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A B S T R A C T

Multiple Sclerosis patients' clinical symptoms do not correlate strongly with structural assessment done with
traditional magnetic resonance images. However, its diagnosis and evaluation of the disease's progression are
based on a combination of this imaging analysis complemented with clinical examination. Therefore, other
biomarkers are necessary to better understand the disease. In this paper, we capitalize on machine learning
techniques to classify relapsing-remitting multiple sclerosis patients and healthy volunteers based on machine
learning techniques, and to identify relevant brain areas and connectivity measures for characterizing patients.
To this end, we acquired magnetic resonance imaging data from relapsing-remitting multiple sclerosis patients
and healthy subjects. Fractional anisotropy maps, structural and functional connectivity were extracted from the
scans. Each of them were used as separate input features to construct support vector machine classifiers. A fourth
input feature was created by combining structural and functional connectivity. Patients were divided in two
groups according to their degree of disability and, together with the control group, three group pairs were
formed for comparison. Twelve separate classifiers were built from the combination of these four input features
and three group pairs. The classifiers were able to distinguish between patients and healthy subjects, reaching
accuracy levels as high as 89% ± 2%. In contrast, the performance was noticeably lower when comparing the
two groups of patients with different levels of disability, reaching levels below 63% ± 5%. The brain regions
that contributed the most to the classification were the right occipital, left frontal orbital, medial frontal cortices
and lingual gyrus. The developed classifiers based on MRI data were able to distinguish multiple sclerosis pa-
tients and healthy subjects reliably. Moreover, the resulting classification models identified brain regions, and
functional and structural connections relevant for better understanding of the disease.

1. Introduction

Multiple sclerosis (MS) is a complex disease that causes inflamma-
tion, demyelination, axonal degeneration and neuronal loss of the
central nervous system (CNS; Budde et al., 2009; Loizou et al., 2013),

with axonal damage leading to global and regional atrophy from the
onset of the disease (Barkhof and Filippi, 2009). Its diagnosis and
progression evaluation are based on a clinical examination com-
plemented with structural assessment using Magnetic Resonance Ima-
ging (MRI; Droby et al., 2016; Filippi and Agosta, 2010; Loizou et al.,
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2013; Thompson et al., 2017). The location and load of leasions caused
by MS are of special importance. These lesions are seen as hyperintense
regions in T2 weighted images (Budde et al., 2009; Mollison et al.,
2017; Richiardi et al., 2012; Thompson et al., 2017). However, tradi-
tional imaging findings do not correlate strongly with patients' clinical
symptoms. This discrepancy is known as the clinico-radiological
paradox in MS (Filippi and Agosta, 2010; Fu et al., 1998; Mollison et al.,
2017; Richiardi et al., 2012). Redundancy of pathways in the CNS or its
restoration capacity and functional adaptation may explain this
paradox (Barkhof and Filippi, 2009; Rocca et al., 2005). Lesions in T2
weighted images might even include areas with normal function or
caused by reasons different from MS (Barkhof and Filippi, 2009). Ad-
ditionally, conventional processing of structural MR images has been
unable to detect some types of damages to brain tissue (Filippi and
Agosta, 2010; Fu et al., 1998; Lin et al., 2005; Richiardi et al., 2012).

To better understand the clinico-radiological paradox in MS, other
MR sequences have been used to characterize the disease. For instance,
diffusion tensor imaging (DTI) and resting state functional MRI (rsfMRI)
have been explored to provide new insights about this disease (Filippi
et al., 2013; Rocca et al., 2012; Roosendaal et al., 2009; Sbardella et al.,
2017). DTI is sensitive to white matter pathology in MS, as radial dif-
fusivity has been shown to increase in response to demyelination and
axial diffusivity decreases with axonal damage (Budde et al., 2009).
rsfMRI has the ability to show a maladaptive role of cortical functional
changes (Filippi and Rocca, 2011) due to CNS injuries during acute
relapse and in clinically stable patients (Rocca et al., 2005).

DTI and rsfMRI generate a large amount of data per scan, which can
be difficult to analyze and to take full advantage of the available in-
formation. Therefore, it would be beneficial to have a method that can
automatically process such information in the context of MS.

Machine learning approaches, in particular support vector machine
(SVM), allow to classify data by generating a separation model (Vapnik,
1998). This model has relative weights associated to each input feature
that represent their importance for distinguishing between groups, thus
contributing to the characterization of the data (Griva et al., 2009). This
way, instead of analyzing predefined areas, there is an objective eva-
luation of the whole brain, which may highlight relevant areas that
might not have been otherwise considered. Furthermore, SVM is a
multivariate approach that, unlike the traditional statistical parametric
mapping approaches, combines information from multiple features for
the purpose of classification (Griva et al., 2009).

Machine leaning approaches have been developed to differentiate
MS from other pathologies (Eshaghi et al., 2016; Muthuraman et al.,
2016), as well as to distinguish sub-categories within the disease
(Bendfeldt et al., 2012; Kocevar et al., 2016). Some of these approaches
have applied DTI (e.g., Stamile et al., 2015) and rsfMRI in patients with
MS (e.g., Richiardi et al., 2012; Zhong et al., 2017). One of these studies
(e.g., Richiardi et al., 2012) successfully classified MS patients and
healthy controls with sensitivities and specificities above 80%. The
authors identified the right middle temporal pole as the most important
area for distinguishing between the groups. To the best of our knowl-
edge, machine learning approaches have not yet been applied to com-
bined DTI and rsfMRI data in patients with MS, but only in separate
analyses.

In this study, we aim to develop classifiers based on DTI and fMRI
data that are able to identify areas of the brain that may help to better
characterize the disease. We hypothesize that classifiers based on
multimodal data extracted from the combination of DTI and fMRI will
lead to a reliable classification of relapsing-remitting multiple sclerosis
(RRMS) patients from healthy subjects.

2. Materials and methods

2.1. Subjects and image acquisition

The study was conducted in accordance with the regulations of the

Scientific Ethics Committee, Faculty of Medicine, Pontificia Universidad
Católica de Chile. Patients and control subjects gave written informed
consent for using their clinical data for research purposes. In this pro-
spective study, we included 107 RRMS patients and a control group of
50 subjects without any clinical symptoms of any brain disease. Both,
patient and control groups, were in the same age distribution, had at
least 13 years of education and did not have any MR-incompatible
implants in their body.

Patients did not have any major medical or psychiatric comorbidity
other than RRMS. They were diagnosed with MS according to
McDonald's Criteria 2010 (Polman et al., 2011) early from symptom
onset (median diagnostic delay of 3months, range 0–180months).
They began disease modifying treatment as soon as they were diag-
nosed. 97% of the patient group was receiving treatment.

All subjects underwent MR scans, and an expanded disability status
scale (EDSS) evaluation was made for each patient. The MR scans
consisted of T1 weighted, DTI and rsfMRI on a clinical Philips 3 T
Ingenia MR Scanner (Best, The Netherlands) between November 2016
and August 2017. During the rsfMRI acquisition, subjects were asked to
lie supine with eyes closed, and not think of anything in particular.
Table 1 summarizes MRI acquisition parameters.

2.2. Image processing

We obtained fractional anisotropy (FA) maps from the DTI scans
using DSI Studio (http://dsi-studio.labsolver.org). These maps were
manually centered to the anterior commissure to avoid the spatial
correction process to get suboptimally trapped in a local minimum. The
images were then coregistered with the T1 weighted images and then
normalized to the MNI space using SPM12 (http://www.fil.ion.ucl.ac.
uk/spm/software/spm12/). All resulting images were visually in-
spected to verify proper pre-processing. DTI scans were also used to
perform a whole brain deterministic tractography (Yeh et al., 2013),
from which we built a connectivity matrix indicating the number of
bundles connecting regions of interest (ROIs) based on the Harvard-
Oxford Atlas (http://www.cma.mgh.harvard.edu/fsl_atlas.html). The
same processing pipeline was applied to all subject groups.

Table 1
MRI acquisition parameters.

MRI acquisition
parameters

T1W-3D DTI rsfMRI

TR (ms) 7.8 8834 2500
TE (ms) 3.6 92 35
Matrix (mm) 240×240 100×102 80×80
Field of view (mm) 240×240×164 224×224×140 220×220×132
Acquisition

resolution
(mm3)

1.00/1.00/1.00 2.24/2.20/2.00 2.75/2.75/3.00

Reconstructed
resolution
(mm3)

0.50/0.50/0.50 2.00/2.00/2.00 2.75/2.75/3.00

Flip angle (°) 8 90 82
Inversion time (ms) 977 – –
Number of signal

averages
1 2 1

Bandwidth (Hz) 191.5 26.5 35.9
SENSE factor 2.5 2 1.8
Slices 327 70 40
Acquisition time 4min 8 s 5min 23 s 8min 27 s
Dynamic scan

volumes
– – 200

b value (mm2/s) – 1000 –
Number of

directions
– 15 –

MRI: Magnetic Resonance Imaging; T1W-3D: T1 weighted 3D image; DTI:
Diffusion Tensor Imaging; rsfMRI: resting state functional Magnetic Resonance
Imaging; TR: repetition time; TE: echo time; SENSE: sensitivity encoding.
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Raw images obtained from rsfMRI scans underwent realignment,
slice timing correction, coregistration with the T1 weighted images, and
normalization to the MNI space using SPM12. The resulting images
were processed with the CONN toolbox (www.nitrc.org/projects/conn;
Whitfield-Gabrieli and Nieto-Castanon, 2012) to obtain a correlation
matrix, also based on the Harvard-Oxford Atlas, thus representing bi-
variate functional connectivity among the ROIs.

2.3. Subject division

The RRMS patients were divided according to their EDSS, con-
sidering as non-disabled those patients with an EDSS of 1.5 or lower
(Kurtzke, 1983). We defined the following group of pairs for which we
built different classifiers:

1. All RRMS patients vs. healthy subjects
2. RRMS patients with EDSS>1.5 vs. healthy subjects
3. RRMS patients with EDSS ≤1.5 vs. EDSS> 1.5

2.4. Classification

We developed four separate classifiers for each group pair, based on
the following input types:

1. FA voxel-wise value
2. DTI connectivity matrix
3. rsfMRI correlation matrix
4. Normalized combination of DTI connectivity and rsfMRI correlation

matrices

We constructed 12 final SVM linear classifiers or models (Vapnik
and Lerner, 1963), one for each combination of input type (previously
listed in this Section) and subject group pair (listed in the previous
Section). The construction of each SVM model involved the following
steps, based on Ebadi et al., 2017:

1. We ran a feature selection procedure to reduce input dimensionality.
This is usually recommended when the number of features is higher
than the number of samples, as is our case. It is based on the as-
sumption that the data contains many redundant or irrelevant fea-
tures (Ebadi et al., 2017). A Fisher score (FS) (He et al., 2006) was
assigned to each feature, computed as follows:
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where for each group i∈ {1,2}, ni is the number of subjects, μi the
mean, σi2 the variance of the specific feature for group, and μT is the
overall mean of the feature. Only the features with an FS above a
threshold were selected for the classification. Many threshold values

were explored by randomly dividing the dataset into training and
testing sets and running a one-dimensional grid search over the
training set using cross-validation methods. The FS threshold that
gave the best results for each classifier was selected.

2. We built 100 instances of the SVM linear model because of the
imbalance in the number of subjects in each group. In each iteration,
a random undersampling over the largest group was made. Each
SVM model was built using the Statistics and Machine Learning
Toolbox available in Matlab 2017b (The MathWorks Inc., Natick,
Massachusets). In order to verify the robustness of the classifiers we
used cross-validation. For this task, the data were divided in sets for
training and testing the classifier using two cross-validation
methods, namely k-folding (with k=10) and leave-one-out cross-
validation (LOOCV). The results were analyzed using confusion
matrix indicators to assess the classifier's performance, including
accuracy, precision, sensitivity and specificity.

3. These confusion matrix indicators were then calculated to evaluate
the classification performance and a final SVM model was con-
structed by averaging out the 100 instances. The beta-values, or
weights, in this final model were used to identify the most relevant
brain regions and connections for the classification.

3. Results

3.1. Subjects

Three patients were excluded from the sample because their scans
had artifacts. Four subjects from the control group were also excluded
from the sample. Three of the subjects were removed because their
scans revealed brain pathology, and the fourth was removed because of
the presence of artifacts in their scans. The study thus considered two
groups: a RRMS patient group of 104 subjects and a control group of 46
healthy subjects (Table 2).

3.2. Training results

Table 3 shows the mean accuracies found for the Fisher Score
thresholds with best results, averaging out the results in each of the 100
instances, for each of the 12 SVM models. The results show that the
classifiers were indeed able to distinguish between patients and healthy
subjects, reaching accuracy levels as high as 89% ± 2%. In contrast,
the classifiers' performance was noticeably weaker when comparing
patients with different levels of EDSS, reaching levels of 63% ± 5%.

Taking into account two group pairs, all RRMS patients vs. healthy
subjects and RRMS patients with EDSS>1.5 vs. healthy subjects, the
lowest accuracies were found using DTI connectivity as input features.
These group pairs were better distinguished with FA and even better
with rsfMRI correlation input types. The best accuracies were found
when combining DTI connectivity and rsfMRI correlation as input

Table 2
Characteristics of each subject group.

Group Sex Number Age (mean ± STD) Age (min - max) EDSS (mean ± STD) EDSS (min - max)

RRMS patients with EDSS ≤1.5 Women 46 35 ± 10 17–57 0.5 ± 0.6 0.0–1.5
Men 25 34 ± 7 21–50 0.5 ± 0.5 0.0–1.0
Total 71 35 ± 9 17–57 0.5 ± 0.5 0.0–1.5

RRMS patients with EDSS > 1.5 Women 22 44 ± 10 22–63 2.6 ± 0.9 2.0–5.5
Men 11 33 ± 4 27–37 2.3 ± 0.6 2.0–3.0
Total 33 40 ± 10 22–63 2.5 ± 0.8 2.0–5.5

All RRMS patients Women 68 3.8 ± 11 17–63 1.2 ± 1.2 0.0–5.5
Men 36 34 ± 6 21–50 1.0 ± 1.0 0.0–3.5
Total 104 37 ± 10 17–63 1.1 ± 1.1 0.0–5.5

Healthy subjects Women 24 38 ± 12 23–63 – –
Men 22 38 ± 10 24–60 – –
Total 46 38 ± 11 23–63 – –

STD: standard deviation; EDSS: expanded disability status scale; RRMS: relapsing-remitting multiple sclerosis.
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features.
The third group pair, comparing RRMS patients with EDSS ≤1.5 vs.

patients with EDSS>1.5, obtained their best accuracies when using FA
as input feature, reaching only values close to 62%. The results using
other input features reached accuracies close to 50%, indicating that
there was no clear distinction between the two groups.

There were no significant differences between the mean accuracies
found using any cross-validation method. This, together with their low
standard deviations, suggests that the models are indeed representative,
not biased nor a result of overfitting.

The rest of the analysis focuses on those four SVM models with the
best performances, namely, the ones built with rsfMRI correlations and
the ones that combined rsfMRI and DTI input features, considering the
group pairs of all RRMS patients vs. healthy subjects and, patients with
EDSS> 1.5 vs. healthy subjects.

Table 4 shows the accuracy, precision, sensitivity and specificity
obtained from those four models, considering a Fisher Score threshold
of 0.020 for the group pair composed by all RRMS patients vs. healthy
subjects and 0.017 for RRMS patients with EDSS>1.5 vs. healthy
subjects. Importantly, these results show that there was no important
difference between the obtained Type I and Type II errors, further
supporting the reliability of the developed classifiers.

The feature selection for the combined data for the group pair
composed by all the RRMS patients vs. healthy subjects chose 5403
rsfMRI correlations and 594 DTI connectivity values out of 13,530
features in each case. Similarly, for the group pair composed by the
RRMS patients with EDSS> 1.5 vs. healthy subjects, the feature se-
lection chose 5342 rsfMRI correlations and 724 DTI connectivity va-
lues. Hence, in both cases, the classifier is majorly constructed by
parameters associated to rsfMRI.

3.3. Weight values of SVM models

Fig. 1 displays the 30 most important features for SVM models ob-
tained with combined input type comparing patients with healthy
subjects. It shows a comparison of their absolute weight values nor-
malized to the highest weight for visualization. It also indicates whether
the connectivity between the pair of regions increases or decreases in

patients in relation to healthy subjects. In both cases, the features are
mostly rsfMRI correlation measures, in accordance with the number of
selected variables. Taking into consideration the proportion of areas
with increased and decreased connectivity in all patients and in patients
with EDSS>1.5, it is apparent that when considering all patients there
are more brain regions with increased connectivity. The most important
features obtained when using only rsfMRI as input were the same as the
ones assigned by rsfMRI with the combined rsfMRI and DTI, but with
small variations in their order of importance.

Fig. 2 presents the normalized sum of weights of different brain
areas for the two analyzed cases considering the DTI connectivity and
rsfMRI correlation features, thus representing the importance of each
area for the classification. The most important areas when comparing
all the RRMS patients with healthy subjects were (in descending order)
the right superior division of the occipital cortex, left frontal orbital
cortex, left cuneal cortex, and bilateral lingual gyrus. The most im-
portant areas when comparing only the RRMS patients with EDSS> 1.5
with healthy subjects were practically the same, but in a different order:
the bilateral lingual gyrus, right superior division of the occipital
cortex, left frontal orbital cortex, and medial frontal cortex.

4. Discussion

Advances in Radiological Sciences allow an accurate diagnosis of
multiple sclerosis. The McDonald Criteria is widely used and has been
proven to reach high levels of sensitivity (Thompson et al., 2017).
Highly accurate biomarkers have already been reported in literature.
For instance, accuracies as high as 96% have been achieved using mi-
croRNA expression profiles (Keller et al., 2009). Lesser accuracies
(92%) have also been reported in literature using MRI, specifically with
T1 and T2 weighted images (Eshaghi et al., 2016). However, con-
sidering the existing clinico-radiological paradox, different approaches
for studying MS are needed to fully understand the diease, and to ac-
complish more effective diagnosis and treatment.

We have shown that rsfMRI and DTI based machine learning tech-
niques are able to distinguish between RRMS patients and healthy
subjects reliably and with high accuracy. This classifying technique also
showed to be representative, avoiding bias and overfitting, as

Table 3
Mean accuracies found in each of the SVM classification of the 12 combinations of input features and group pairs. The results are presented as the mean percentage
accuracy± standard deviation of the 100 iterations with different subjects on the largest group, found using leave-one-out and k-folding cross-validations.

Input type FA DTI connectivity rsfMRI connectivity Combined (DTI+ rsfMRI)

Cross-validation method LOOCV k-folding LOOCV k-folding LOOCV k-folding LOOCV k-folding
All RRMS vs. HS 78.0 ± 2.7 78.3 ± 3.1 71.8 ± 4.1 72.5 ± 4.3 86.1 ± 3.0 85.7 ± 3.0 87.7 ± 3.2 87.8 ± 3.4
EDSS >1.5 vs. HS 83.6 ± 1.9 84.3 ± 2.4 78.8 ± 3.0 79.5 ± 3.8 88.4 ± 2.5 87.7 ± 3.3 88.9 ± 2.4 88.6 ± 3.2
EDSS≤1.5 vs. EDSS> 1.5 62.1 ± 4.1 63.0 ± 4.5 50.2 ± 5.3 47.8 ± 5.5 53.1 ± 11.3 50.8 ± 6.8 50.7 ± 12.2 51.0 ± 8.6

FA: Fractional anisotropy; DTI: Diffusion Tensor Imaging; rsfMRI: resting state functional Magnetic Resonance Imaging; LOOCV: leave-one-out cross-validation;
RRMS: relapsing-remitting multiple sclerosis; HS: healthy subjects; EDSS: expanded disability status scale.

Table 4
Confusion matrix indicators (%) for SVM models with rsfMRI and combined (rsfMRI+DTI connectivity) input features that classify RRMS patients and healthy
subjects. The results are presented as the average indicator± standard deviation percentage for 100 iterations with different subjects on the largest group, with both
validation methods (LOOCV and k-folding). Fisher threshold is 0.020 for all RRMS vs. healthy subjects and 0.017 for RRMS with EDSS>1.5 vs. healthy subjects.

Group pair All RRMS vs. healthy subjects EDSS > 1.5 vs. healthy subjects

Input type rsfMRI Combined (rsfMRI + DTI) rsfMRI Combined (rsfMRI + DTI)

Cross-validation method LOOCV k-folding LOOCV k-folding LOOCV k-folding LOOCV k-folding

Accuracy 85.9 ± 3.0 85.7 ± 4.0 87.7 ± 3.2 87.8 ± 3.4 88.3 ± 2.6 87.8 ± 3.2 88.9 ± 2.4 88.6 ± 3.2
Precision 85.3 ± 3.2 87.1 ± 3.6 87.5 ± 3.6 89.7 ± 3.8 88.4 ± 3.5 90.0 ± 3.7 89.6 ± 3.3 91.6 ± 3.4
Sensitivity 86.8 ± 3.9 86.9 ± 5.3 88.1 ± 3.9 88.0 ± 4.5 88.3 ± 2.6 87.5 ± 3.9 88.0 ± 2.7 87.5 ± 4.0
Specificity 85.0 ± 3.5 84.5 ± 4.5 87.4 ± 4.0 87.6 ± 4.6 88.3 ± 3.9 88.1 ± 4.4 89.7 ± 3.6 89.8 ± 4.2

DTI: Diffusion Tensor Imaging; rsfMRI: resting state functional Magnetic Resonance Imaging; LOOCV: leave-one-out cross-validation; RRMS: relapsing-remitting
multiple sclerosis; HS: healthy subjects; EDSS: expanded disability status scale.
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represented by the similar results obtained using different cross-vali-
dation methods. Training accuracies using rsfMRI in this study were
slightly better than those found in a previous study that used another
machine learning approach applied to graphs to classify patients and
healthy subjects (Richiardi et al., 2012). The difference in connectivity,
with increased and decreased rsfMRI activity is also in accordance with
previous reports (Filippi and Rocca, 2011).

Taking only into account the models that distinguished between
RRMS patients and healthy subjects, different results were obtained
according to the input features assigned to develop the models. DTI
connectivity input data by itself reached accuracies between 70% and

80% when classifying patients from healthy subjects. These results
might be explained by the fiber tracts' diversion due to the presence of
MS-related lesions. On the other hand, rsfMRI input data lead to better
classifiers, reaching accuracies between 85% and 90%. The difference
in these results could be due to the adaptive mechanism of the func-
tional system when facing disease related damage. The patients in-
cluded in this study had low levels of disability, which could be asso-
ciated to low levels of structural damage, thus explaining the poor
results found using only structural connectivity. However, functional
plasticity mechanisms could be inefficiently increased (Rocca et al.,
2017), resulting in great difference between patients and healthy

Fig. 1. 30 most important connections indicated by resulting SVM models. A) All RRMS vs. healthy subjects. B) RRMS patients with EDSS> 1.5 vs. healthy subjects.
The bar graph represents the weight of each of the connection pairs in the final SVM models, normalized to the highest weight for visualization. Dark green bars
represent rsfMRI correlation features and light green bars represent DTI connectivity features. At the end of each bar there is an arrow indicating whether the
connectivity between the areas were higher or lower in patients in relation to healthy subjects.
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subjects.
The combined input, involving DTI connectivity values and rsfMRI

correlations, gave the highest accuracy, which was slightly higher than
those obtained using rsfMRI as input features. This suggests that DTI
and rsfMRI data can be complemented and used to analyze the brain as
a whole, taking into account both, structural and functional informa-
tion. Although this has been done before in MS (Sbardella et al., 2017;
Rocca et al., 2010), those approaches are based on a specific network,
and were not analyzed from a machine learning perspective using
whole brain data.

Our technique did not distinguish with high accuracy between
RRMS patients with EDSS above and below 1.5. This could be due to the
little difference between disability levels between both groups, espe-
cially considering that the patients with EDSS above 1.5 have a mean
EDSS of 2.5, which is very low. However, since we have greater accu-
racy to distinguish healthy volunteers from patients, this issue revealed
that the imaging modalities as DTI and rsfMRI in our classifiers were
not able to pick those patients with low disability. In other words, using
these imaging techniques for the proposed classifiers, we were not able
to identify the low levels of disability associated to the disease. Another
imaging modality, such as Quantitative Susceptibility Mapping, which
is highly sensitive to myelin changes (Wisnieff et al., 2015), or other
clinical indicator, needs to be further investigated as input feature for
the classifier for this case.

The resulting models were able to identify areas that may be af-
fected by the disease. The highlighted areas give an objective per-
spective, thus providing another view of the problem which needs
further research with clinical data. The brain regions found to affect MS
patients in comparison to healthy controls in this study have also been
associated with MS in previous studies. For instance, the right superior
occipital cortex, left cuneus, lingual gyrus and, middle frontal cortex
have been reported to have significant atrophies in MS patients (Gobbi
et al., 2014). The left orbitofrontal cortex has been reported to have an
increase, while the lingual gyrus a decrease in their functional activity
in MS patients (Sweet et al., 2004). Increases in functional connectivity
have also been found between the left lingual gyrus, middle occipital
gyrus, and cuneus in RRMS in MS patients when compared to healthy
subjects (Faivre et al., 2012).

This study has some limitations. We only considered the data from
DTI and rsfMRI for the combined classifier, even though SVM models
with FA voxel-wise values as inputs also performed reliably. The
amount and properties of FA data is considerably different from the DTI

and rsfMRI connectivity matrices, therefore it is harder to include in the
group of combined inputs. Even though including all features might be
useful, this might also incorporate redundancy and noise related com-
pontets, which may require more training samples for optimal classi-
fication. This issue would be very interesting to explore in a future
study. Furthermore, the patient cohort included patients with very low
levels of disability, which limited our threshold options for classifica-
tion. It would perhaps be more effective for classification and also in-
formative of brain regins affecting the disease to classify patients with
EDSS above and below 3, which is the threshold for moderate disability.

5. Conclusion

In conclusion, in the current study we developed reliable linear
classifiers that reached accuracies as high as 89% ± 2%, and indicated
functional and structural connections and specific brain areas that are
relevant for characterizing RRMS patients. We have presented an evi-
dence-based perspective on MS imaging analysis which will contribute
towards a better understanding of this complex disease.
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