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Abstract: In the present work, the applicability of attenuated total reflectance-Fourier transform
infrared (ATR-FTIR) spectroscopy, coupled with chemometric tools in recognizing essential oils
(EOs) for routine control, was evaluated. EOs belonging to Mentha, Cymbopogon, and Lavandula
families and to S. rosmarinus and T. vulgaris species were analyzed, and the performance of several
untargeted approaches, based on the synergistic combination of ATR-FTIR and Partial Least Squares
Discriminant Analysis (PLS-DA), was tested to classify the species and chemotypes. Different spectra
pre-processing methods were employed, and the robustness of the built models was tested by means
of a Receiver Operating Characteristic (ROC) curve and random permutations test. The application
of these approaches revealed fruitful results in terms of sensitivity and specificity, highlighting the
potentiality of ATR-FTIR and chemometrics techniques to be used as a sensitive, cost-effective, and
rapid tool to differentiate EO samples according to their species and chemotype.

Keywords: partial least squares discriminant analysis (PLS-DA); principal component analysis
(PCA); multivariate statistical analyses; chemotypes; attenuated total reflectance-Fourier transform
infrared spectroscopy

1. Introduction

Essential oils (EOs) are complex mixtures extracted from aromatic plants by steam
distillation or cold pressing. EOs are composed of mono and sesquiterpenes, and their
concentrations may extremely vary depending on the type and pedoclimatic conditions
of growth of the aromatic plant from where they are extracted [1]. Nowadays, EOs are
commonly employed in the food, cosmetic, pharmaceutical, and perfume industries. More-
over, due to their strong antioxidant, antimicrobial, and pesticide effects, EOs have been
intensively studied to increase the food shelf-life and the yields of crops in agriculture [2–4].
Thus, further applications of EOs, at the industrial level, are not an unrealistic scenario.

The EOs of the same genus, and in some cases, also from the same species, might
largely vary in the chemical composition. In the latter case, the growth of aromatic plants,
such as Salvia rosmarinus and Thymus vulgaris, is extremely affected by the pedoclimatic
conditions, leading to different chemotypes of EOs [5,6]. The identity and the composition
of the EOs are important factors from different points of view: safety, efficacy, and economy.
The chemical characterization of the EOs is necessary at the industrial level to assure the
quality of the final product and then, to safeguard the consumers’ health [7]. Moreover, an
analytical controlled raw material employed in the manufacturing of foods, supplements,
and personal care products guarantees the obtainment of a reproducible end-product
in terms of efficacy and flavor. Indeed, the larger variations in the composition of raw
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materials can be compensated by process adjustments during the manufacturing of the
end products [8]. Finally, the economic aspect concerns not only the industries but also the
small-scale producers of EOs. Indeed, small farms do not invest in the characterization
of their EOs due to the high costs of the analysis, resulting in the devaluation of their
products. For this reason, in commerce, several EOs are sold without any declaration of the
chemotype. Currently, gas chromatography (GC) is the most accurate and precise method
to classify the EOs in terms of origins and composition [7].

However, GC is an expensive and time-consuming method that needs adequate infras-
tructure related to the use of inflammable and explosive gases. Therefore, the development
of new precise, accurate, and rapid analytical methods is required for quickly classifying
and evaluating EOs for quality assurance and control. Recently, Rasekh et al., validated a
new method for the classification and identification of EOs with the employment of the
electronic-nose technology [9]. Conversely, this approach might not be suitable in cases of
dilutions of the EOs with non-volatile substances that cannot be detected by the electronic
nose. The attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy
showed to be an efficient tool in the quality control of the EOs. Indeed, recent reports
highlighted the capability of this analytical method in determining adulterants [10–13]
or classifying the EOs based on the plant family [14]. ATR-FTIR spectroscopy is a highly
reproducible, sensitive, cost-effective, and rapid technique that does not require any sample
preparation or specific infrastructures. The ATR mode is founded on the total internal
reflection mechanism, which is useful to avoid the saturation of signals. Moreover, in
multiple-reflection ATR, since the beam is reflected towards the samples several times,
the examination of weakly absorbing samples can be achieved [15]. For these reasons,
ATR-FTIR spectrometers are commonly used instruments at the industrial level. Schulz
and co-workers demonstrated that ATR-FTIR spectroscopy is a suitable technology for the
quantification of the major compounds of several EOs by employing multivariate statistical
analysis of regression [16,17]. Multivariate statistical analysis might also be employed for
the supervised classification of the EOs, depending on their infrared spectra. In particular,
the partial least squares discriminant analysis (PLS-DA) is a powerful tool able to classify
different samples depending on the variance of certain variables that characterize them [18].
The creation of an extended library of EO spectra and their analysis by PLS-DA might
guarantee the rapid control of the EOs. Thus, information regarding the identity, main
composition, and quality of the EOs can be obtained in a few minutes. In the present work,
principal component analysis and PLS-DA were applied to ATR-FTIR data in order to
test the applicability and the efficacy of the ATR-FTIR spectroscopy in recognizing and
classifying the species and chemotypes of several investigated EOs. In particular, EOs
belonging to Mentha, Lavandula, and Cymbopogon genus and Salvia Rosmarinus and Thymus
vulgaris species were considered for the study, due to their economic importance and large
or emerging use in the food industry. Moreover, these EOs were chosen for their variable
chemical composition, characterized by high contents of monoterpenes belonging to differ-
ent classes of organic compounds (aldehydes, ketones, alcohols, esters, alkenes). First of
all, PCA was carried out as an explorative analysis, in order to obtain an overview on the
whole data set, without forcing any model and to extract relevant information. PLS-DA
was used to create classification models based on ATR-FTIR spectra. Different preprocessed
spectra methods were tested, and the predictive ability of the constructed models was
assessed by means of internal (cross-validation, CV) and external prediction.

2. Results and Discussion

In the present work, the raw spectra were employed for the following statistical
analyses without any modification. Notwithstanding that ATR spectroscopy induces shifts
in the vibrational signals compared to transmission spectroscopy, ATR correction was not
performed since all the spectra were acquired in the same manner.
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2.1. Characterization of the EOs by GC and ATR-FTIR Analyses
2.1.1. Mentha Genus

The most available EOs on the market, of the Mentha genus, are obtained from the
species arvensis (MA), piperita (MP), and spicata (MS). As can be seen in Table S1, MA
and MP EOs exhibited similar compositions. Both the EOs were rich in the alcoholic
monoterpene menthol, the ketonic monoterpenes menthone and isomenthone, and the
ester methyl acetate, accordingly to the literature [19–22]. On the contrary, the composition
of MS-EOs extremely differed from the other two species. Concerning the concentration,
MS-EO was mainly rich in carvone and limonene, which accounted for more than 80%
of the total composition. In addition, concentrations higher than 1% were detected for
β-pinene, myrcene, iso-menthone, and α-terpineol [23]. Interestingly, two different groups
of MA could be observed in terms of composition. Indeed, six out samples of MA-EOs
showed a low content of menthol (35–54%) and high content of both menthone and its
structural isomer (around 22% and 15%, respectively) [24]. These EOs demonstrated a
chemical composition almost equal to MP-EOs. The main differences within these samples
relied on minor monoterpenes, such as isopulegol and carvone (higher in MA), as well as
limonene, 1,8-cineole, menthyl acetate, and β-caryophyllene (higher in MP). Conversely,
the other MA-EOs displayed opposite abundances, where menthol ranged from 65 to 82%,
and the ketones were, in all the cases, lower than 10%. To differentiate these two types of
chemotype of MA, the latter case will be classified as the “menthol rich” chemotype.

The differences in the composition within the three species could also be observed in
the acquired ATR-FTIR spectra (Figure 1). The assignments of the spectral bands have been
performed in agreement with the literature [10,25].
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Figure 1. ATR-FTIR spectra of Mentha piperita, Mentha spicata, and two Mentha arvensis with different
content of menthol.

The spectrum of MS-EO appeared extremely different from the others, with several
peaks related to functional groups that were not detected in the other spectra. The signals
at 3079 and 889 cm−1 were induced by C=C stretch and C−H out-of-plane bend of terminal
vinyl groups, respectively, characteristic of limonene, myrcene, sabinene, and carvone. The
intense peaks at 1672 cm−1 and 1644 cm−1 were assigned to the conjugated carbonylic
group of carvone. Specifically, the first frequency was related to the C=O stretch, while the
second was to the C=C stretch of the conjugated double bond. Finally, the last distinct peak
of MS-EO might represent the C−O stretch of the tertiary alcohol α-terpineol at 1110 cm−1.

The spectra of both the chemotypes of MA and MP-EO showed the same signals with
variable intensity, induced by the different abundance of the same monoterpenes. The
peaks at 3418 and 3348 cm−1 represented the O−H stretch of the hydroxyl group of menthol.
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In the case of menthol-rich MA, the band was shifted at lower frequencies, due to the higher
abundance of the alcoholic monoterpene, leading to stronger intermolecular hydrogen
bonding [11]. Furthermore, the high concentration of menthol caused more intense signals
at 1043 and 1024 cm−1 concerning the C−O stretch of secondary alcohols. Finally, the peak
at 1708 cm−1 was induced by the C=O stretch of menthone and iso-menthone. The only
characteristic band of MP-EO that was not evident in MA-EO concerned the C=O stretch of
menthyl acetate at 1737 cm−1.

The remaining bands, common in all the Mentha EOs, were related to symmetric
and asymmetric C−H stretching, bending, and rocking of –CH, −CH2, and –CH3 of
alkane chains.

2.1.2. Salvia Rosmarinus

Several chemotypes have been reported in the literature, based on the analysis of the
higher relative percentages of the abundance of certain components [5,26–28]. In most of
the collected rosemary EOs, the chemotype was not reported on the label due to the lack
of the assignment from the producer. Napoli et al., stated that three main chemotypes
are present: cineoliferum (high content in 1,8-cineole), camphoriferum (camphor >20%),
and verbenoniferum (verbenone >15%) [5]. Overall, the attribution of the chemotype
was performed according to this criterium, setting the minimum acceptable percentage of
1,8-cineole to 45%. Verbenone chemotype was assigned to the EOs with high concentrations
of both verbenone and bornyl acetate. Finally, those EOs that did not fulfill these criteria and
showed high percentages of α-pinene were classified as pinene chemotype. Representative
chemical compositions of the four chemotypes identified among the rosemary EOs are
displayed in Table S2.

The different composition of the four chemotypes was reflected in well-distinct IR
spectra (Figure 2), due to the variable intensity of the same peaks or the presence of
characteristic signals. The spectrum of pinene EO resulted as almost superimposable to
both cineole and camphor EOs, due to the lack of relevant functional groups. Indeed,
the monoterpene pinene exhibits one double bond, and its signals might be hidden due
to overlapping. The only distinctive bands for their intensity were recorded at 886 and
786 cm−1, due to C−H out-of-plane bends [29].
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Salvia rosmarinus.

In cineole-EO, the key peaks were attributed to the ether group of the monoterpene
1,8-cineole. Specifically, the signals at 1214 and 1079 were representative of C−O−C
asymmetrical and symmetrical stretching, respectively. Furthermore, the wagging vibration
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of CH2 in the monoterpene induced the most intense band in the spectra at 983 cm−1 [30].
The peak at 1167 cm−1, particularly marked in cineole-EO, was not identified. Regarding
camphor-EO, several peaks in the spectrum were found overlapped with those of cineole-
EO but with a minor intensity. The only noteworthy signal was the C=O stretch of the ketone
camphor at 1744 cm−1 [31]. Finally, verbenone-EO has been demonstrated to be the most
divergent among the rosemary EOs, due to high concentrations of monoterpenes almost
absent in the other EOs. The O−H and C−O stretching of borneol were recorded at 3466
and 1034 cm−1, while the carbonyl stretch of its ester was not identified, probably due to the
presence of camphor stretching at 1734 cm−1. On the contrary, the C−O stretch of bornyl
acetate at 1245 cm−1 stood out for its intensity. Regarding verbenone, the signals at 1680
and 1619 cm−1 were attributed to the C=O and C=C stretch of the conjugated carbonyl [25].

2.1.3. Cymbopogon Genus

The Cymbopogon genus comprises about 180 species, subspecies, varieties, and sub-
varieties. However, the most important commercial species for the production of EOs
are C. martinii (CM), C. citratus (CC), C. nardus (CN), and C. winterianus (CW). These EOs
are largely employed in the food, pharmaceutical, cosmetic, and perfume industries as
excipients. The chemical composition of the four species analyzed is reported in Table S3.

The CM-EOs (also called palmarosa EOs) were mainly composed by the alcoholic
monoterpene geraniol, which ranged between 78 and 88%. In addition, noteworthy concen-
trations of geranyl acetate and linalool were detected [32,33]. The EOs of CC (also called
lemongrass) exhibited a high abundance of neral, geranial, and geraniol that accounted
for 80% of the total. The high variability of the concentrations of mono and sesquiterpenes
is probably due to different growing locations [34,35]. The EOs belonging to CW and CN
species (generally named as citronella or java EOs) showed a similar composition, with
high contents of citronellal, geraniol, citronellol, and limonene. Their composition was in
agreement with the observations discussed by several authors [11,36,37], and their high
similarity is due to the fact that C. winterianus species was originated from C. nardus by
clonal selection and mutation. The chemical composition of CW and CN EOs was observed
to extremely vary within the samples of the same group. Indeed, some EOs exhibited lower
content of both citronellol and citronellal, as well as higher content of geraniol and/or
camphene. The great variability in the composition might be explained by the fact that
these plants can be widely affected by the pedoclimatic conditions of growth [38–40].

Regarding the ATR-IR spectra, great differences within palmarosa, lemongrass, and
java EOs were highlighted. On the contrary, as expected by observing the GC results,
important dissimilarities between CW and CN were not identified (Figure 3). The main
differences were related to the different ratios of the alcoholic monoterpenes, geraniol and
citronellol, and of the aldehydes: citronellal, neral, and geranial.

The spectra of CM-EOs were mainly characterized by the signals of geraniol. In
particular, the peaks at 3325, 1669, 1233, and 998 cm−1 were induced by the primary O−H
stretch, C=C stretch, C−C stretch and C−O stretch, respectively [41]. Additionally, the
small signal at 1728 cm−1 was assigned to the carbonylic stretch of geranyl acetate. The main
signals in the spectra of CC-EOs were linked to the conjugated aldehydes, neral and geranial.
Specifically, the peaks at 2763, 1671, 1632 (and 1612) cm−1 were related to aldehydic C−H
stretch, conjugated C=O stretch, and conjugated C=C stretch, respectively [42]. The further
signals at 1194, 1154, and 1120 cm−1 were tentatively assigned to the conjugated aldehyde
C−C stretch.

Finally, the spectra of CW and CN-EOs exhibited the characteristic signals of primary
alcohols at 3412, 1233, and 998 cm−1, induced by citronellol and geraniol. Moreover, the
saturated aldehyde citronellal caused the vibrations at 2722 and 1725 cm−1, due to the
aldehydic C−H and C=O stretches [11,25].
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Figure 3. ATR-FTIR spectra of Cymbopogon martinii, Cymbopogon nardus, Cymbopogon winteri-
anus, and Cymbopogon citratus.

2.1.4. Lavandula Genus

Lavandula genus is mainly represented by the most diffuse species L. angustifolia (LA),
L. x intermedia (LI), and L. latifolia (LL). The composition of LA and LL-EOs were shown
to differ in the content of several mono and sesquiterpenes, such as 1,8-cineole, linalool,
camphor, and linalyl acetate. On the contrary, LI-EOs, L. x intermedia being a hybrid plant
between L. angustifolia and L. latifolia, displayed an intermediate composition (Table S4). In
all these species, linalool was the most important monoterpene, representing 30–40% of
the whole oil composition. Then, LA and LI-EOs contained high concentrations of linalyl
acetate, terpinene-4-ol, lavandulyl acetate, and ocimene, which were present, in traces, in
LL-EOs. On the opposite, LL-EOs showed a great abundance of 1,8-cineole and camphor
among the other terpenes. The compositions were in agreement with the outcomes of other
authors in the literature [43–45].

The similar composition of the EOs was reflected into the ATR-FTIR spectra (Figure 4).
Indeed, the majority of IR vibrations were in common for all the species with different
intensities. The most representative signals were related to linalool, linalyl acetate, camphor,
and 1,8-cineole.
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The LL-EO differed from the other two species for the characteristic signals of 1,8-cineole
also detected in rosemary EOs. In particular, the vibrations at 1215, 1078, and 985 cm−1 were
induced by C−O−C asymmetric and symmetric stretch, as well as wagging vibration of CH2,
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respectively. The peak at 891 cm−1, also observed in the cineole chemotype of rosemary EOs,
was not identified. The remaining signals were in common with the LA and LI-EOs. The
tertiary alcohol linalool induced the O−H broad stretch and bend in the range 3472–3449 cm−1

and 1375–1365 cm−1, respectively. The signal at 1369 cm−1 was more intense for LA-EO,
probably due to the contribution of several secondary and tertiary alcoholic monoterpenes.
The signals produced by the carbonylic groups of camphor and linalyl acetate resulted,
superimposed, at 1738 cm−1. Additionally, linalyl acetate exhibited a further characteristic
peak at 1237 cm−1, induced by the ester C−O stretch. Finally, the signals around 1109 cm−1,
also observed in our previous work [11], were not identified.

2.1.5. Thymus Vulgaris

Thyme EOs present in the market are extremely variable, exhibiting several chemo-
types, as with rosemary EOs. In the literature, 13 different chemotypes of T. vulgaris have
been reported depending on the predominance of a singular monoterpene [6]. The majority
of EOs collected from local producers or sellers did not report the type of chemotype on the
label. Furthermore, in some cases the declared chemotype was incorrect. For this reason,
for all the EOs, the proper classification was assigned after the semi-quantitative analysis
in GC. In Table S5, the typical chemical compositions of the main chemotypes of T. vulgaris
EOs that were encountered are displayed. In addition to these, some samples exhibited
a multi-component chemotype, being rich in more than one type of monoterpene [46].
Among these chemotypes, thymol-EOs usually displayed, in addition to thymol (>30%),
high abundances of p-cymene and γ-terpinene [47]. Borneol-EOs resulted in being mainly
represented by borneol, camphene, α-terpineol, and α-pinene. Finally, linalool-EOs demon-
strated high concentration of alcoholic monoterpenes, such as linalool and terpinene-4-ol,
in addition to aliphatic hydrocarbon terpenes (α-pinene, cymene, and α-terpinene) [6].

The EOs that exhibited high contents of p-cymene and lower contents of the main
terpenes above-identified were classified as the cymene-thymol chemotype. The EOs that
showed more than 2 representative terpenes were classified as multicomponent.

The spectra of these EOs reflected the differences observed in the compositional results
(Figure 5). As expected, thymol and cymene-thymol-EOs differed in the intensity of the
peaks related to p-cymene and thymol. The most important vibrations of thymol, present at
3540, 1620/1584, and 1290 cm−1, were assigned to the O−H stretch, aromatic C=C−C ring
stretch, and phenolic C−O stretch. p-cymene, being an aromatic hydrocarbon, exhibited
several signals in the fingerprint region at 1514, 813, 720/542 cm−1, due to aromatic C=C−C
ring stretch, C−H of para disubstituted aromatic rings, and aromatic C−H out-of-plane
bends. Several additional signals in the range 1458–1380, 1228–943, and 860–810 cm−1 were
identified as aliphatic C−H asymmetrical/symmetrical bending, aromatic C−H in-plane
bends, and aromatic C−H out-of-plane bends [16,25,48].

Borneol-EO mostly differed for the vibrations of the alcohols borneol, carvacrol, and α-
terpineol, the ketones camphor and carvone, and the hydrocarbon monoterpene camphene.
In particular, the alcohols induced the O−H stretch at 3371 cm−1, as well as the C−O stretch
at 1052, 1031 (borneol, as for rosemary verbenone-EO), and 1019 cm−1. The C=O stretch
of carbonylic groups of bornyl acetate and camphor were present at 1735 and 1717 cm−1,
respectively. The hydrocarbon camphene exhibited the vibration at 876 cm−1 linked to
vinylidene C−H out-of-plane bend.

Finally, linalool-EO showed the characteristic O−H stretch at 3402 cm−1, vinyl C−H
stretch at 3088 cm−1, and vinyl C−H out-of-plane bends at 919 cm−1 related to alcohols
and terminal double bonds, respectively.
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2.2. Principal Component Analysis (PCA)

The PCA was applied to the whole data matrix (composed of absorbance spectral
variables) to have a general overview of the trend, similarities, and differences among
the investigated samples, according to their IR profiles. The PCA is commonly used to
summarize the information included into datasets by extracting new artificial variables
called principal components (PCs). These new variables intrinsically carry the information
of the original variables, extrapolating the most important underlying information of the
dataset. By projecting samples onto the first few PCs, the structure of the investigated data
can be visualized into a lower-dimensional space. PCA is strongly recommended prior to
supervised classification methods (e.g., PLS-DA), with it being an informative predictor to
comprehend whether reliable PLS-DA models might be trained on the data [49].

Four principal components were considered according to their explained variances
(R2: 81%).

In Figure 6A–D, the score plots of PC1, PC2, PC3, and PC4 are reported.
The different EOs are represented with different symbols and colors depending on

their genus. Each component seems to slightly differentiate samples belonging to one
class of EO. In particular, rosemary EOs got the highest scores for PC1, lavender for
PC3, and almost all thymes for PC4. As far as PC2 is concerned, this component mainly
highlighted differences within citronella and mint EOs. Indeed, only some EOs of these
classes presented higher PC2 score values, showing different IR signals with respect to
the other samples. Notwithstanding that the aim of the present study is to build a fast
model able to extract information about the differences among the investigated EOs in an
untargeted manner, some considerations on the presence of some chemical compounds
can be done by looking at the loading plots of the selected PCs. From the loading plots of
the PCs, displayed in Figure 6E–H, it is possible to point out that the separation among
the different classes was mainly due to the spectral peaks between 3600–2600 nm and
1970–700 nm, which influence the trend of the scores in different ways. In particular,
rosemary EOs exhibited the highest positive scores on PC1, followed by lavender EOs.
These samples were mainly influenced by spectral bands that got the highest positive
loadings on PC1at 1746 cm−1, related to unconjugated carbonyl groups (e.g., linalyl acetate
and camphor), and at 1214, 1080, and 985 cm−1 induced by 1,8-cineole. Besides, lavender
EOs were conditioned by the peaks at 1375–65 cm−1 of the tertiary alcohol linalool, and at
1466 cm−1 that was not previously identified. This latter signal might belong to frequencies
of saturated aliphatic groups [25]. On the other hand, signals induced by conjugated
carbonyls around 1670 cm−1 played a central role in collocating the remaining EOs in
negative on PC1. Lavender EOs were predominantly clustered by their typical peaks at
1738, 1370, 1244–1239, and 917 cm−1 (linalyl acetate, linalool, and 1,8-cineole), which gained
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the highest positive loadings on PC3. Finally, thyme EOs were positively separated from
the remaining EOs, due to the high loadings on PC4, attributed to bands at 1516, 1419,
1289, 945, and 813 cm−1 related to p-cymene and thymol, as well as 1154 cm−1 induced by
borneol. Furthermore, the absence of characteristic signals in the regions at 1745–1678 and
1045–993 cm−1 influenced the scores of these EOs, being important variables with negative
loadings on PC4.
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analysis (PCA) performed on the spectral data of the essential oils belonging to Mentha, Cymbopogon,
and Lavandula genus, as well as Salvia rosmarinus and Thymus vulgaris species.

On the contrary, Mentha and Cymbopogon EOs were not completely separated. These
latter EOs were partially influenced, instead, by the elevated PC2 loadings in the range
1672–1632 cm−1 and at 889 cm−1 which induced a split of the classes. These vibrations
corresponded to conjugated carbonyl groups belonging to ketones and aldehyde (carvone
and neral/geranial) typical of MS and CC-EOs that were notably different from the EOs
from the same genus. Additionally, the frequencies at 1435–1365 and 1114 cm−1, belonging
to saturated aliphatic groups and α-terpineol (present in MS-EOs), had a moderate role in
the separations of Mentha e Cymbopogon classes.

2.3. Partial Least Squares Discriminant Analysis (PLS-DA)

PLS-DA models were separately carried out on each of the EOs spectra data sets
belonging to the Mentha, Cymbopogon, and Lavandula genus. As far as chemotypes of Thymus
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vulgaris is concerned, it was not possible to build a classification model for each genus, due
to the low number of samples. However, for this genus, a preliminary PCA showed a good
differentiation among the different chemotypes (Figure S1). A first attempt of classification
was made for Salvia Rosmarinus chemotypes with a higher number of EOs: namely, cineole
and camphor. The remaining EOs belonging to pinene and verbenone chemotypes were
classified as “others”. The PCA performed on the whole S. rosmarinus dataset is displayed
in Figure S2.

During the acquisition of ATR-FTIR spectra, different phenomena—namely, sample
background and instrument performance—can influence spectral data quality, and pre-
treatment of data could be a critical and case-dependent issue in multivariate analyses.
Therefore, in this study, the following five different data preprocessing methods were eval-
uated: mean centering (MC), standard normal variate (SNV) + MC, multiplicative scatter
correction (MSC) + MC, Savitzky–Golay first derivative (1st der) + MC, and Savitzky–Golay
second derivative (2nd der). With regards to the first and the second derivatives, second
order and third order polynomials, with seven points in each window, were used, respec-
tively. The obtained results of PLS-DA models, using different pretreatments (the number
of latent variables, LVs, Sensitivity and Specificity in cross-validation, root mean squares in
CV and prediction, area under the ROC curve in CV, and permutation test results obtained
with 50 randomizations), are reported in Tables 1–4.

In all the developed models, the permutation results were lower than 0.05, indicating
that the randomly permuted models were significantly different at the 95% limit, high-
lighting the clear robustness of the obtained classification models. Furthermore, it is worth
noting that almost all the models presented a high accuracy since all AUC values were
higher than 0.92; indeed, the closer the value of the AUC is to 1, the better the classification
model. However, slight differences emerged in terms of sensitivity (percentage of objects
belonging to the class correctly accepted by the class models) and specificity (percentage
of objects not belonging to the class correctly rejected by the class model) in both CV and
prediction models.

As the choice of the most suitable pretreatments is concerned, through a synergistic
comparison of all the reported parameters, mean centering and first derivatives (+ MC)
seemed to be the most efficient pretreatment methods in this research. However, first
derivatives + MC pretreatments could be chosen since the respective models seemed to
be more parsimonious, selecting a lower number of latent variables. Although only the
three classification models of Salvia Rosmarinus achieved 100% in sensitivity and specificity,
all other models showed a good performance, pointing out the potentiality of ATR-FTIR
to detect chemical distinction among the different species. By examining the variable
importance in projection (VIP) score plots in depth (Figures S3–S6), it was evident that
the variables that received the highest scores were the most important and characterful
signals of each EO spectrum (fully described previously). The VIP score plots estimate the
importance of each variable in the projection used in the PLS-DA model. In other words,
the variables with the highest scores and above the significant threshold are distinguishing
for the classification. Therefore, the lower sensitivity and specificity of some models can be
attributable to the similar and, sometimes, almost equal chemical composition of certain
EOs, as previously discussed on GC results. Indeed, MA and MP, CW and CN, and LA
and LI EOs, which have a similar chemical composition and produced similar spectra,
displayed the same important variables. This evidence suggests the proximity and possible
overlap of different EO species, impairing their complete classification. It is noteworthy to
highlight that the highest percentages of misclassified EOs were recorded for C. nardus and
C. winterianus, which are plant aromatic species that are genetically correlated. The same
also applies to L. x intermedia, whose model did not exceed the 88% of sensitivity. Thus, the
correct classification of these EOs is a difficult task to be achieved through GC analyses.
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Table 1. Results of PLS-DA models applied on Mentha, dataset for both cross-validation of the calibration set and prediction of test set using different pretreatment
methods.

Mentha Models Pretreatment LVs * Permutation
Test in CV AUC RMSEC RMSECV ** RMSEP *** Sensitivity CV Specificity CV Sensitivity

Prediction
Specificity
Prediction

M. arvensins (MA) Mean centering (MC) 5 0.005 0.95 0.22 0.26 0.30 100 93 100 86
SNV + MC 5 0.005 0.95 0.20 0.24 0.29 100 93 100 86
MSC + MC 4 0.005 0.96 0.24 0.29 0.31 89 93 100 93
1st derivative + MC 3 0.005 0.96 0.23 0.25 0.27 100 93 100 86
2nd derivative + MC 3 0.005 0.96 0.21 0.24 0.27 100 93 100 86

M. piperita (MP) Mean centering (MC) 5 0.005 0.93 0.22 0.25 0.30 88 97 75 94
SNV + MC 5 0.005 0.93 0.20 0.24 0.29 87 97 75 81
MSC + MC 4 0.005 0.92 0.25 0.30 0.31 88 94 75 100
1st derivative + MC 3 0.005 0.94 0.23 0.25 0.27 88 97 88 100
2nd derivative + MC 3 0.005 0.96 0.21 0.23 0.28 88 97 88 100

M. spicata (MS) Mean centering (MC) 5 0.005 1 0.03 0.03 0.02 100 100 100 100
SNV + MC 5 0.005 1 0.02 0.02 0.02 100 100 100 100
MSC + MC 5 0.005 1 0.06 0.08 0.08 100 100 100 100
1st derivative + MC 3 0.005 1 0.03 0.03 0.02 100 100 100 100
2nd derivative + MC 3 0.005 1 0.03 0.03 0.03 100 100 100 100

Table 2. Results of PLS-DA models applied on S. Rosmarinus dataset for both cross-validation of the calibration set and prediction of test set using different
pretreatment methods.

S. Rosmarinus Models Pretreatment LVs * Permutation
Test in CV AUC RMSEC ** RMSECV *** RMSEP **** Sensitivity CV Specificity CV Sensitivity

Prediction
Specificity
Prediction

Camphor Mean centering (MC) 3 0.005 1 0.18 0.20 0.16 100 100 100 100
SNV + MC 2 0.005 1 0.22 0.23 0.17 100 97 100 100
MSC + MC 3 0.005 1 0.23 0.25 0.18 100 90 100 100
1st derivative + MC 2 0.005 1 0.18 0.19 0.16 100 100 100 100
2nd derivative + MC 2 0.005 1 0.18 0.19 0.16 100 100 100 100

Cineole Mean centering (MC) 3 0.005 1 0.12 0.13 0.08 100 100 100 100
SNV + MC 2 0.005 1 0.14 0.14 0.10 100 100 100 100
MSC + MC 3 0.005 1 0.15 0.17 0.11 100 100 100 100
1st derivative + MC 2 0.005 1 0.12 0.13 0.10 100 100 100 100
2nd derivative + MC 2 0.005 1 0.12 0.12 0.09 100 100 100 100

Others Mean centering (MC) 3 0.005 1 0.16 0.18 0.17 100 100 100 100
SNV + MC 2 0.005 1 0.23 0.25 0.19 100 97 100 100
MSC + MC 3 0.005 1 0.21 0.24 0.19 100 100 100 100
1st derivative + MC 2 0.005 1 0.18 0.19 0.17 100 100 100 100
2nd derivative + MC 2 0.005 1 0.17 0.18 0.17 100 100 100 100
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Table 3. Results of PLS-DA models applied on Cymbopogon dataset for both cross-validation of the calibration set and prediction of test set using different
pretreatment methods.

Cymbopogon Models Pretreatment LVs * Permutation
Test in CV AUC RMSEC ** RMSECV *** RMSEP **** Sensitivity CV Specificity CV Sensitivity

Prediction
Specificity
Prediction

C. citratus (CC) Mean centering (MC) 3 0.005 1 0.04 0.04 0.09 100 100 100 100
SNV + MC 3 0.005 1 0.03 0.04 0.08 100 100 100 100
MSC + MC 3 0.005 1 0.04 0.04 0.09 100 100 100 100
1st derivative + MC 3 0.005 1 0.03 0.04 0.09 100 100 100 100
2nd derivative + MC 3 0.005 1 0.03 0.04 0.08 100 100 100 100

C. martinii (CM) Mean centering (MC) 3 0.005 1 0.14 0.15 0.14 100 100 100 100
SNV + MC 3 0.005 1 0.14 0.15 0.14 100 100 100 100
MSC + MC 3 0.005 1 0.15 0.16 0.16 100 100 100 100
1st derivative + MC 3 0.005 1 0.14 0.15 0.15 100 100 100 100
2nd derivative + MC 3 0.005 1 0.13 0.15 0.17 100 100 100 100

C. nardus (CN) Mean centering (MC) 3 0.008 0.92 0.31 0.34 0.27 79 91 83 94
SNV + MC 3 0.01 0.98 0.30 0.33 0.26 86 91 83 94
MSC + MC 3 0.02 0.91 0.31 0.35 0.26 79 88 100 94
1st derivative + MC 3 0.008 0.93 0.29 0.32 0.28 86 94 83 89
2nd derivative + MC 3 0.006 0.94 0.29 0.33 0.28 86 94 83 89

C. winterianus (CW) Mean centering (MC) 3 0.04 0.91 0.29 0.33 0.34 80 86 67 94
SNV + MC 3 0.02 0.93 0.28 0.31 0.31 80 89 83 89
MSC + MC 3 0.03 0.90 0.29 0.33 0.30 80 94 83 94
1st derivative + MC 3 0.02 0.93 0.28 0.31 0.34 80 89 67 89
2nd derivative + MC 3 0.02 0.92 0.27 0.31 0.33 80 89 67 89

Table 4. Results of PLS-DA models applied on Lavandula dataset for both cross-validation of the calibration set and prediction of test set using different pretreatment
methods.

Lavandula Models Pretreatment LVs * Permutation
Test in CV AUC RMSEC ** RMSECV *** RMSEP **** Sensitivity CV Specificity CV Sensitivity

Prediction
Specificity
Prediction

L. angustifolia (LA) Mean centering (MC) 5 0.006 0.93 0.25 0.30 0.29 88 96 100 93
SNV + MC 6 0.005 1 0.15 0.23 0.38 100 100 88 93
MSC + MC 5 0.006 0.93 0.25 0.30 0.29 88 91 100 86
1st derivative + MC 4 0.005 0.95 0.25 0.30 0.28 88 96 100 79
2nd derivative + MC 4 0.005 0.97 0.24 0.30 0.26 88 96 100 86

L. latifolia (LL) Mean centering (MC) 5 0.005 1 0.08 0.11 0.13 100 100 100 100
SNV + MC 6 0.005 1 0.07 0.10 0.08 100 100 100 100
MSC + MC 5 0.005 1 0.08 0.11 0.15 100 100 100 100
1st derivative + MC 4 0.005 1 0.06 0.08 0.10 100 100 100 100
2nd derivative + MC 4 0.005 1 0.07 0.09 0.10 100 100 100 100

L. x intermedia (LI) Mean centering (MC) 5 0.006 0.94 0.24 0.30 0.36 93 92 88 100
SNV + MC 6 0.005 0.99 0.16 0.25 0.38 100 96 88 93
MSC + MC 5 0.007 0.93 0.26 0.31 0.37 93 92 75 100
1st derivative + MC 4 0.008 0.95 0.25 0.30 0.34 100 92 88 100
2nd derivative + MC 4 0.008 0.98 0.23 0.29 0.33 93 92 75 100

* Latent Variables number; ** Root mean square error in calibration; *** Root mean squares error in cross-validation; **** Root mean squares error in prediction.
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Finally, to have a general overview of the performance of the PLS-DA-assisted untargeted
ATR-FTIR approach, PLS-DA was performed on the whole data set simultaneously, consider-
ing all the data acquired on samples belonging to five classes: namely, Mentha, Lavandula, and
Cymbopogon genus, as well as the Thymus vulgaris and Salvia Rosmarinus species.

For building the model, 218 samples were used for calibration and 120 for external
validation, and, based on the previous results, the signals were pretreated with Savitzky–
Golay first derivative (1st der) + mean centering. The number of samples belonging to each
class, for training and external validation sets, was reported in Table 5.

Table 5. Number of samples in the calibration and external validation set. The last raw reports the
total number N of samples per class.

PLS-DA
First Derivative + MC

6 LVs
Cymbopogon Lavandula Mentha Rosmarinus Thymus vulgaris

Calibration set 46 38 48 50 36
External validation set 24 22 24 26 24

Total samples 70 60 72 76 60

The number of latent variables for PLS models was chosen by the smallest mean
squared error obtained in CV (venetian blind with 10 data splits).

The best EOs classification model was built with six latent variables, and this model
gave excellent results in terms of robustness and classification performance (Table 6).

Table 6. PLS-DA results for the whole EOs dataset.

PLS-DA
First Derivative + MC

6 LVs
Cymbopogon Lavandula Mentha Rosmarinus Thymus vulgaris

R2
CV * 96% 86% 90% 94% 84%

RMSEC ** 0.08 0.14 0.08 0.10 0.15
RMSECV *** 0.09 0.14 0.08 0.10 0.15
RMSEP **** 0.10 0.16 0.10 0.10 0.23

Permutation test in CV
(Rand t-test) 0.005 0.005 0.005 0.005 0.005

AUC CV 1 1 1 1 1
Sensitivity CV (%) 100 100 100 100 100
Specificity CV (%) 100 98 100 100 100

Sensitivity in pred (%) 100 100 100 100 100
Specificity in pred (%) 100 96 100 100 100

* Explained variance in cross-validation. ** Root mean squares error in calibration. *** Root mean squares error in
cross-validation. **** Root mean squares error in prediction.

In particular, the model showed excellent sensitivity in both CV and prediction models,
with all the samples correctly classified in the respective belonging class. As far as specificity
is concerned, all the EOs not belonging to the class were correctly rejected by the class model
except for two samples belonging to the Thymus vulgaris species, classified as Lavandula in
both CV and prediction models. This result might be due to the close chemical composition
of certain thyme EOs displaying the linalool chemotype.

The VIP score plots (Figure 7) showed that this differentiation is mainly due to regions
between 3100 and 2500 cm−1 and 2000–500 cm−1. These regions were already highlighted
as relevant by inspecting PCA loadings. The variables with the highest scores were strictly
related to characteristic IR signals present in most of the EOs belonging to the same class,
as expected. Indeed, for Mentha EOs, the most discriminating variables were related
to ketones (carvone, menthone, and isomenthone, 1740–1640 cm−1), menthol vibrations
(1100–1000 cm−1) and monoterpenes containing terminal vinyl groups (limonene, carvone,
880 cm−1). Similarly, S. Rosmarinus EOs were mostly represented by ketones (camphor
and verbenone, 1750–1650 cm−1) and the heterocyclic monoterpene 1,8-cineole (1085 and
980 cm−1), while Lavandula EOs were represented by the stretch and bends of the carbonylic
group of linalyl acetate (about 1740 and 1240 cm−1) and the hydroxyl group of linalool
(1375–1365 cm−1). Cymbopogon EOs, being mainly composed of aldehydes and alcohols,
were predominately projected by the variables around 1730–1600 and 1380 cm−1. Finally,
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concerning T. vulgaris EOs, the highest scores were reached by several variables in all
the fingerprint regions, being the most variable in composition due to the expression of
several different chemotypes. In particular, the signals belonging to alcohols (borneol,
carvacrol, linalool, and α-terpineol), ketones (carvone and camphor), phenols (thymol),
and hydrocarbons (p-cymene and camphene) contributed to the classification model.

The diversity of chemical composition and, then, functions of EOs belonging to the
same genus or chemotype offers a great variety of applications. However, in some cases,
certain compounds of EOs can also display features such as allergenicity or toxicity. There-
fore, qualitative controls of EOs are certainly an important issue. The key technique for
the identification of the type of EOs is the GC, where quantitative results of the chemical
compounds allow the recognition by comparing the composition with reference mono-
graphs [7]. Alternative techniques proposed for the quality control of EOs are based on a
fingerprinting approach, such as IR or nuclear magnetic resonance (NMR) spectroscopies.
To the best of our knowledge, this is the first study present in the literature that aimed at
the development of supervised classification models, of ATR-FTIR data, for identifying
the species or chemotypes of EOs. In the literature, several examples of the application of
fingerprinting methods for similar purposes are present. Baranska et al., demonstrated
that vibrational spectroscopy, in combination with the unsupervised hierarchical cluster
analysis, could discriminate eucalyptus EOs [30]. Besides, Lafhal and co-workers reported
the great potentialities of near IR spectroscopy coupled with PLS-DA in discriminating
lavender and lavandin EOs [50].Molecules 2022, 27, x FOR PEER REVIEW 17 of 24 
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The creation of PLS-DA models for Ocimum EOs was attempted by Freitas et al., on
NMR spectra and GC chromatograms, demonstrating the excellence of the NMR approach
in recognizing the species [51]. Certainly, NMR is a powerful technique. However, to
achieve the goal, ATR-FTIR spectroscopy displays several advantages. Indeed, ATR-FTIR
spectrometers are extremely diffused, easy-to-use, and cheaper than NMR spectrometers.
Moreover, the EO analysis does not require the employment of deuterated solvents and
any sample preparation.

3. Materials and Methods
3.1. Materials

All the EOs were kindly donated by several companies fully cited in the acknowledg-
ments. A total of 36 EOs belonging to the Mentha arvensis (MA), Mentha spicata (MS), and
Mentha piperita (MP) were collected. On the label of all these samples, the species was speci-
fied by the producing/seller company. A total of 38 Salvia rosmarinus EOs was collected.
The chemotype of the EO was not reported in the majority of the labels. A total of 35 EOs,
belonging to Cymbopogon winterianus (CW), Cymbopogon nardus (CN), Cymbopogon citratus
(CC), and Cymbopogon martinii (CM) were obtained. On the label of all these samples, the
species was specified by the producing/seller company. Thirty EOs, belonging to Lavandula
latifolia (LL), Lavandula x intermedia (LI), and Lavandula angustifolia (LA), were investigated.
On the label of all these samples, the species was specified by the producing/seller com-
pany. Finally, a total of 32 Thymus vulgaris EOs were collected. The chemotype of the
EO was not reported in the majority of the labels. n-Hexane and the mixture of aliphatic
hydrocarbons (C8–C40) were purchased from Sigma-Aldrich (Milan, Italy).

3.2. Analysis of the EOs
3.2.1. GC-MS Analysis

Analyses were performed on a 7890A gas chromatograph coupled with a 5975C
network mass spectrometer (GC-MS) (Agilent Technologies, Milan, Italy). Compounds
were separated on an Agilent Technologies HP-5 MS cross-linked poly−5% diphenyl–95%
dimethyl polysiloxane (30 m × 0.25 mm i.d., 0.25 µm film thickness) capillary column. The
column temperature was initially set at 45 ◦C, then increased at a rate of 2 ◦C/min up
to 100 ◦C, then raised to 250 ◦C at a rate of 5 ◦C/min, and finally, it held for 5 min. The
injection volume was 0.1 µL, with a split ratio 1:20. Helium was used as the carrier gas, at
a flow rate of 0.7 mL/min. The injector, transfer line, and ion-source temperatures were
250, 280, and 230 ◦C, respectively. MS detection was performed with electron ionization at
70 eV, operating in the full-scan acquisition mode in the m/z range 40–400. The EOs were
diluted 1:20 (v/v) with n-hexane before GC-MS analysis.

3.2.2. GC-FID Analysis

Chromatographic characterization of EOs was performed on a 7820 gas chromatograph
(Agilent Technologies, Milan, Italy) with a flame ionization detector (FID). EOs and the
mixture of aliphatic hydrocarbons (C8–C40) were diluted 1:20 (v/v) with Hex before GC-
FID analysis. Helium was used as the carrier gas at a flow rate of 1 mL/min. The injector
and detector temperatures were set at 250 and 300 ◦C, respectively. EO components
were separated on an Agilent Technologies HP-5 crosslinked poly−5% diphenyl–95%
dimethylsiloxane (30 m × 0.32 mm, i.d., 0.25 mm film thickness) capillary column. The
column temperature was initially set at 45 ◦C, then increased at a rate of 2 ◦C/min up to
100 ◦C, then raised to 250 ◦C at a rate of 5 ◦C/min, and finally, it maintained for 5 min. The
injection volume was 1 µL, with a split ratio 1:20.

Compounds were identified by comparing the retention times of the chromatographic
peaks, with those of authentic reference standards run under the same conditions, and
by comparing the linear retention indices (LRIs) relative to C8–C40 n-alkanes obtained on
the HP-5 column, under the above-mentioned conditions, with the literature [52]. Peak
enrichment by co-injection with authentic reference compounds was also carried out. A
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comparison of the MS-fragmentation pattern of the target analytes with those of pure
components was performed by using the National Institute of Standards and Technology
(NIST version 2.0d, 2005) mass-spectral database.

The percentage relative amount of individual components was expressed as the percent
peak area, relative to the total peak area obtained by the GC-FID analysis. Semi-quantitative
data were acquired from the mean of two analyses.

The data acquisition and processing were performed using the OpenLab CDS C.01.04
(Agilent Technologies, Santa Clara, CA, USA) software.

3.3. ATR-FTIR Spectra Acquisition

The ATR-FTIR spectra of the EOs were obtained using a FT-IR spectrometer Spectrum
Two, equipped with a Universal ATR sampling accessory (Perkin Elmer, Milano, Italy).
One drop of each sample was deposited on the ATR diamond crystal cell. The spectra
were acquired in the spectral range of 4000–450 cm−1, with a spectral resolution of 4 cm−1,
averaging 16 scans per spectrum. The number of scans was selected for the optimal signal-
to-noise ratio. The background spectrum of the empty ATR cell was obtained under the
same instrumental conditions prior to the sample analysis. All samples were analyzed
in duplicate.

For each EO, the absorbance percentages related to each wavenumber in the infrared
range from 4000 to 450 cm−1 (3551 points in total) were exported to create the datasets.

3.4. Statistical Analysis

The multivariate statistical analyses were performed by using PLS_Toolbox 8.9.2
software (Eigenvector Research Inc., Manson, WA, USA) for MATLAB®. The PCA was
performed on all the ATR-FTIR spectral data. All the IR signals were organized in a
bidimensional matrix of dimension 338 × 3551 (i.e., essential oil samples × 3551 IR points)
and pretreated by means of multiplicative scatter correction (MSC), followed by mean-
centering. In this first step of exploratory analysis, MSC pretreatment was selected to
minimize additive and multiplicative effects present in the baseline of the spectral data. The
number of PCs was selected based on the best compromise between the smallest root mean
squared error in leave one out cross-validation (RMSECV). A detailed investigation on the
right choice of the signal pretreatment to be used was performed during PLS-DA analysis.

The PLS-DA can be defined as a multivariate technique that allows the creation of
discrimination models, giving the maximum covariance between measured data (ATR-FTIR
spectral intensities) and the response variable (represented, in this case, by the classification
of samples based on the EOs species information) [53]. For building each PLS-DA model,
the dataset was split into training and test sets, where at least 60% of the data set was
selected for the calibration set according to the Kennard–Stone algorithm [54], being careful
to insert the same replicates together. After each signal pretreatment, the right number of
latent variables for each PLS-DA model was selected according to the best compromise
between the smallest RMSECV in leave one out cross-validation.

Before building a classification model for Mentha, Lavandula, and Cymbopogon
genus, as well as Thymus vulgaris and Salvia Rosmarinus species, the possible presence of
outliers was investigated, taking into account the squared residuals Q vs. Hotelling’s T2

plot (Supplementary Materials Figure S7). No sample presented both values outside the
95% of confidence intervals; therefore, all samples were considered in the PLS-DA analysis.

However, using a PLS-DA approach on datasets with a limited number of samples, as
in this study, could result in overfitting, which means obtaining over-optimistic models.
Therefore, a two-method strategy was adopted to avoid this risk. In particular, the Receiver
Operating Characteristic (ROC) curve was used to have an overall picture of the classifica-
tion performance and, together with permutation tests, was carried out to be sure to obtain
trustworthy results [55]. Regarding the ROC curve, the area under the curve (AUC) was
taken into account, since this value measures the overall method performance. As far as
the threshold is concerned, the used PLS-DA algorithm estimated it using Bayes’ Theorem
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and the available data in order to minimize total errors. Figure 8 shows the sensitivity and
specificity as the threshold value is varied. Ideally, these lines cross while still at a value
of 1. Crossing below a value of 1 indicates that, as the threshold is increased, sensitivity
begins to suffer (drops below 1) before the model is completely specific. The vertical dashed
red line indicates the threshold selected by the PLSDA algorithm, which is used to calculate
the sensitivity and specificity reported in Table 3. In particular, the point that the vertical
threshold line crosses the solid red line in any given plot is the calibration sensitivity,
and the point where the threshold line crosses the dashed red line is the cross-validation
sensitivity. Similarly, the point where the threshold line crosses the solid blue line is the
calibration specificity, and the point where the threshold line crosses the dashed blue line is
the cross-validation specificity.
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On the other hand, an iterative permutation test involves a random distribution of
y-block assigning, at each sample, an incorrect class. Afterwards, different classification
models are calculated, and if the performance of these models are significantly and system-
atically lower than those obtained with the original one, the original model can be assumed
to be robust.

Finally, since the sensitivity and specificity values equal to 100% could increase the
probability of overfitting, a classification model was also built with a lower number of
LVs. In particular, for the whole EOs dataset, 5 LVs were considered, as they presented
the second best compromise in terms of classification error average both in calibration
and cross-validation (Supplementary Materials Figure S8). The obtained ‘reduced’ model
allowed the obtaining of a Sensitivity and Specificity value around 100% in both calibration
and cross validation (Figure S9). Therefore, for the final model, 6 LVs were finally chosen
according to the criteria previously explained.

4. Conclusions

In the present work, ATR-FTIR spectroscopy was demonstrated to efficiently highlight
the differences in the chemical composition of EOs belonging to valuable and extremely
different genus and species. The PLS-DA models, built on the spectral dataset processed
through the first derivative and mean centering, showed excellent predictive performances
in terms of specificity and sensitivity, correctly classifying the majority of EOs. The mis-
classified EOs belonged to Lavandula and Cymbopogon genera due to the almost identical
chemical compositions of some species. The AUC values were higher than 0.92, suggest-
ing the robustness of the classification models. Due to the small number of thyme EOs,
the PLS-DA models were not performed, while in the case of rosemary EOs, the models
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were constructed by combining two different chemotypes. However, preliminary unsu-
pervised PCA was carried out on each dataset, depicting the capability of multivariate
statistical tools to differentiate rosemary and thyme EOs, depending on their chemotype
(Figures S1 and S2). In conclusion, ATR-FTIR spectroscopy proved to be a promising an-
alytical method for routine analyses of EOs in combination with chemometric tools. By
increasing the spectral library of EOs, the here-presented strategy might substitute the
conventional and expensive chromatographic method for analyzing all the types of EOs.
Additionally, by setting proper confidential levels, the conformity of the EOs to specific
quality standards can be assessed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27175618/s1. Table S1. Chemical percent composition
of one representative sample for each Mentha species: arvensis (MA), piperita (MP), and spicata
(MS). Table S2. Chemical percent composition of one representative sample for each chemotype of
Salvia rosmarinus. Table S3. Chemical percent composition of one representative sample for each
species of Cymbopogon genus. Table S4. Chemical percent composition of one representative sample
for each species of Lavandula genus. Table S5. Chemical percent composition of one representative
sample for each chemotype of Thymus vulgaris. Figure S1. Results of PCA on ATR-FTIR spectral
data of T. vulgaris essential oils. Score plots of PC1/PC2 and PC1/PC3, and loading plots of PC1, PC2,
and PC3. Figure S2. Results of PCA on ATR-FTIR spectral data of S. rosmarinus essential oils. Score
plots of PC1/PC2 and loading plots of PC1 and PC2. Figure S3. Variable importance on projection
(VIP) score plots for the PLS-DA models for discriminating Mentha essential oils. Figure S4. Variable
importance on projection (VIP) score plots for the PLS-DA models for discriminating S. Rosmarinus
essential oils. Figure S5. Variable importance on projection (VIP) score plots for the PLS-DA models
for discriminating Cymbopogon genus essential oils. Figure S6. Variable importance on projection
(VIP) score plots for the PLS-DA models for discriminating Lavandula genus essential oils. Figure S7.
Squared residuals Q vs. Hotelling’s T2 plot, obtained for PLS-DA model built with 6LVs on the whole
EOs dataset. The dashed horizontal and vertical lines show the amplitude of the 95% confidence
interval for both parameters. Samples are marked according to their class. Figure S8. Classification
Error Average of PLS-DA models built on the whole EOs dataset vs. Latent Variables Number.
Figure S9. Threshold plots for PLS-DA model built with 5LVs on the whole EOs dataset. The vertical
dashed red line indicates the threshold selected by the PLS-DA algorithm.
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