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R E V I E W

Abstract: Severely septic patients continue to experience excessive morbidity and mortality

despite recent advances in critical care. Although significant resources have been invested in

new treatments, almost all have failed to improve outcomes. An improved understanding of

sepsis pathophysiology, including the complex interactions between inflammatory, coagulation,

and fibrinolytic systems, has accelerated the development of novel treatments. Recombinant

human activated protein C (rhAPC), or drotrecogin alfa (activated) (DAA), is currently the

only US Food and Drug Administration (FDA)-approved medicine for the treatment of severe

sepsis, and only in patients with a high risk of death. This review will discuss the treatment of

severe sepsis, focusing on recent discoveries and unresolved questions about DAA’s optimal

use. Increasing pharmacological experience has generated enthusiasm for investigating

medicines already approved for other indications as treatments for severe sepsis. Replacement

doses of hydrocortisone and vasopressin may reduce mortality and improve hypotension,

respectively, in a subgroup of patients with catecholamine-refractory septic shock. In addition

to discussing these new indications, this review will detail the provocative preliminary data

from four promising treatments, including two novel modalities: antagonizing high mobility

group box protein and inhibiting tissue factor (TF). Observational data from the uncontrolled

administration of heparin or statins in septic patients will also be reviewed.

Keywords: septic shock; drotrecogin alfa, vasopressin, new therapies, statins, high mobility

group box protein

Introduction
Severe sepsis represents one of the most common diagnoses in patients admitted to

the intensive care unit (ICU). This systemic inflammatory response to an infectious

stimulus resulting in organ dysfunction (Bone et al 1992; Levy, Fink, et al 2003)

afflicts more than 750 000 patients (Martin et al 2003) and consumes almost 17 billion

healthcare dollars in the US each year (Angus et al 2001). Although sepsis without

organ dysfunction is a relatively benign condition, severe sepsis results in more than

225 000 deaths in the US annually (Angus et al 2001; Martin et al 2003). Furthermore,

an aging population and growing number of immunosuppressed patients treated in

an environment of emerging antibiotic resistance and expanding use of invasive

procedures will almost assuredly increase the burden of sepsis even further (Martin

et al 2003).

Although patients with the above predispositions experience higher incidences

of sepsis, the syndrome can affect anyone, including previously young, healthy people,

often with devastating consequences (Quartin et al 1997; Weycker et al 2003). Despite

modern advances in critical care, one-third to half of all severely septic patients fail
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to survive to hospital discharge (Angus et al 2001; Weycker

et al 2003), and those with septic shock experience even

higher mortality rates (Rangel-Frausto et al 1995).

Furthermore, the detrimental effects of sepsis continue

beyond the acute process. Patients who survive the initial

episode experience higher rates of death for the first year

after hospital discharge compared with disease and age-

matched controls (Weycker et al 2003).

Recent years have seen renewed enthusiasm for novel

sepsis therapies, marked by an increased number of large,

randomized, controlled trials. This review will discuss a few

of the treatment modalities arising from these studies,

including new information about recombinant human

activated protein C (rhAPC), the only pharmaceutical agent

approved by the US Food and Drug Administration (FDA)

for the treatment of severe sepsis and septic shock. Other

advances in the care of patients with septic shock, including

replacement doses of corticosteroids in those with relative

adrenal insufficiency and vasopressin in those with

catecholamine-dependent hypotension, will also be

summarized. This review will also include a discussion of a

few of the provocative pharmaceutical agents with

antiinflammatory and/or anticoagulant properties currently

being investigated for the treatment of septic shock. Other

novel agents and techniques such as macrophage migration

inhibitory factor (MIF), caspase inhibitors, toll-like

receptor 4 inhibitors, lipophilic antiendotoxins, extra-

corporeal techniques such as hemofiltration or adsorption,

and fluid resuscitation strategies, are beyond the scope of

this review and will not be discussed.

Sepsis pathophysiology
The systemic inflammatory response syndrome (SIRS)

consists of many signs and symptoms, including tachypnea

(or hypocapnea), fever, tachycardia, leukocytosis (or

leukopenia), and greater than 10% immature white blood

cells (Bone et al 1992; Levy, Fink, et al 2003). The presence

of these signs early in the course of most septic patients

fueled an initial belief that the disease resulted from an

overwhelming inflammatory response to the underlying

infection. Early studies demonstrated that administering

endotoxin or cytokines such as tumor necrosis factor alpha

(TNF-α) or interleukin-1 (IL-1) to humans resulted in an

identical systemic inflammatory response syndrome with

hypotension, further indicting inflammation in the

pathophysiology.

More recent observations, however, indicate that

coagulopathy also plays a role in sepsis pathophysiology,

with microthrombi in the arterioles and venules of various

organs (Levi et al 1993; Thijs et al 1993). Further

investigations revealed a complex interaction between the

inflammatory and coagulation systems, with inflammation

stimulating procoagulant pathways, inhibiting fibrinolysis,

and down-regulating other mediators controlling coagulation

(van Deventer et al 1990; Esmon et al 1991, Aird 2001;

Hotchkiss and Karl 2003). The resultant procoagulant state

favors the formation of microthrombi in small vessels,

leading to local hypoperfusion and contributing to

subsequent organ dysfunction.

Initial attempts at treating septic patients focused on

inhibiting mediators of the early inflammatory cascade.

Although many were able to alter measures of inflammation,

none were successful in improving clinical outcomes in

septic patients (Zeni et al 1997; van der Poll 2001;

Riedemann et al 2003; Vincent, Sun, et al 2003) (Table 1).

Table 1: Some unsuccessful antiinflammatory treatments for
septic shock in humans. All the listed antiinflammatory
treatments, with the exception of replacement dose
corticosteroids, have failed to demonstrate improvement in
clinical outcomes in patients with septic shock

Treatments directed against:
Endotoxin (Lipopolysaccharide, [LPS])

LPS antisera
Murine antibodies against lipid A component of LPS
Human antibodies against lipid A component of LPS (HA–1A)
Bactericidal/permeability-increasing protein

Arachadonic acid metabolites
Ibuprofen (cyclooxygenase inhibitor)
Prostaglandin E1

Ketoconazole

Early cytokines
Antitumor necrosis factor (TNF) fab dimers
AntiTNF fab monomers
Soluble TNF receptor fusion protein
Murine monoclonal antiTNF antibodies
Interleukin-1 receptor antagonist

Nonspecific antiinflammatory treatments:
High dose corticosteroids
Replacement dose corticosteroids a

Intravenous immunoglobulin
Immunonutrition
Platelet activating factor-acetylhydrolase
Tifacogin (recombinant human tissue factor pathway inhibitor)

a Replacement dose corticosteroids, in combination with fludrocortisone,
improved survival in patients with septic shock and relative adrenal
insufficiency, as defined by an inadequate response to corticotropin stimulation
testing (Annane et al 2002).
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The reasons for these failures are heavily debated, but may

include targeting the wrong inflammatory mediators,

administering the treatment too late in the inflammatory

course, patient heterogeneity, or a limited role for

inflammation in causing organ dysfunction. The advance-

ment of the understanding of sepsis pathophysiology to

include the coagulation system, along with the availability

of new agents possessing both antiinflammatory and

anticoagulant properties, has renewed enthusiasm for

discovering effective treatments for patients afflicted with

sepsis (Matthay 2001). Unfortunately, many therapies

directed against the coagulopathy associated with sepsis

have also demonstrated disappointing results (Table 2).

Activated protein C
The liver, through a vitamin K-dependent pathway,

synthesizes protein C and secretes it into the circulation as

an inactive zymogen. Endothelial protein C receptor

(EPCR), along with thrombin bound to thrombomodulin

locally, facilitates the conversion of protein C to its active

form. Activated protein C (APC) possesses many important

physiological properties, including promoting fibrinolysis

by inhibiting the release of plasminogen activator inhibitor

type 1 (PAI-1) and limiting the generation of thrombin at

the local site of inflammation. Equally important, APC

functions as an anticoagulant by inactivating clotting factors

Va and VIIIa and limits inflammation by inhibiting

thrombin-induced production of inflammatory cytokines

from monocytes (Esmon et al 1991). Furthermore, APC,

via binding with EPCR on endothelial cells, reduces

permeability injury induced by thrombin (Zeng et al 2004;

Finigan et al 2005). Similar binding of APC with EPCR on

epithelial cells and white blood cells reduces apoptosis and

inhibits chemotaxis, respectively (Mosnier and Griffin 2003;

Nick et al 2004; Macias et al 2005). Inflammatory states,

such as septic shock, impair the thrombin-thrombomodulin

complex-mediated activation of Protein C and induce

shedding of EPCR from cell surfaces, which increase the

levels of soluble EPCR and shift the milieu to one of

inflammation and coagulation. This alteration of homeo-

stasis results in microvascular thrombi formation and organ

dysfunction. Furthermore, most patients with severe sepsis

have low levels of the protein C zymogen (Bernard et al

2001), and decreased levels portend worse outcomes (Yan

et al 2001).

In the Protein C Worldwide Evaluation in Severe Sepsis

(PROWESS) trial, administration of exogenous rhAPC, also

known as drotrecogin alfa (activated) (DAA) (Eli Lilly and

Co, Inc, Indianapolis, IN, USA), significantly reduced 28

day, all-cause mortality compared with placebo in septic

patients with at least one organ failure. Enrollment in this

double-blind, placebo-controlled trial was terminated for

efficacy after only 1690 of 2280 planned patients because

the treatment group experienced a 20% relative reduction

and 6% absolute reduction in mortality compared with those

given placebo (24.7% vs 30.8%; p = 0.005). The survival

difference appeared shortly after initiation of the infusion,

increased throughout the 28-day study period (Bernard et

al 2001), and persisted into long-term follow-up (Angus et

al 2003).

Who should receive APC?
Although the FDA used the results from the PROWESS

study to approve DAA in November 2001 as the first drug

indicated for use in severely septic patients, they limited

the indication to those with a high risk of death. When

dividing the enrolled patients by severity of illness scores

(APACHE II [Acute Physiology and Chronic Health

Evaluation II], SOFA [Sequential Organ Failure

Assessment], etc), DAA produced the largest benefit in the

sickest subgroups with an absolute mortality reduction of

13% (relative mortality reduction of 30%; p = 0.0002) in

patients with APACHE II scores totaling more than 24 and

7.4% (relative reduction of 19%) in patients with more than

one organ dysfunction (Bernard 2003). Although not

required for entry into the study, 88% of patients enrolled

in the PROWESS study possessed baseline cardiovascular

dysfunction, or septic shock, with 75% having sepsis-

Table 2: Elements of the coagulation homeostasis targeted
as treatment for humans with septic shock. The only agent
targeting coagulation homeostasis that has demonstrated a
reduction in mortality to date is drotrecogin alfa (activated),
which reduced 28-day all-cause mortality in patients with at
least one organ dysfunction attributable to sepsis (Bernard et
al 2001)

Platelets:
Platelet activating factor receptor antagonist
Platelet activating factor-acetylhydrolase

Protein C:
Drotrecogin alfa (activated) (Recombinant human activated
protein C)

Tissue factor
Tifacogin (recombinant human tissue factor pathway inhibitor)

Antithrombin III
High dose antithrombin III
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induced dysfunction of at least two organ systems. The

relatively limited number of patients with less severe sepsis

made it difficult to reach conclusions about the effects of

DAA in such patients. A subsequent trial was undertaken to

evaluate the effect of rhAPC on these septic patients with

only a single organ dysfunction. The Administration of

Drotrecogin Alfa (activated) in Early Severe Sepsis

(ADDRESS) trial was stopped after an interim analysis of

an initial 2640 of the 11 000 targeted patients due to a low

likelihood of demonstrating a significant mortality benefit

for such low risk patients (Abraham et al 2005). The recently

published data demonstrated similar 28-day (18.5% vs 17%;

p = 0.38) and in-hospital (20.6% vs 20.5%) all-cause

mortality rates for patients treated with either rhAPC

compared with placebo. Similarly, a randomized, double-

blind, placebo controlled study of drotrecogin alfa

(activated) in children with severe sepsis was also terminated

early after 400 patients as the data safety and monitoring

board concluded DAA was highly unlikely to show

improvement in time to resolution of organ failure compared

with placebo (DHP 2005). All-cause, 28-day mortality rates,

although slightly lower than those seen in adults enrolled in

the PROWESS and ADDRESS trials, also did not differ

between treatment groups (17% vs 18%).

The subgroups of septic patients for which DAA

treatment is the most beneficial continues to be hotly debated

(Ely et al 2002; Warren et al 2002). In the PROWESS trial,

rhAPC decreased mortality rates compared with placebo

consistently across all demographic subgroups defined by

age, sex, and race (Bernard et al 2001; Bernard 2003), as

well as across different underlying disease states including

cancer, chronic obstructive pulmonary disease, and

preexisting congestive heart failure (Bernard et al 2001).

Futhermore, DAA treatment resulted in a consistent

reduction in mortality for different types (gram-positive,

gram-negative, mixed, or fungus), and sites of infection

(Bernard et al 2001), with the exception of urinary tract

infections, where limited data prevented definitive

conclusions. Only 27% of patients enrolled in the

PROWESS trial were postoperative from either elective or

emergency surgery, which limits conclusions about the

efficacy of DAA in these patients. Considerably more

postoperative patients (n = 1002) were enrolled in the

ADDRESS trial, which demonstrated that postoperative

patients with only a single organ dysfunction experienced

significantly higher 28-day mortality rates (20.7% vs 14.1%;

p = 0.03) and numerically higher in-hospital mortality rates

when administered DAA compared with those given placebo

(23.4% vs 19.7%; p = 0.26) (Abraham et al 2005). Although

the primary cause of death in this population was sepsis-

related, postoperative patients treated with rhAPC

experienced significantly more bleeding events than those

treated with placebo. Of the surgical patients who had a

bleeding episode, more patients treated with rhAPC than

placebo died of sepsis-induced multiorgan dysfunction or

hemorrhage (Abraham et al 2005).

Aside from severity of illness, measured by number of

organ failures, identifying baseline prognostic indicators has

proven difficult. Data from over 1000 severely septic patients

receiving placebo in multiple, randomized, phase III trials

demonstrated that patients who either develop new or fail

to improve existing organ dysfunctions over the initial

24 hours of severe sepsis experience significantly higher

morbidity and mortality, even after correcting for severity

of illness (Levy, Macias, et al 2003; Vincent, Sundin, et al

2003). Although the development of septic shock and

cardiovascular collapse is frequently recognized as a poor

prognostic indicator, evidence now establishes that failing

to improve or worsening shock over the same time period

also confers significant mortality. Unfortunately, it remains

problematic to determine which patients are likely to

improve over the first 24 hours. Additional indicators of

outcome will become more clear as investigations into

prognostic factors such as B-type natriuretic peptide (BNP)

and procalcitonin continue. Numerous studies have

demonstrated that elevated levels of procalcitonin are a

sensitive marker for sepsis (Assicot et al 1993; Ugarte et al

1999; Aikawa et al 2005), and that higher levels portend

worse prognosis (Clec’h et al 2004). Likewise, higher levels

of BNP in patients with septic shock have also been shown

to correlate with worse outcomes (Witthaut et al 2003;

Brueckmann et al 2005). Furthermore, treatment with

rhAPC lowered BNP levels and was associated with

improved outcomes (Brueckmann et al 2005). Future studies

will need to be undertaken to determine if these, or other

similar sepsis markers, can be used to direct sepsis therapies

to those patients most likely to benefit or if these markers

can be used to evaluate effectiveness of treatment.

Timing of APC administration
Early treatment of septic shock is vitally important for

minimizing morbidity and mortality. For many years,

cardiologists and neurologists have emphasized that “time

is heart” and “time is brain” in the treatment of myocardial
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infarction and stroke, respectively. In patients with severe

sepsis, “time is tissue.” Rivers et al (2001) demonstrated

that goal-directed resuscitation in the initial 6 hours of septic

shock reduced 28-day, all-cause mortality. Goal-directed

resuscitation did not decrease mortality during the 6 hour

resuscitation period, but patients who received this therapy

experienced considerably less sudden cardiac death in the

days after the resuscitation period. Likewise, evidence

suggests that early administration of appropriate antibiotics

reduces mortality in septic patients (Ibrahim et al 2000).

Similar administration timing data have been

accumulated for rhAPC. Post-marketing analysis of patients

receiving DAA provides evidence that administration within

24 hours of initial organ dysfunction decreases mortality.

In a retrospective review of rhAPC-treated patients from 5

academic medical centers, early administration of DAA was

associated with reduced mortality (Odds Ratio [OR] 0.52;

95% Confidence Interval [CI]: 0.45–0.60), even after

controlling for age, other organ dysfunctions, mechanical

ventilation, and vasopressor use (Wheeler, Steingrub, et al

2003). In the PROWESS trial, the majority of patients

received rhAPC within 24 hours of meeting severe sepsis

criteria, with a 17–18 hour average time to initiation of DAA

(Bernard et al 2001). However, retrospective analysis

demonstrates that post-marketing administration occurs

significantly later in the disease course, starting an average

of 2.3 days after the onset of severe sepsis (Schmidt et al

2003). Earlier administration improved outcome, with 33%

mortality in patients beginning the infusion on the same

day they developed their initial sepsis-related organ

dysfunction, compared with 40% in those commencing the

day after, and 52% in patients starting after the second day

of organ dysfunction (p = 0.05) (Wheeler, Steingrub, et al

2003). Furthermore, a prospective, phase IIIb study of 2378

patients treated with DAA found mortality rates of 33%

when DAA was initiated on the same calendar day as

developing severe sepsis compared with 41% for those

treated after the first day (p = 0.02) (Wheeler, Doig, et al

2003). Regression analysis, using an integrated database of

over 4400 patients treated with either rhAPC or placebo up

to 72 hours after the development of organ dysfunction from

5 separate severe sepsis studies, found a relative risk of death

for patients treated at the onset of organ dysfunction of 0.67,

compared with 0.76 and 0.88 for those treated 12 and 24

hours later, respectively (Vincent, Sundin, et al 2003). The

time from development of organ dysfunction to treatment

with DAA in the recently stopped ADDRESS trial averaged

48 hours, which caused many to speculate that delayed

treatment reduces effectiveness (Abraham et al 2005).

Whether a time point exists in the course of severe sepsis

after which DAA is no longer effective remains unknown.

However, administration early in the course clearly improves

survival, and delaying administration, even by as little as a

few hours, increases mortality.

Likewise, it remains unknown whether longer treatment

would benefit subgroups of severely septic patients.

Although rhAPC was administered for a total of 96 hours

in the PROWESS study, many physicians believe that

extended treatment is warranted for patients who continue

to manifest organ dysfunction. An ongoing study (EXTEND

[A Phase IIIb Study to Determine Efficacy and Safety of

Extended Drotrecogin Alfa (Activated) Therapy in Patients

With Persistent Requirement for Vasopressor Support After

96 Hour Infusion With Commercial Drotrecogin Alfa

(Activated)]) is investigating whether continuation of DAA

longer than 96 hours is beneficial in septic shock patients

with continued cardiovascular compromise.

APC and bleeding
Treatment with rhAPC is not without risk. Despite excluding

patients at high risk of bleeding (ie, multiple traumatic

injuries, initial platelet count below 30 000/mL, liver failure)

from enrollment in both the PROWESS and ADDRESS

trials, treatment with DAA increased the risk of bleeding

compared with placebo. The incidence of serious bleeding,

defined as any intracranial hemorrhage, life-threatening

bleed, or blood loss requiring transfusion of more than

3 units of packed red blood cells on 2 consecutive days,

was almost twice as high when DAA was administered

(3.5% vs 2.0% in PROWESS; p = 0.06; and 3.9% vs 2.2%

in ADDRESS; p = 0.01) (Bernard et al 2001; Abraham et al

2005). Patients with either traumatic injuries of highly

vascular organs or blood vessels, markedly abnormal

pretreatment coagulation parameters, or ulcerations of the

gastrointestinal tract, experienced most of the serious

bleeding episodes (Bernard et al 2001, 2003). Not

surprisingly, these bleeding rates compare similarly with

those seen with other forms of full-dose, systemic

anticoagulation, such as unfractionated or low-molecular

weight heparin for the treatment of pulmonary embolus or

myocardial infarction (Dolovich et al 2000). In addition,

serious bleeding rates did not increase when subcutaneous

low-molecular-weight or unfractionated heparin (up to

15 000 units per day) were administered concomitantly with
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rhAPC to prevent deep vein thromboses (3.7% with

heparin vs 3.5% without) (Bernard et al 2001). The risk of

bleeding when rhAPC is administered concomitantly with

prophylactic unfractionated and low-molecular-weight

heparin is being further evaluated in an ongoing prospective,

randomized study (Lilly EVBR Study). The increased risk

of severe bleeding was found to be limited to the peri-

infusion period (ie, duration of the infusion plus an

additional 24 hours). Upon completion of the infusion,

bleeding rates in patients treated with DAA were identical

to those given placebo (Siegel 2002). Fortunately, rhAPC

is rapidly degraded by serum proteases, yielding a half-life

of minutes, regardless of renal or hepatic function. This

allows many of these bleeding episodes to be effectively

managed by merely discontinuing the infusion.

Particular concern has arisen over the risk of intracranial

hemorrhage with the use of APC. Analysis of almost 3000

patients treated with rhAPC, including those in open-label

trials, found the incidence to be 0.6%, with most events

occurring in patients suffering meningitis, platelet counts

less than 30 000/µL, or both (Ely et al 2002; Bernard et al

2003). Less severely ill patients experienced similar rates

of CNS bleeding in the ADDRESS trial (0.5% DAA vs 0.4%

placebo) (Abraham et al 2005). Unfortunately, CNS

bleeding may occur more frequently in children treated with

DAA. In the randomized, placebo-controlled trial of severely

septic children, 4 patients (2%) treated with DAA had CNS

hemorrhages compared with 1 (0.5%) in the placebo arm.

Three of the 4 intracranial bleeds associated with DAA

treatment occurred in children less than 60 days old (DHP

2005).

Promising treatments for the
future of septic shock:
anticoagulants with
antiinflammatory properties
Recent advances in the complex pathophysiology of sepsis

have illuminated the delicate homeostasis in which the

inflammatory and coagulation systems coexist. The

overwhelming early inflammation during septic shock alters

this tenuous balance and initiates a cascade of events that

result in a highly proinflammatory and procoagulant

environment. In this environment, inflammation and

coagulation act in concert and augment each other, with

both playing a role in the morbidity and mortality associated

with septic shock. The recently discovered success of APC,

with its ability to interrupt both the inflammatory and

coagulation cascades simultaneously, has spurred further

investigations into additional agents, which similarly possess

both antiinflammatory and anticoagulant properties.

Heparin
Heparin binds antithrombin III to form a complex capable

of inhibiting thrombin. This inhibition helps prevent clot

formation, and has allowed glycosaminoglycan to be utilized

clinically as an anticoagulant for more than 60 years. More

recent data, however, demonstrate that heparin also

possesses antiinflammatory properties. P- and L-selectins

are expressed locally at inflammation sites. These

endothelial cell surface markers play an important role in

attracting leukocytes and allowing them to infiltrate into

the inflamed tissue. Heparin, by blocking these P- and L-

selectins, impedes leukocyte adhesion to the endothelium

and prevents infiltration into tissue (Want et al 2002). In

addition, heparin inhibits TNF-α, a key component in the

inflammatory cascade. Heparin also inhibits complement

activation and platelet activating factor, two mediators that

propagate the proinflammatory and procoagulant cycle of

septic shock (Tyrell et al 1999). Since the only approved

treatment for septic shock, namely APC, possesses both

antiinflammatory and anticoagulant properties, many have

hypothesized that heparin might also be effective in the

treatment of sepsis and at a considerably lower cost

compared with novel medicines.

The use of heparin to prevent deep vein thrombosis in

patients with severe sepsis randomized to receive placebo

in therapeutic trials of other agents provides some prelimi-

nary data on its possible efficacy in these patients. Patients

who received prophylactic dosages of unfractionated or low-

molecular weight heparin experienced reduced mortality

rates compared with patients given placebo without heparin

(Davidson et al 2002; Langer et al 2002). This association,

however, must be interpreted with caution due to the

possibility of indication bias. In other words, the decision

to administer heparin to these patients is left to the discretion

of the treating medical team and not randomized. Other

clinical considerations, such as the presence or absence of

disseminated intravascular coagulation or increased bleeding

risk, strongly influence the clinicians’ decision to prescribe

heparin. As such, patients with severe sepsis who are chosen

to receive heparin prophylaxis are almost assuredly different

than those not chosen to receive it.

Unfortunately, quality data on the effectiveness of

heparin in the treatment of severe sepsis are sparse. Even

data on its effectiveness in animal models of severe sepsis
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or septic shock are lacking. Furthermore, preclinical data

on the optimal dose, timing, and duration of treatment is

similarly unavailable and randomized or placebo-controlled

studies in humans have not been conducted. With its known

significant risks of hemorrhage and heparin-induced

thrombocytopenia, the paucity of animal and early clinical

data will need to be overcome prior to advancing to large,

definitive studies in severely septic humans. Until additional

data is generated, including that from randomized controlled

trials in humans, the effectiveness and safety of heparin in

treating severe sepsis will remain unknown.

Tissue factor inhibitors
Tissue factor (TF) is an important transmembrane

glycoprotein mediator of both the coagulation and

inflammatory cascades. Normally, TF is expressed in the

subendothelial cells of the vascular adventitia (Eilertsen and

Osterud 2004). In this location, TF is protected from

exposure to the systemic circulation (Morrissey et al 1993).

Proinflammatory cytokines, such as TNF- and IL-1, induce

endothelial cells to express TF (Meszaros et al 1994). When

expressed on endothelial cells, TF is exposed to the

circulation where it can bind with circulating activated factor

VII and initiate the coagulation cascade (Osterud and

Rapaport 1977). Likewise, coagulation factors generated by

TF-initiated coagulation, like activated factor VII, activated

factor X, and thrombin, elicit inflammatory responses by

attracting neutrophils and stimulating the release of

cytokines from macrophages and endothelial cells (Esmon

et al 1991). Localized activation of the coagulation cascade

associated with inflammation helps control the spread of

infectious agents. In severe sepsis, however, TF expression

often spreads beyond the local site of inflammation, resulting

in a diffuse, prothrombotic state similar to disseminated

intravascular coagulopathy (Cressey 2000). This coagulo-

pathic state further propagates inflammation (Warr et al

1990). The end result is an accelerated cycle of coagulation

and inflammation that results in endothelial dysfunction and

end-organ damage.

Antagonism of TF, either through TF pathway inhibitor

(TFPI) (Creasey et al 1993) or anti-TF antibodies (Taylor

et al 1991) in nonhuman primate models of sepsis, reduces

both inflammation and coagulation and improves mortality.

TFPI is a naturally occurring protein that functions in

maintaining coagulation homeostasis. Like heparin, TFPI

possesses both anticoagulant and antiinflammatory

properties. In its active, untruncated form, TFPI inhibits TF

and decreases the formation of thrombin. TFPI is truncated,

however, in many procoagulant states, such as sepsis.

This truncation decreases its anticoagulant activity

(Wesselschmidt 1993), which ultimately shifts homeostasis

towards coagulation, predisposing patients to form

microthrombi.

Many experts enthusiastically embraced the concept of

inhibiting TF, either through TFPI or anti-TF antibodies, as

a means of treating severe sepsis, because of the dual role

that TF plays in accelerating both inflammation and

coagulation. Unfortunately, the recently completed multi-

center, randomized, blinded phase 3 trial of recombinant

exogenous TFPI demonstrated no mortality benefit in

severely septic patients (n = 880) compared with placebo

(n = 874) (Abraham et al 2003). Although the overall results

were discouraging, a closer look at the study data has

renewed enthusiasm for TF antagonism. In the early phase

of the trial, prior to large changes in mortality rates, the

data suggested a benefit from TFPI administration.

Furthermore, TFPI appeared to decrease mortality in the

subgroup of patients with normal international normalized

ratios (INR) < 1.2. Consequently, further studies investi-

gating the effectiveness of TFPI in subgroups of patients

with severe sepsis are planned. In addition, investigations

into the safety and effectiveness of anti-TF antibodies in

treating patients with severe sepsis and pulmonary

dysfunction are currently in the early stages of clinical trials.

Treatments for subgroups of
patients with septic shock
Vasopressin or antidiuretic hormone
Vasopressin, a protein produced in the hypothalamus (Swaab

et al 1975), stored in the posterior pituitary, and released

into the circulation in response to many complex stimuli

(Schrier et al 1979; Wood and Chen 1989), produces a wide

range of physiologic effects, including maintaining blood

pressure homeostasis (Reid and Schwartz 1984). Also

known as antidiuretic hormone (ADH), vasopressin restores

vascular tone in patients with distributory shock via a

number of mechanisms. Acting through vascular

V1-receptors, the endogenous hormone directly induces

vasoconstriction (Reid and Schwartz 1984). In addition,

ADH also modulates potassium-adenosine triphosphate

(ATP) channels and nitric oxide synthesis. Furthermore,

vasopressin potentiates the adrenergic effects of other

vasoconstrictor agents (Landry and Oliver 2001). Although

vital in elevating low blood pressure, especially when it is

the result of inappropriate vasodilation, vasopressin does
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not significantly alter vascular smooth muscle constriction

in humans with normal blood pressure (Graybiel and Glendy

1941; Wagner and Braunwald 1956; Schwartz et al 1983).

Vasopressin also has varying effects in different tissues. In

nonvital arterial systems which feed skeletal muscles, fat,

and skin, vasopressin results in potent vasoconstriction, but

causes considerably less vasoconstriction in the coronary,

mesenteric, and cerebral circulations (Laszlo et al 1991).

Kinetics of serum vasopressin levels in
septic shock patients
Hypotension, hypovolemia, and elevated serum osmolality

are the most potent stimuli for the release of vasopressin

from the posterior pituitary (Schrier et al 1979; Quail et al

1987; Norsk et al 1993). Despite the potency of the stimulus,

only 10%–20% of the vasopressin stored in the posterior

pituitary is available for immediate release. Subsequent

release of vasopressin occurs at a much slower rate, resulting

in a biphasic response (Holmes, Patel, et al 2001; Sharshar

et al 2003). In the early phase of distributive states, such as

septic shock, serum ADH levels rise appropriately as the

posterior pituitary rapidly secretes the 10%–20% of its

available stores to maintain organ perfusion. As vaso-

dilatation continues, serum concentrations begin to fall,

ultimately leading to inadequate levels of vasopressin within

36 hours in patients with persistent vasodilatation and

distributive shock (Sharshar et al 2003). Although the exact

mechanism for these falling levels remains an enigma, it

appears to occur through decreased hypothalamic

production and/or release of pituitary stores and not via

increased catabolism, as levels increase appropriately when

exogenous vasopressin is given (Bourque and Oliet 1997).

Although vasopressin has relatively little effect on blood

pressure in humans without hypotension, low blood pressure

from vasodilatation results in an increased sensitivity to the

vasoconstrictive effects of vasopressin (Landry et al 1997a).

Consequently, its administration in relatively low

replacement doses in this condition significantly increases

arterial blood pressure. Unfortunately, the optimal dose of

vasopressin for treatment of septic shock remains unknown.

In animal models, limited data suggest that continuous

infusion of low doses produces vasoconstriction only in

selective arterial systems, with carotid blood flow actually

increasing without compromising blood flow to other vital

organs (Malay et al 2004). Moderately higher doses likely

result in more potent vasoconstriction in arterial vascular

beds and may induce mesenteric, renal, or coronary

ischemia. Two recent human studies have demonstrated

increased gastric regional production of carbon dioxide upon

administration of vasopressin, suggesting compromised gut

blood flow (Klinzing et al 2003; van Haren et al 2003). The

combination of the animal and human data has led many

experts to recommend a continuous infusion of vasopressin

only as a supplement to other vasoactive agents and at a

low dose (0.01–0.04 Units/minute [U/min]) without titrating

higher if blood pressure remains inadequate (Dellinger et

al 2004; Malay et al 2004; Holmes and Walley 2004).

Clinical studies of vasopressin in septic shock
Landry and colleagues (1997b) found markedly lower serum

vasopressin in patients with established septic shock

requiring catecholamines compared with those with

cardiogenic shock needing catecholamines (3.1 pg/mL vs

22.7 pg/mL, p < 0.001). They then supplemented the

inadequate endogenous levels with low, physiologic doses

of exogenous vasopressin in these septic shock patients and

discovered a significant improvement in arterial blood

pressure, further confirming the contributory role of

inadequate vasopressin levels to this state of distributive

shock. Exogenous supplementation of vasopressin in these

patients produced a marked increase in systemic vascular

resistance and a slight decrease in cardiac output, which

suggests vasoconstriction as the mechanism of increasing

arterial blood pressure. Subsequent studies have confirmed

the association of inadequate levels of vasopressin with

vasodilatory shock (Argenziano et al 1997, 1998; Sharshar

et al 2003).

Although numerous studies have investigated sup-

plementing inadequate endogenous levels with relatively low

doses (0.01–0.1 U/min) of exogenous vasopressin in patients

with catecholamine-dependent septic shock, most have done

so through open-labeled use of the drug (Table 3).

Furthermore, these studies fail to evaluate the effect of these

replacement doses of vasopressin on clinically important

outcomes such as mortality, renal failure, or ICU, or hospital

length of stay. Instead, the studies utilize surrogate endpoints

as evidence of efficacy such as increased blood pressure,

increased peripheral vascular resistance, and decreased or

abolished need for catecholamine support.

Vasopressin may possess other beneficial effects in

patients with septic shock. Prospective open-labeled studies

have demonstrated increased urine output with exogenous

vasopressin administration (Landry et al 1997a; Tsuneyoshi

et al 2001), supporting the findings of a few retrospective

studies (Gold et al 2000a, 2000b; Holmes, Walley, et al

2001). Unfortunately, the mechanism of this increased urine
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flow remains ill-defined and may simply be the result of

improved renal perfusion through increased arterial blood

pressure.

Only a limited number of prospective, randomized,

blinded studies have compared the effects of vasopressin

supplementation with either placebo or another vasopressor

(Argenziano et al 1997; Malay et al 1999; Patel et al 2002).

Although these studies provide objective evidence that

vasopressin can improve short-term surrogate outcomes such

as increasing mean arterial pressure or reducing

catecholamine doses, data that vasopressin administration

improves patient mortality, intensive care, or hospital lengths

of stay, or other long-term clinical outcomes, is still lacking.

A large, multicenter, randomized, double-blinded, placebo-

controlled Vasopressin and Septic Shock Trial (VASST) is

currently underway to compare the effects of vasopressin

on long-term clinical outcomes, including mortality, renal

function, and lengths of stay in patients with catecholamine-

dependent septic shock (Cooper et al 2003). Until data from

this study are available, vasopressin should probably

continue to be reserved as a “rescue” vasopressor agent to

be given in low, physiologic doses (0.04 U/min) only to

patients unable to maintain an adequate blood pressure

despite the use of continuous catecholamine support.

Corticosteroid replacement therapy
The antiinflammatory properties of corticosteroids include

inhibition of proinflammatory cytokine production,

enhancement of antiinflammatory mediator release, and

reduction in both the function and migration of inflammatory

cells, such as lymphocytes, monocytes, neutrophils,

macrophages, and eosinophils. Because of these numerous

antiinflammatory effects, many investigators labeled

corticosteroids as the ideal antidote for the presumptive

overwhelming inflammatory response in sepsis.

Unfortunately, high dose corticosteroids administered to

septic patients repeatedly failed to demonstrate clinical

benefit. Furthermore, meta-analyses confirmed the lack of

Table 3: Studies of vasopressin in humans with septic shock. A conglomeration of studies investigating the effects of vasopressin
(antidiuretic hormone; [ADH]) in humans with septic shock

Number Vasopressin
Patient  of  Dose

Reference Design Population/disease patients Comparison Units/minutes Outcomes

Landry et al Prospective, open-label, Septic shock on 10 Pre- vs Post-ADH 0.04 U/min ↑ BP
1997b unrandomized catecholamines

Landry et al Prospective, open-label, Septic shock on 6 Pre- vs Post-ADH 0.01 U/min ↑ BP
1997b unrandomized catecholamines

Landry et al Prospective, open-label, Septic shock on 6 On ADH vs 0.01 U/min ↓ BP on removal
1997b unrandomized, removal catecholamines Post-stopping ADH of ADH

of ADH

Landry et al Prospective, open-label, Septic shock on 5 Pre- vs Post-ADH 0.03–0.04 U/min ↑ BP, ↓ Cat, ↑ UO
1997a unrandomized case catecholamines

reports

Malay et al Prospective, randomized, Trauma patients with 10 ADH (n = 5) vs 0.04 U/min ↑ BP, ↓ NE
1999 placebo-controlled, septic shock on Placebo (n = 5)

double-blinded catecholamines

Dunser et al Retrospective Septic (n = 35) or post- 60 Pre- vs Post-ADH 0.07–0.1 U/min ↑ BP,  ↓ NE, ↓ HR,
2001 cardiotomy shock (n = 25) ↓ CI, ↓ mean PAP,

on catecholamines ↑ liver enzymes,
↓ plt

Holmes, Walley, Retrospective Septic shock on 50 Pre- vs 0.01–0.6 U/min ↑ BP, ↓ Cat, 
et al 2001 catecholamines Post-ADH (avg. 0.5 U/min) ↑UO, ↓ CI

Tsuneyoshi Prospective, open-label Septic shock on 16 Pre- vs Post-ADH 0.04 U/min ↑ BP, ↑ UO
et al 2001 catecholamines

Patel et al 2002 Prospective, randomized, Septic shock 24 ADH (n = 13) vs 0.01 U/min titrated ↑ BP,  ↓ NE,
blinded NE (n = 11)  up to 0.08 U/min ↑ UO, ↑ CCl

Dunser et al Prospective, randomized, Cardiopulmonary 48 NE + ADH (n = 24) vs 0.067 U/min ↑ BP 
2003 blinded bypass ± septic shock NE alone (n = 24) ↓ tachyarrhythmias

Abbreviations: ADH, antidiuretic hormone; BP, blood pressure; Cat, catecholamines; CCl, creatinine clearance; CI, cardiac index; HR, heart rate; NE, norepinephrine;
PAP, pulmonary artery pressure; plt, platelets; PVR, peripheral vascular resistance; SVR, systemic vascular resistance; U/min, units/minute; UO, urinary output.
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efficacy and even suggested a trend toward harm (Cronin et

al 1995; Lefering and Neugebauer 1995; Zeni et al 1997).

Recent data demonstrate that lower doses of cortico-

steroids, administered over a longer period of time, may

benefit at least one subset of patients with septic shock.

Many patients with refractory septic shock have relative

adrenal insufficiency, lacking adequate adrenal function to

produce an appropriate cortisol response for their level of

illness (Annane et al 2000). Current data now suggest that

moderate doses of corticosteroids, considerably smaller than

those previously found to be ineffective, may prove

beneficial in these septic shock patients with relative adrenal

insufficiency.

A recent double-blinded, multicenter trial randomized

299 French patients with septic shock of less than 8 hours

duration to receive 7 days of either placebo or 50 mg of

intravenous hydrocortisone every 6 hours plus 50 mg of

fludrocortisone via nasogastric tube each day (Annane et al

2002). Although corticotropin stimulation tests were

performed in all patients prior to administration of study

medications, the test results remained unknown to the

investigators and treating physicians until completion of the

study. Administration of replacement dose corticosteroids

improved refractory hypotension and decreased absolute

mortality by 10% as compared with placebo (63% vs 73%

mortality; p = 0.02), but only in the subgroup of septic shock

patients found to have relative adrenal insufficiency. For

the purposes of this study, relative adrenal insufficiency (or

“nonresponders”) was defined by a failure to increase serum

cortisol levels by greater than 9 mcg/dL within 2 hours of

the corticotropin stimulation test (Annane et al 2002).

Unfortunately, only the “nonresponding” subgroup

demonstrated benefit. In fact, for the relatively small subset

of septic shock patients classified as “responders”, or those

who increased their serum cortisol concentrations by greater

than 9 mcg/dL in response to adrenocorticotropin hormone,

treatment with even these moderate replacement doses of

corticosteroids produced a trend toward increased mortality

(53% vs 61%) (Annane et al 2002). This has led many

physicians to perform a cortisol stimulation test in septic

shock patients and immediately initiate steroid replacement

therapy while awaiting the results. If the patient is found to

have an inadequate cortisol response, steroids are continued,

and if the cortisol level rises appropriately, the steroids are

discontinued (Dellinger et al 2004).

Other recently completed studies have shown similar

improvements in hypotension and mortality in septic shock

patients treated with more moderate corticosteroid dosages

(Bollaert et al 1998; Briegel et al 1999), suggesting that at

least some subgroups of septic patients benefit from these

lower and more prolonged doses of corticosteroids. Debate

continues over the exact definition of adrenal dysfunction,

the length of steroid treatment after resolution of shock,

whether steroids should be tapered, and the need for

fludrocortisone as part of the treatment (Cooper and Stewart

2003). Hopefully, the ongoing multicenter, international

CORTICUS (Corticosteroid Therapy of Septic Shock Trial)

study, which randomizes catecholamine-dependent septic

shock patients to replacement dose steroids or placebo until

resolution of shock, will help clarify many of these issues

(Annane et al 2003).

Promising treatments for the
future of septic shock:
antiinflammatory agents
Despite an improved understanding of the delicate

homeostasis between the inflammatory and coagulation

systems, evidence suggests that the cascade of events in

sepsis is initiated by a release of inflammatory mediators.

These mediators result in the clinical signs and symptoms

of sepsis. If allowed to propogate without close regulation,

these mediators contribute to tissue damage. Consequently,

even in the face of numerous previously unsuccessful phase

III trials in humans, inhibiting the initial inflammatory

reaction continues to be a focus of new pharmaceutical

development.

High-mobility group box 1 protein
Despite promising animal and phase II data, treatments

directed against early mediators of inflammation, such as

TNF, IL-1 receptor, or endotoxin (lipopolysaccharide [LPS])

have failed to demonstrate benefit in improving clinical

outcomes in patients with severe sepsis or septic shock

(Table 1). Many experts surmise that initiation of these

agents occurred too late in the inflammatory course to inhibit

its numerous effects, leading to the disappointing results.

Unfortunately, most patients do not present to a medical

care facility until they experience the signs or symptoms

associated with sepsis. Since the inflammatory reaction is

responsible for producing these early symptoms, the

detrimental inflammatory cascade is already well underway

at the time of presentation. Furthermore, many deaths from

sepsis occur later in the course, at least 48–72 hours after

the onset of symptoms, prompting many to speculate that

therapy directed against inflammatory mediators with
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prolonged actions or which appear later in the course might

prove more successful.

High-mobility group box protein 1 (HMGB1) may

represent one such late mediator. This 30 kDa protein was

purified along with histones from nuclei almost three

decades ago (Goodwin and Jones 1977). Named for their

rapid migration on electrophoretic gels, high mobility group

nuclear proteins have been classified as nonhistone

chromatin-associated proteins. The nuclear binding

properties of HMGB1, along with its critical role in gene

transcription, DNA repair and replication have been

extensively studied since its discovery (Einck and Bustin

1985; Bianchi and Beltrame 1988; Bianchi et al 1989).

Recent data suggest that HMGB1 also possesses

inflammatory properties (Andersson et al 2000). Although

it was discovered because of its association with chromatin,

HMGB1 only binds DNA nonspecifically and with low

affinity, allowing movement from the nucleus to the cytosol

through nuclear pores (Falciola et al 1997). Acetylation in

the cytosol prevents nuclear re-entry and allows for

extracellular secretion (Bonaldi et al 2003). Cultured

macrophages secrete HMGB1, in the absence of cell death,

in response to stimulation from LPS, gamma interferon, or

TNF (Wang et al 1999; Andersson et al 2000; Rendon-

Mitchell et al 2003; Chen et al 2004). In addition, HMGB1

is passively released from all nucleated cells upon cell

necrosis, but not apoptosis (Scaffidi et al 2002; Harris and

Andersson 2004).

Once extracellular, HMGB1 functions as an important

inflammatory mediator. Extracellular HMGB1 fuels

inflammation by stimulating the release of additional

proinflammatory cytokines from endothelial cells and

monocytes, including TNF-α, IL-1, IL-6, IL-8, and

macrophage inflammatory protein. Furthermore, HMGB1

also helps regulate coagulation by inducing the expression

of adhesion molecules in endothelial cells, resulting in the

secretion of plasminogen activator inhibitor-1 and tissue

plasminogen activator (Fiuza et al 2003; Treutiger et al

2003). Mice develop markedly elevated levels of serum

HMGB1 when administered LPS (Wang et al 1999; Yang et

al 2004). However, unlike many classic inflammatory

mediators that peak early in the course of sepsis and become

undetectable within a few hours, serum levels of HMGB1

remain undetectable until 8 hours after the onset of sepsis

and continue to increase until reaching a plateau at 24 to

32 hours after sepsis onset (Wang et al 1999; Sunden-

Cullberg et al 2005). Administration of recombinant

HMGB1 provides further evidence for its role in sepsis. Mice

treated with sublethal doses of HMGB1 develop signs of

endotoxemia within 2 hours (Wang et al 1999). Higher doses

result in death at 18–36 hours, even in mice resistant to the

effects of LPS, indicating that HMGB1 is toxic even in the

absence of other mediators of LPS-induced inflammation

(Wang et al 1999). Intratracheal administration of HMGB1

in mice produces neutrophilic lung infiltration and edema,

an alveolitis picture consistent with the acute lung injury

seen in severe sepsis, within about 8 hours and continuing

through 24 hours (Abraham et al 2000).

Patients with severe sepsis and septic shock also have

elevated serum levels of HMGB1 compared with

undetectable levels in healthy controls (Wang et al 1999;

Sunden-Cullberg et al 2005). These elevated levels arise

from both discharge from necrotic cells along with the

production and release of HMGB1 from macrophages,

stimulated by exogenous bacterial LPS and endogenous

proinflammatory cytokines. In addition, one study found a

prognostic implication for serum HMGB1 levels, as

nonsurviving septic patients demonstrated considerably

higher levels than those who survived to hospital discharge

(Wang et al 1999). A recent study has also confirmed the

presence of elevated levels of HMGB1 in plasma and

bronchoalveolar lavage in septic patients with acute lung

injury (Yang et al 2004). Although HMGB1 was present in

similarly low levels in bronchoalveolar lavage fluid from

healthy adults and at the onset of disease in those with sepsis,

peak levels were 2–4 times higher during the course of lung

injury.

Blocking the effects of HMGB1, even well after signs

of sepsis develop, improves survival in multiple animal

models (Ulloa et al 2002; Yang et al 2004). Anti-HMGB1

antibodies, when given both before and after LPS

instillation, protect mice from the lethal effects of endotoxin

(Wang et al 1999). Importantly, treatment with these

antibodies did not just extend the time to death, but actually

allowed many of the mice to survive until necropsy at

2 weeks. Likewise, anti-HMGB1 antibodies, given to mice

24 hours after cecal perforation, decreased mortality

compared with immunoglobin-G (IgG)-treated controls

(72% vs 28%; p < 0.03), and even “rescued” animals already

exhibiting signs of severe sepsis (Yang et al 2004). Ethyl

pyruvate, a nontoxic food derivative, blocks the effects of

HMGB1 by inhibiting its release from LPS- and TNF-

stimulated macrophages (Ulloa et al 2002). Treatment with

ethyl pyruvate conferred similar mortality and end-organ

damage protection even when given to mice 24 hours after

endotoxin challenge (Ulloa et al 2002).
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The HMGB1 protein has 3 distinct domains: 2 DNA

binding elements, called A-Box and B-box, and a negatively

charged C terminal. The cytokine activity of HMGB1

localizes to 20 amino acids found in the B-box DNA binding

domain (Li et al 2003). The A-box DNA binding site

competes with HMGB1 for binding sites on the surface of

macrophages and attenuates the release of TNF and IL-1

(Yang et al 2004). Administration of A-box peptide reduces

mortality in mice, even when administered up to 24 hours

after cecal ligation and puncture, providing further evidence

that HMGB1 antagonism may improve outcomes in sepsis.

The efficacy and safety of inhibiting HMGB1 in humans

with sepsis has not yet been demonstrated. However, the

encouraging results of HMGB1 inhibition in animal models,

combined with its “prolonged therapeutic window” have

brought enthusiasm for its use as a possible future

intervention for patients with severe sepsis or septic shock.

It remains unknown whether this inhibition is best

accomplished via antibodies, inhibitors like ethyl pyruvate,

or antagonists such as A-box peptide.

3-Hydroxy-3-methylglutaryl coenzyme
A reductase inhibitors (statins)
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)

reductase inhibitors, or statins, were originally developed

for reducing serum cholesterol levels. Subsequent

investigations demonstrated that they also reduced morbidity

and all-cause mortality in patients with cardio- or

cerebrovascular disease, including a reduction in non-

coronary mortality (Packard 1998). Research into the

mechanism for this benefit found that these medications

possess immunomodulatory effects independent of their

lipid lowering abilities.

As described above, endothelial dysfunction is a major

contributor to both the proinflammatory, procoagulant, and

antifibrinolytic cascades that occur in severe sepsis. Many

of the pleiotropic effects of statins are thought to be related

to their ability to prevent endothelial dysfunction and

enhance endothelial fibrinolytic and anticoagulant properties

(Takemoto and Liao 2001). Statins increase the expression

and enhance the activity of endothelial nitric oxide synthase

(eNOS) (Laufs et al 1998). Data also demonstrate that statins

restore eNOS activity in the presence of hypoxia (Laufs et

al 1997), which is often the condition of tissue capillaries

in septic shock. Endothelium-derived nitric oxide, produced

from eNOS, promotes vascular relaxation (Ignarro et al

1987), suppresses aggregation of platelets on the

endothelium (Radomski et al 1992), and inhibits endo-

thelium–leukocyte interactions (Kubes et al 1991). HMG-

CoA reductase inhibitors also possess other properties that

promote healthy endothelial function, including the ability

to upregulate tissue plasminogen activator (Essig et al 1998),

downregulate plasminogen activator inhibitor, decrease the

expression of TF (Aikawa et al 2001), and reduce oxidative

stress (Rikitake et al 2001). Additionally, statins reduce

vascular inflammation by reducing endothelial cell

expression of adhesion molecules, which further suppresses

the ability of leukocytes to attach to the endothelium

(Gauthier et al 1995; Niwa et al 1996).

Statins also possess antiinflammatory properties that may

prove beneficial in attenuating the inflammatory cascade

found in severe sepsis. Data demonstrate that HMG-CoA

reductase inhibitors impede the migration of inflammatory

cells (Dunzendorfer et al 1997) and inhibit neutrophil

chemotaxis (Kreuzer et al 1991). Furthermore, statins

suppress macrophage growth (Sakai et al 1997) and inhibit

the production and secretion of proinflammatory cytokines,

including TNF, IL-1, IL-6, and IL-8, from macrophages and

endothelial cells (Pahan et al 1997; Kothe et al 2000).

Animal data further suggest a role for statins in treating

severe sepsis. Mice, pretreated with intraperitoneal injection

of simvastatin (Merck and Co, Inc, Whitehouse Station, NJ,

USA) prior to induction of sepsis via a cecal ligation and

puncture model, lived 4 times as long as mice treated with

placebo (Merx et al 2004). This survival benefit occurred

despite similar rates of bacteremia. Pretreatment with

simvastatin preserved cardiac contractility as measured 20

hours after ligation and puncture, compared with a 28%

decline in cardiac output in control mice. Similarly,

leukocytes isolated from treated mice displayed a reduced

ability to adhere to cytokine-stimulated murine endothelial

cells compared with leukocytes harvested from control mice.

The same group of investigators has recently found similarly

encouraging results when HMG-CoA reductase inhibitors

are administered to mice after the onset of sepsis (Merx et

al 2005). In an identical model, mice treated with statins

lived twice as long as controls, despite not being treated

until 6 hours after cecal ligation and puncture. Delaying

treatment until after the manifestation of hemodynamic

alterations did not prevent treated mice from again

demonstrating preservation of cardiac function and

decreased leukocyte–endothelial adherence.

Although no randomized, controlled studies have

investigated the efficacy and safety of statins in treating

humans with severe sepsis or septic shock, retrospective and
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observational data suggest a possible benefit. A retrospective

review of 388 cases of bacteremia from either aerobic gram-

negative rods or Staphylococcus aureus demonstrated a

reduction in both overall (6% vs 28%; p = 0.002) and

infectious mortality (3% vs 20%; p = 0.010) in patients

taking statins compared with those not taking statins (Liappis

et al 2001). A recent prospective observational cohort study

has found confirmatory data. This study evaluated 361

consecutive patients admitted to the hospital with presumed

or documented acute bacterial pneumonia (Almog et al

2004). Severe sepsis, or organ dysfunction attributable to

sepsis, developed in only 2.4% of patients who had been

treated with statins for longer than a month prior to

admission compared with 19% of patients not treated with

statins (p < 0.0001). Similarly, only 3.7% of patients treated

with statins required care in the ICU compared with 12.2%

of controls. Given these data, the relative risk of developing

severe sepsis associated with statin use was calculated to be

0.13 (95% CI: 0.03–0.52) and the relative risk of requiring

ICU care was 0.30 (95% CI: 0.1–0.95) (Almog et al 2004).

Unfortunately, the observational nature of both of these

studies yields significantly different baseline characteristics

between groups. Not unexpectedly, patients receiving statins

were more likely to be afflicted with hypertension, ischemic

heart disease, diabetes, and hyperlipidemia. However, they

also had significantly different sources of infection and were

less likely to demonstrate hypoalbuminemia or poly-

substance abuse (Liappis et al 2001; Almog et al 2004).

These differences in baseline characteristics and

uncontrolled administration of statins render cause and effect

determinations impossible. Large, multicenter, randomized,

blinded, placebo-controlled trials will need to be conducted

to effectively answer the question of whether or not treating

septic patients with statins improves clinical outcomes.

Conclusion
The complexity of medicine, including older patients with

greater comorbidities, more immunosuppression, and an

increasing use of invasive procedures, has resulted in a

dramatic rise in the incidence of severe sepsis and septic

shock. Despite the increasing burden on society, treatment

options remain limited. Drotrecogin alfa (activated) has

received regulatory approval for treatment of such patients,

but investigations continue in an attempt to optimize its

utilization. Replacement doses of corticosteroids and/or

vasopressin may also help in select subpopulations of

patients with septic shock.

The search for novel treatments has accelerated with the

emerging comprehension of the complex pathophysiology.

Animal data suggest that inhibiting late mediators of

inflammation, such as HMGB1, or mediators of both

inflammation and coagulation, like TF, may prove beneficial.

Uncontrolled studies in humans also suggest that HMG-

CoA reductase inhibitors, with their many pleiotropic

actions, may both prevent and attenuate the septic state.

Future investigations should continue to focus on improving

clinical outcomes, especially mortality, and may benefit

from a multifaceted approach of combining numerous agents

with different actions.
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