells
219 heterochromatin like" (nuclease [29-31]
resistant, condensed) state in DSB )
R R Same antibody
flanking chromatin
Modified Abcam ChIP-seq in human cells
Histones | 2AZ3C ab18262 10ug Not assessed 131]
Same antibody
In vitro binds to Tudor domain of Crb2
) . (53BP1 orthologue) in yeast. Low affinity .
H3K79me2 Active Motif 10ug Unchanged for 53BP1 in mammals. Promote 53BP1 ChiP seq in mouse cells
39143 A ) . [32-37] [8, 38]
foci assembly. During transcription Same antibod
crosstalk with H2BUb, proposed to v
promote relaxation
Active Motif Confllctlng. Found In vitro binds to Tudor domain of 53BP1 ChlIP-seq in human cells
H4K20mel 10ug as increased or )
39727 unchanged or Crb2. 53BP1 Promote 53BP1 foci [32, 39-45] [16]
g assembly and NHEJ. Inhibits HR Different antibody
Conflicting.
Independently s
Abcam found as Promote homologous recombination/ ChlIP-seq in human cells
H3K9me2 10pg ) Establishment of a "heterochromatin like" | [25, 46-48] q
ab1220 increased, . ) [16]
(nuclease resistant, condensed) state in .
decreased and . . Same antibody
DSB flanking chromatin.
unchanged
Conflicting.
Independently .
H3K9me3 Abcam 50ug found as Proposed to be required for ATM ChiP-seq in human cells
ab8898 ) - [46, 49]. [16]
increased and activation at DSB )
Same antibody
unchanged
Conflicting.
- Independently o
H3Kame2 Millipore 1008 found as . ChIP-chip in human cells
07-030 . Proposed to promote relaxation [50, 51] [52]
increased and :
Same antibody
decreased
Abcam Promotes Ku70, NBS1 and MRE11 ChlIP-seq in mouse cells
H3K36me2 10 | d !
me ab9049 He nerease recruitment at DSB. Proposed to promote | [46, 53, 54] [55, 56]
NHEJ Same and different antibody
Abcam . . ChIP-seq in human cells
H3K36me3 10ug Unchanged Interacts with LEDGF. Recruits CtIP and
ab9050 [57-59] [16]
promotes HR .
Same antibody
Ab ChlP-seq i Il
H4K12ac cam 10ug transient increase Acetylated by NuA4/Tip60. Proposed to seq n mouse cells
ab46983 : . [60-62] [63]
contribute to relaxation .
Same antibody
Required for BRCA1 recruitment and
Found as antagonizes 53BP1 binding to methylated
. . H4K20. Proposed to facilitate resection. ChlIP seq in mouse cells
H4K16ac Millipore 200 increased, First decreased and then increased 62, 64-67] [68]
07-329 He unchanged and 1144-51.

decreased

Same antibody




Conflicting.

Deacteylation contribute to RPA, BRCA1

Abcam Independently and 53BP1 recruitment/ Deacetylation ChiP-seq in human cells
H3K56ac 10ug found as proposed to promote NHEJ/ Reacetylation [2, 65, 69- q
ab7-307 ) ) ) (31,74]
increased and proposed to be required for checkpoint 73] .
. Same antibody
decreased recovery after repair
Novus NB21- Increase at DSB
Has1P 2000 10ug (in yeast) promotes NHEJ [75, 76] Not reported previously
Abcam
H4K20me2 10ug Described . . [32, 39, 43, .
ab9052 increased at DSB Favors 53BP1 recruitment at DSB sites 45,77, 78] Not reported previously
Counteracts 53BP1 loading, stimulates
. . range resection, promotes BRCA1, Rad51 .
H2BKk120up | CC!l Signalling 200ug Increased at DSB loading and HR. Stimulates H3K4 (50, 51, 79- ChiP-seq in human cells
D11 5546P : [82]
methylation and K79me2. Proposed to 81] .
. Same antibody
promote relaxation
Millioore 07- Antagonize H2BK120Ub. Promoted by ChlIP-seq in human cells
H2BK120ac P 10ug Not assessed macroH2A and PARP activity during
564 L [29]
transcription [83]
Same antibody
Ubiquitin | ™iliPore 04- 200 Increased at DSB Form foci upon DSB 84, 85]
.q 263 He P ’ ! Not reported previously
conjugates
Abcam . ChlIP-chip in human cells
VH2AX 2b81299 200ug Increased at DSB Form foci upon DSB. (86] 87]
Same antibody
Repair XRCC4 Abcam ab145 200ug involved in NHEJ
proteins
RAD51 santa Cruz 200ug involved in HR
H-92
Counteracts resection and BRCAL. Binds
Novus to H4K20 methylated (mainly mono and
>38P1 NB100-305 200ug di). Binds to H2A ubiquitinated on K15.
May directly interact with H2AX
. Genetex 200pg involved in NHEJ
DNALEV | Grxss5502

Table S2, Related to Figure 2, Figure 3 and STAR Methods: Histone modification summary table

Proposed functions and status at DSB (from previous reports) for each histone modifications analyzed in

this study. The antibodies, the amount of chromatin used for ChIP-seq and previous reports of genome-

wide mapping are also provided
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