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Abstract 

Background:  Sepsis is defined as a state of multisystem organ dysfunction secondary to a dysregulated host 
response to infection and causes millions of deaths worldwide annually. Novel ways to counteract this disease are 
needed and such tools may be heralded by a detailed understanding of its molecular pathogenesis. MiRNAs are small 
RNA molecules that target mRNAs to inhibit or degrade their translation and have important roles in several disease 
processes including sepsis.

Main body:  The current review adopted a strategic approach to analyzing the widespread literature on the topic of 
miRNAs and sepsis. A pubmed search of “miRNA or microRNA or small RNA and sepsis not review” up to and including 
January 2021 led to 1140 manuscripts which were reviewed. Two hundred and thirty-three relevant papers were scru-
tinized for their content and important themes on the topic were identified and subsequently discussed, including an 
in-depth look at deregulated miRNAs in sepsis in peripheral blood, myeloid derived suppressor cells and extracellular 
vesicles.

Conclusion:  Our analysis yielded important observations. Certain miRNAs, namely miR-150 and miR-146a, have 
consistent directional changes in peripheral blood of septic patients across numerous studies with strong data 
supporting a role in sepsis pathogenesis. Furthermore, a large body of literature show miRNA signatures of clinical 
relevance, and lastly, many miRNAs deregulated in sepsis are associated with the process of endothelial dysfunction. 
This review offers a widespread, up-to-date and detailed discussion of the role of miRNAs in sepsis and is meant to 
stimulate further work in the field due to the potential of these small miRNAs in prompt diagnostics, prognostication 
and therapeutic agency.
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Background
Sepsis is defined as a dysregulated host immune response 
to infection that leads to multisystem organ damage 
(Singer et  al. 2016). The true incidence of sepsis in any 
given country is unknown due to differences in sepsis 
definitions, reporting mechanisms and the origin of data 
on sepsis, which is usually from high income countries 
(Cecconi et al. 2018). One can certainly estimate that the 

disease claims the life of millions of people around the 
world annually and costs billions of dollars to health care 
systems (Cecconi et al. 2018; Angus et al. 2001). Due to 
the variable clinical presentations of sepsis, rapid diag-
nosis can prove challenging. Prompt recognition and 
treatment improve patient outcome, since every one-
hour delay in starting antimicrobial therapy increases 
mortality by 7.6% (Kumar et al. 2006; Evans et al. 2021). 
Research efforts on novel treatments of sepsis in clini-
cal trials have had disappointing results, partially owing 
to a lack of understanding into the disease’s pathophysi-
ology (Ranieri et  al. 2012; Giza et  al. 2016). Biomedical 
research into the pathogenesis of sepsis holds promise 
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for pathway-specific drug discovery to revolutionize the 
course of this illness.

Sepsis has a complex pathophysiology with features of 
pro-inflammation, immune suppression and endothelial 
dysfunction. A firmly established pathway to immune 
activation occurs when the host generates a proinflam-
matory reaction against the invading pathogen (Angus 
and Poll 2013). Cells of the innate immune system [neu-
trophils, monocytes, macrophages) herald the initial 
inflammatory response by interacting with pathogens 
via pathogen recognition receptors [PRRs), an example 
of which is the toll like receptor class (TLRs) (Boyd et al. 
2014). These receptor classes recognize conserved struc-
tures among microbes called pathogen-associated molec-
ular patterns (PAMPs), such as the lipopolysaccharide 
(LPS) component of the outer membrane of gram-neg-
ative bacteria, to initiate NF-κB/RelA/p65 transcription 
and mitogen activated protein kinases (Brudecki et  al. 
2013). The resulting systemic inflammatory response 
increases levels of proinflammatory cytokines including 
tumor necrosis factor-alpha (TNF-α), IL6, IL8 and IL-1b 
(Giza et al. 2016; Brudecki et al. 2013).

The proinflammatory cascade in sepsis, while aimed 
at the invading pathogen, causes collateral tissue dam-
age (Angus and Poll 2013). To avoid this detrimental 
effect, the immune system adapts an anti-inflammatory 
and immunosuppressive profile referred to as endotoxin 
tolerance/adaptation. The gold standard definition of 
endotoxin tolerance is decreased release and circulation 
of proinflammatory molecules in response to TLR4’s 
repeat exposure to LPS or bacterial endotoxin (Cavail-
lon and Adib-Conquy 2006). Markers such as IL4, IL10, 
IL13, IkBα and IL1Ra indicate a more anti-inflammatory 
milieu (Giza et al. 2016; Brudecki et al. 2013). Immuno-
suppression makes the host more susceptible to second-
ary infections.

Sepsis is characterized by an excessive, sustained and 
generalized activation of the endothelium, clinically pre-
senting as increased thrombosis, tissue inflammation 
and edema (Ince et al. 2016; Joffre et al. 2020). Endothe-
lial cells (ECs) take on a proinflammatory phenotype 
when they interact with PRRs, releasing cytokines and 
pro-coagulation molecules. The interstitial leakage in 
sepsis derives from the increased permeability associ-
ated with damage to the glycocalyx and EC apoptosis 
(Colbert and Schmidt 2016). The changes in ECs with 
sepsis are partly beneficial to limit bacterial spread, but 
persistent endothelial changes lead to poor microcircu-
latory blood flow and tissue hypoperfusion (Joffre et  al. 
2020). Teasing apart an appropriate endothelial response 
from a maladaptive one is challenging and complicated 
by the fact that the endothelium is a structure with gross 
heterogeneity.

In the past fifteen years, microRNAs (miRNAs) have 
emerged as key players in sepsis pathogenesis. MiRNAs 
are endogenous non-coding RNA molecules of approxi-
mately 21 nucleotides in length (Bartel 2004). In 1993, 
Lee and colleagues discovered the first miRNA, lin-4 in 
C. elegans, and elucidated its role in development (Lee 
et  al. 1993). MiRNAs affect gene expression by binding 
to an mRNA’s 3’-untranslated region (UTR) to degrade 
or inhibit protein translation (Bartel 2004). Since their 
discovery, miRNAs have been implicated as key play-
ers across a myriad of cellular and organismal func-
tions, such as development, differentiation, cell death 
and senescence (Formosa et al. 2014; Ivey and Srivastava 
2015; Zhang et al. 2017). Importantly, they have emerged 
as putative biomarkers for many diseases and realistic 
targets for therapeutic strategies that have reached clini-
cal trials (Rupaimoole and Slack 2017). For example, in 
an open label, dose escalation, multicentre phase I trial 
in Australia, an acceptable safety profile was established 
for TargomiRs (miRNA loaded minicells) in malignant 
mesothelioma (Zandwijk et al. 2017). Understanding the 
role of miRNAs in sepsis lends to a unique and plausible 
angle of discovery for novel ways to diagnose, prognosti-
cate and treat this disease.

The current review aims to provide a comprehensive 
analysis on the current landscape of miRNAs in human 
sepsis, with an emphasis on what is known about miRNA 
deregulation in human peripheral blood. In addition, 
we sought to understand the mechanisms of action of 
deregulated miRNAs in sepsis, and thus included many 
articles on miRNA function in mouse or in vitro models 
of sepsis. To ensure that this work offered the most com-
prehensive understanding of the literature on the topic, 
we adopted a methodical approach to gathering studies 
of interest, as outlined below.

Approach to current review
This review summarizes relevant manuscripts avail-
able on PubMed up to and including January 2021 as a 
result of the search terms, “miRNA or microRNA or 
small RNA and sepsis not review”. The search resulted in 
1140 abstracts. To avoid predatory journals, only those 
listed on the Committee on Publication Ethics website 
(COPE, https://​publi​catio​nethi​cs.​org/) and/or with an 
impact factor greater than or equal to 2 were included. 
A total of 907 paper were eliminated, mainly due to irrel-
evance. The first relevant paper was in 2007 by Tili et al. 
on miR-155 and miR-125b levels after LPS stimulation 
of mouse macrophages (Tili et al. 2007). The first report 
on a human miRNAome profiling in the blood of sepsis 
patients was published in 2009 by Vasilescu et al. (2009). 
At the end of our search strategy, 233 original research 
papers were included and meticulously analyzed for 
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important discoveries and recurring themes, which are 
discussed below.

Deregulation of circulating miRNAs in human 
peripheral blood
Additional file  1: Table  S1 summarises the numerous 
studies that have elucidated differentially expressed miR-
NAs in the peripheral blood of human subjects with 
sepsis. The scientific goal in this context has been (1) to 
unravel miRNAs with diagnostic and prognostic poten-
tial given the ease of accessibility of peripheral blood to 
testing and (2) understand the mechanism behind spe-
cific miRNA deregulation in peripheral blood so as to 
offer new avenues to pathogenesis elucidation.

Technical considerations
A proper understanding of miRNA deregulation in 
peripheral blood necessitates an appreciation for nuances 
about the methodological approach. Additional file  1: 
Table S1 records key details for each study that we ana-
lyzed. We noted the precise patient population and its 
size: pediatric versus adult; sepsis versus septic shock; 
sepsis survivors versus non survivors; volunteers as 
healthy controls (HCs) versus control patients in the 
ICU without sepsis. One should note the component of 
peripheral blood from which miRNAs were extracted 
(for example, whole blood versus T cells) as this may 
affect the expression profile in a disease-specific manner 
(Reithmair et al. 2017; Mohnle et al. 2018).

The role of the internal reference control for quantita-
tive reverse transcription polymerase chain reaction (RT-
qPCR) stands as an essential methodological feature to 
appreciate. For every study included in our search, the 
reference control was documented in Additional file  1: 
Table  S1. Benz et  al. have documented the inappropri-
ateness of the commonly used U6 small RNA as a refer-
ence standard for investigating miRNA deregulation in 
the sera of human and mice with sepsis using RT-qPCR 
(Benz et  al. 2013). Strikingly, U6 exhibited disease spe-
cific alterations in critical illness and sepsis compared 
to controls. U6 was also found to be poorly stable in the 
blood and circulating T cells of septic patients and HCs 
(Hirschberger et al. 2019). On the other hand, spiked in 
SV-40 had better stability across groups. Spike in controls 
serve to normalize across extractions but does not yield 
any insight into systemic changes. A better alternative 
for normalization proposed by Schlosser et  al. involved 
screening hundreds of miRNAs for their stability in the 
clinical context at hand (Schlosser et  al. 2015). Their 
normalization method echoes the schematics used by 
software programs like Genorm and Normfinder, which 
many authors have incorporated in their analysis as 

shown in Additional file 1: Table S1 (Hellemans and Van-
desompele 2014).

Further technological aspects to consider include the 
content of hemolyzed RBCs in blood (may bias miRNA 
levels in plasma) (Pritchard et  al. 2012; Kirschner et  al. 
2011), which few authors have taken into account in their 
methodologies (Caserta et  al. 2016). Other contribu-
tors to variability in results across studies may include 
the type and source of sepsis (bacterial gram negative or 
positive versus viral in origin) (How et al. 2015; Yousef-
pouran et al. 2020).

With a good foundation on how to interpret the stud-
ies listed in Additional file 1: Table S1, one can appreci-
ate which miRNAs have convincing changes in human 
peripheral blood during sepsis. Most miRNAs deregu-
lated in peripheral blood are only noted in one to two or 
three reports. Caserta et  al. nicely articulated the clear 
lack of unanimous results across studies with regards to 
which miRNAs are deregulated in peripheral blood of 
septic patients and Additional file  1: Table  S1 certainly 
supports that interpretation (Caserta et al. 2016).

To bring forth miRNAs showing consistent deregula-
tion in septic patients’ peripheral blood across studies, 
each miRNA noted in Additional file  1: Table  S1 was 
cross referenced against all studies listed within that same 
table. Table 1 lists miRNAs noted in more than one study 
along with the direction of change in peripheral blood of 
septic patients. Given that miR-150 and miR-146a had 
remarkably consistent findings, they will be discussed in 
more detail next.

Circulating miR‑150 in sepsis
Table  1 shows that miR-150 had differential expression 
in sepsis in nine studies, eight of which exhibited down-
regulation (Vasilescu et al. 2009; Mohnle et al. 2018; How 
et al. 2015; Tacke et al. 2014; Ma et al. 2018, 2013; Tudor 
et  al. 2014; Roderburg et  al. 2013; Schmidt et  al. 2009). 
We reviewed the miR-150 literature for mechanisms to 
explain the consistent downregulated trend.

Ma et  al. found that miR-150 plasma levels in human 
patients with sepsis had diagnostic and prognostic value, 
correlating negatively with renal dysfunction, plasma 
levels of interleukin-6 (IL-6), TNF-α and 28-day sur-
vival (Ma et  al. 2018). The authors used human umbili-
cal vein endothelial cells (HUVECs) and septic C57BL/6 
mice after lipopolysaccharides (LPS) treatment as models 
to understand the miR-150’s mechanistic action. Over-
expression of miR-150 protected HUVECs from LPS-
induced apoptosis. MiR-150 was found to directly target 
NF-κB1. The authors concluded that miR-150 predicted 
survival in patients with sepsis, possibly by exerting an 
anti-inflammatory and anti-apoptotic role by targeting 
NF-κB1.
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Table 1  Direction of fold change of miRNAs in human peripheral blood that are implicated in sepsis (in order of increasing miRNA)

miRNA Direction of change References

miR-1-3p ↑ Gao et al. (2021)

miR-15a ↑ Mohnle et al. (2018)

↑ (in sepsis compared to HCs); ↓ in septic shock compared to sepsis Goodwin et al. (2015)

↑ Wang et al. (2012d)

↑ (in non-survivors) Wang et al. (2012b)

miR-16 ↑ in septic T cells; ↓ in whole blood (separate cohorts) Mohnle et al. (2018)

↑ Goodwin et al. (2015)

↓ in FCH cohort and ↑ in MDACC cohort Tudor et al. (2014)

↔ between SIRS and sepsis; ↑ sepsis to HCs Wang et al. (2012d)

↓ in non-survivors Wang et al. (2012b)

miR-21 ↑ Zhang et al. (2019)

↑ Xue et al. (2019)

↑ Sheng et al. (2017)

↑ Goodwin et al. (2015)

miR-23b ↑ in early onset sepsis Fatmi et al. (2020)

↓ in late sepsis and death

miR-29b-3p ↓ Li et al. (2020b)

miR-96-5p ↓ Chen et al. (2020a)

miR-103a-3p (synonymous 
with miR-103)

↑ Zhou and Xia 2020)

↓ Yang et al. (2020a)

↓ Wang et al. (2020a)

miR-106a ↑ Heng et al. (2020)

miR-107 ↓ Wang et al. (2020a)

miR-122  ↔  Roderburg et al. (2019)

↑ Rahmel et al. (2018)

↑ Real et al. (2018)

↓ Wang et al. (2014)

↓ (severe sepsis/septic shock) Wang et al. (2012a)

↑ in non-survivors Wang et al. (2012b)

miR-125a  ↔  Zhu (2020)

↑ Li et al. (2020c)

↓ Liu et al. (2020a)

↓ Yang et al. (2020b)

miR-125b ↑ Zhu (2020)

↑ Li et al. (2020c)

miR-126 ↑ Goodwin et al. (2015)

↓ Wang et al. (2010)

↑ Lin et al. (2020)

miR-128-3p ↓ Yang et al. (2020c)

miR-133a ↑ Roderburg et al. (2019)

↑ Tacke et al. (2014)

↑ Chen et al. (2020c)

miR-142-5p ↓ Qin et al. (2020)

↓ Zhen and Chen (2018)

↓ Ge et al. (2017b)]
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Table 1  (continued)

miRNA Direction of change References

miR-143 ↑ Qin et al. (2020)

↓ (in non-survivors) Roderburg et al. (2019)

↑ Mohnle et al. (2018)

↑ Han et al. (2016)

↑ Zhou et al. (2015)

↑ Schmidt et al. (2009)

miR-145 ↓ Cao et al. (2019)

↑ Zhang et al. (2019)

↑ Zhou et al. (2015)

miR-146a ↓ Karam et al. (2019)

↑ Goodwin et al. (2015)

↓ Mohnle et al. (2015)

↓ Zhou et al. (2015)

↓ Tudor et al. (2014)

↓ Shao et al. (2014)

↓ Wang et al. (2013a)

↓ Wang et al. (2010)

↑ Chen et al. (2020d)

miR146b ↑ Chen et al. (2020d)

↓ Chen et al. (2020b)

miR-150 ↓ (in non-survivors compared to survivors) Braza-Boils et al. (2020)

↓ Tacke et al. (2014)

↓ Ma et al. (2018)

↓ Mohnle et al. (2018)

↓ How et al. (2015)

↓ Tudor et al. (2014)

↑ Ma et al. (2013)

 ↔ serum levels; ↓ serum predicted mortality Roderburg et al. (2013)

↓ Schmidt et al. (2009)

↓ Vasilescu et al. (2009)

miR-155  ↔  Tacke et al. (2019)

 ↔  Roderburg et al. (2019)

↑ Vasques-Novoa et al. (2018)

↑ Liu et al. (2015)

↓ Zhou et al. (2015)

 ↔  Wang et al. (2010)

 ↔  Goodwin et al. (2015)

miR-181a-5p (synonymous 
with miR-181a)

↓ Liu et al. (2020b)

↓ Wang et al. (2020b)

miR-182 ↑ Zhou et al. (2015)

↑ Tudor et al. (2014)

↑ Vasilescu et al. (2009)

miR-19b-3p ↓ Xu et al. (2020)

miR-191 ↓ Ge et al. (2017b)

↓ Caserta et al. (2016)

↑ Ma et al. (2013)

miR-21 ↓ Na et al. (2020)

miR-204-5p ↓ Chen and Song (2020)
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In another study focused on vascular leakage and sep-
sis, Rajput et  al. investigated the role of miR-150 and 
Angiopoietin (Ang2) in a miR-150−/− mouse model 
(Rajput et  al. 2016). Ang2 induces vascular leakage and 
correlates with patient mortality in sepsis. Since miR-
150 was shown to be decreased in sepsis, the authors 
hypothesized that miR-150 suppresses Ang2 generation 
to ameliorate vascular injury. Wild-type or miR-150−/− 
mice or endothelial cells exposed to LPS or sepsis were 
assessed for Ang2 levels, adherens junction re-annealing, 
endothelial barrier function and mortality. Ang2 tran-
siently increased during LPS-induced injury in wild-type 
endothelial cells and mouse lungs. MiR-150 expression 
was elevated during the injury recovery phase. Deletion 
of miR-150 caused a persistent increase in Ang2 lev-
els and impaired adherens junctions re-annealing after 
injury, which led to increases in vascular permeability. 

MiR-150−/− mice died rapidly after sepsis. Rescuing 
miR-150 expression in endothelial cells prevented Ang2 
generation and restored vascular barrier function in miR-
150−/− mice. Early growth response 2 or Ang2 depletion 
in miR-150−/− endothelial cells restored barrier function. 
Re-expression of miR-150 by injecting a chemically syn-
thesized miR-150 mimic improved sepsis mortality.

MiR-150 has been demonstrated to have a role in 
immune modulation. A possible role for miR-150 in sep-
tic T cell immunoparalysis was underlined by Mohnle 
et  al. (2018). The authors assessed for differentially reg-
ulated miRNAs in purified T-cells or whole blood cells 
obtained from septic patients and healthy volunteers. 
T-cells of septic patients had immunosuppressive charac-
teristics in that several pro-inflammatory molecules such 
as miR-150 and miR-342 were downregulated, while a 

Table 1  (continued)

miRNA Direction of change References

miR-206 ↑ Liang et al. (2020)

miR-223 ↑ Qin et al. (2020)

↑ Zhang et al. (2019)

↓ Roderburg et al. (2019)

↑ Mohnle et al. (2018)

↑ Wu et al. (2018)

 ↔  Benz et al. (2015)

↑ Goodwin et al. (2015)

↑ in sepsis compared to NCs; ↓ in septic shock compared to sepsis Wang et al. (2012a)

↓ Wang et al. (2012b)

↓ Wang et al. (2010)

↑ in sepsis compared to NCs; ↓ in non-survivors compared to survivors Liu et al. (2020c)

miR-328 ↑ Liu et al. (2020c)

miR-342-3p ↓ Mohnle et al. (2018)

↓ septic MNCs; ↓ Tudor et al. (2014)

FHC cohort; ↑
MDACC cohort

↑ Ma et al. (2013)

↓ Schmidt et al. (2009)

miR-452 ↑ Liu et al. (2020d)

miR-483-5p ↓ Wang et al. (2014)

↑ (sepsis vs. HCs); ↓ Wang et al. (2012a)

(severe sepsis/shock vs. sepsis)

↑ (in non-survivors) Wang et al. (2012b)

miR-486 ↑ Goodwin et al. (2015)

↑ Zhou et al. (2015)

↑ Vasilescu et al. (2009)

miR-545 ↑ Wei and Yu (2020)

miR-590-3p ↓ Liu et al. (2020e)

miR-1246 ↓ Hermann et al. (2020)

↑ is upregulated in sepsis, ↓ is downregulated in sepsis and ↔ is no significant difference. Important features of study cohort are noted
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host of anti-inflammatory like miR-15a and miR-16 were 
upregulated. MiR-143, miR-150 and miR-223 levels indi-
cated T-cell immunoparalysis and correlated with patient 
SOFA-scores. MiR-143 and miR-150 (both predomi-
nantly expressed in T-cells) retained strong power of dis-
crimination in whole blood. The authors concluded that 
miR-143 and miR-150 are promising markers for T-cell 
immunosuppression in whole blood.

MiR-150’s role in sepsis has also been illustrated in 
studies of its target genes. Schmidt et al. noted multiple 
predicted targets at the computational level for miR-150 
in pathways key to the sepsis process, including innate 
pathogen detection (IRAK2, MAP2K4), apoptosis signal-
ling (BBC3 and BCL2L2), cytokine signalling (PDGFRA) 
and MAPK/NF-κB signaling (AKT3 and EIF4E) (Schmidt 
et al. 2009). Vasilescu et al. also used computational pro-
grams to see whether miR-150 target genes had a role 
in sepsis pathogenesis and several sepsis-related path-
ways emerged: MAPK, insulin resistance, Wnt, ErbB and 
mTOR. (Vasilescu et  al. 2009). MiR-150 has also been 
shown to target the chemokine receptor type 4 (CXCR4), 
which plays an important role in stem cell mobilization 
and migration in ischemic tissues (Tano et  al. 2011). 
Ischemia inhibits the expression of miR-150 in bone mar-
row-derived mononuclear cells and this consequently 
activates the CXCR4 target gene.

Our literature review on miR-150 revealed its involve-
ment in vascular leakage, immune modulation and 
inflammation. Together with the notion that its expres-
sion has a consistent pattern in human peripheral blood 
across studies, this miRNA has a convincing role in sepsis 
pathogenesis.

miR‑146a and sepsis
Our search on deregulated miRNAs in sepsis resulted 
in seven studies with significant and consistent down-
regulation of miR-146a in peripheral blood. Karam et al. 
examined circulating miR-146a levels in septic children 
compared to age and gender matched HCs (Karam et al. 
2019). The serum levels of miR-146a were significantly 
decreased in sepsis, with an even stronger signal in septic 
shock and correlated with survival.

The remaining six studies had similar results for miR-
146a in sepsis despite technical differences in study 
design, such as varying sample sizes and type of control 
group. Tudor et  al. performed miRNAomic microar-
ray analysis of mononuclear cells (primarily leukocytes) 
from eight septic and eight healthy humans and showed 
a downregulation for miR-146a in sepsis (Tudor et  al. 
2014). Other studies looking at miR-146a in PBMCs or 
T cells with HCs (HCs) as a baseline showed the same 
downregulated trend (Zhou et al. 2015; Shao et al. 2014; 
Mohnle et al. 2015). Again, the same trend of decreased 

miR-146a levels was noted by Wang et al. specifically in 
the plasma of 4 sepsis patients (Wang et al. 2013a). Inter-
estingly, the control group used here was 6 non-sepsis 
SIRS, leading one to postulate that lower levels of miR-
146a may very well be attributed to sepsis rather than 
systemic inflammation. In another study that included 
non-septic SIRS as a control group, miR-146a was sig-
nificantly lower in the sera of SIRS patients (n = 30) com-
pared to HCs (n = 20), but was more downregulated in 
sepsis patients (n = 50) compared to SIRS (Wang et  al. 
2010).

As reviewed by Testa et  al. , miR-146a has emerged 
as an important regulator of both innate and adaptive 
immunity, with key expression and function in various 
cell types of the immune system, including dendritic, 
CD8 + T lymphocyte, Tfh, Th1, Thr and Th 17 cells 
(Testa et  al. 2017). In monocytes and macrophages for 
example, miR-146a expression increases after LPS stim-
ulation via the NF-κB pathway and causes a decrease in 
inflammatory cytokines. MiR-146a has been shown to be 
affected by various inflammatory stimuli including some 
cytokines and TLRs in various cell types (Labbaye and 
Testa 2012).

MiR-146a targets several TLR4 effectors, including 
TNFR-associated factor 6 (TRAF6), IRAK1, IRAK2, IRF3 
and IRF5. MiR-146a has also been shown to positively 
affect endotoxin tolerance (Nahid et  al. 2009; Doxaki 
et al. 2015). In a report by Nahid et al. , gradual increases 
in miR-146a were observed in THP-1 cells at 4  h after 
LPS stimulation, continuing up to 35-fold over 24 h with 
a converse decrease in TNF-α expression. MiR-146a 
overexpression was observed in tolerized THP-1 cells. 
Transfection of miR-146a into THP-1 cells was similar to 
LPS priming, whereas miR-146a inhibition significantly 
decreased LPS tolerance, thus illustrating miR-146a’s 
critical role in an in vitro model of monocytic cell-based 
endotoxin tolerance.

In addition to cells of the immune system, miR-146a’s 
mechanism of action has been illustrated in the endothe-
lium. In a study by Gao et al. , miR-146a expression was 
significantly decreased in LPS-induced endothelial cells, 
and its suppression with an inhibitor increased NF-κB 
activity along with higher levels of IL-6, TNF-α, ICAM-1, 
and E-selectin (Gao and Dong 2017). In another in vitro 
sepsis model of the activated endothelium, miR-146a 
demonstrated anti-inflammatory properties by down-
regulating IL-8 and IL-6, and regulating the expression of 
heat shock protein-10 (HSP10) (Pfeiffer et al. 2017).

The molecular function of miR-146a has been illus-
trated in in  vivo models of miR-146a (miR-146a −/−) 
deficient mice. As a negative feedback regulator of 
NF-κB signaling, mice that lack miR-146a display exag-
gerated inflammatory responses to bacterial exposure 
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and develop a systemic autoimmune disease over time 
(Boldin et al. 2011; Zhao et al. 2011). In a recent study by 
Su et al. , synthetic C-miR146a mimic decreased NF-κB 
activity in macrophages and myeloid leukemia in  vitro 
and in vivo, thus alleviating monocyte-mediated cytokine 
storm and inhibiting inflammation and tumorigenicity 
(Su et al. 2020). One striking feature of this report is the 
illustration of a feasible method for systemic delivery of 
miRNA mimic specifically to human and mouse myeloid 
cells for therapeutic modulation of immune activity or 
neoplastic growth. MiR-146a’s consistent downregulated 
trend in human peripheral blood, its role as an anti-
inflammatory molecule and the plausibility of delivering 
it as a miRNA mimic highlights this miRNA as potential 
novel tool in the realm of treatment strategies.

Clinically relevant miRNA signatures in peripheral blood
Several studies that emerged in our search evaluated 
miRNA signatures for their correlation to clinically rel-
evant parameters, namely sepsis diagnosis, phases of sep-
sis and prognosis.

Shen et  al. investigated the accuracy of circulating 
miRNAs in diagnosing sepsis from SIRS and HCs via a 
systematic review and meta-analysis (Shen et  al. 2020). 
They included 22 records which had 2210 sepsis patients, 
426 systemic inflammatory response syndrome (SIRS), 
and 1076 HCs. The pooled sensitivity and specificity 
of miRNAs were 0.80 and 0.85, respectively. Subgroup 
analysis indicated that improved diagnostic accuracy 
was achieved with miRNAs in adults, serum rather than 
plasma, downregulation of miRNA expression, criteria 
of Sepsis-3 versus sepsis-1 or sepsis-2, non-U6 inter-
nal reference for normalization, and dysregulated miR-
223 expression. The search strategy adopted here also 
resulted in several reports identifying miR-223 expres-
sion as an important miRNA biomarker for sepsis (Ma 
et  al. 2013; Wang et  al. 2010, 2012a; Wu et  al. 2018; 
Huang et al. 2014).

In a study by Ma et  al. aiming to identify novel bio-
markers for rapid sepsis diagnosis in the ICU, small RNA 
sequencing of whole blood was used to identify differen-
tially expressed miRNAs in septic patients and controls 
(Ma et  al. 2013). Using a linear discriminant statistical 
model, a composite signature of miR-150 and miR-4772-
5p-iso was generated that possessed 90.5% specificity and 
81.8% sensitivity in distinguishing sepsis from SIRS. The 
findings were then validated in an independent cohort. 
The results from the two cohorts showed an 86% diag-
nostic accuracy for sepsis.  To investigate a mechanistic 
role for miR-4772-5p-iso in sepsis, in vitro  studies were 
carried out that revealed this miRNA to be upregulated 
in primary peripheral blood monocytes after a 24  h 
challenge with specific TLR ligands. MiR-150 has been 

delineated as a sepsis biomarker elsewhere (Vasilescu 
et al. 2009).

Current literature suggested a vital role for miRNAs 
in distinguishing various stages of sepsis (Karam et  al. 
2019; Wu et al. 2018; Wang et al. 2012a; Liu et al. 2015). 
In a study by Wang et al. , 166 patients with sepsis and 
24 normal controls were analyzed for serum expression 
levels of miR-223, miR-15b, miR-483-5p, miR-499-5p, 
miR-122, and miR-193b* by RT-qPCR assays. MiR-223 
and miR-499-5p levels were significantly different in 
patients with mild sepsis, severe sepsis and septic shock. 
In a binary logistic regression model, only miR-499-5p 
and SOFA were able to distinguish between mild sepsis 
and severe sepsis and septic shock (Wang et  al. 2012a). 
MiR-146a was implicated in stages of sepsis in a pediat-
ric cohort, with lowest levels seen in septic shock (Karam 
et al. 2019). Similarly, miR-223 and miR-155 levels were 
shown to positively correlate with sepsis severity (Wu 
et al. 2018; Liu et al. 2015).

Circulating miRNAs have also been implicated as prog-
nostic markers. In a study by Goodwin et  al. , plasma 
samples from patients with severe sepsis (n = 62) and 
HCs (n = 32) were analyzed by RT-qPCR for candi-
date miRNAs (Goodwin et  al. 2015). In the group who 
developed shock, miR-34a expression was significantly 
increased while miR-15a and miR-27a expressions were 
decreased in this group. The combined expression of 
these three miRNAs predicted shock with an area under 
the curve of 0.78. In silico analyses predicted that these 
three miRNAs regulate genes involved in endothelial cell 
cycle, apoptosis, VEGF signaling, LPS-stimulated MAPK 
signaling, and NF-κB signaling. Patient survival has also 
been predicted with relative accuracy using circulat-
ing miRNA profiles. In a cohort of 214 sepsis patients, 
a combination of 4 serum microRNAs (miR-15a, miR-
16, miR-193* and miR-483-5p) and sepsis clinical scores 
predicted 28 day survival with a sensitivity of 88.5% and 
a specificity of 90.4% (Wang et  al. 2012b). Many other 
miRNAs have been implicated in prognosis and/or sur-
vival, including miR-122, miR-150, miR-155, miR-193b*, 
miR-223, miR-483-5p, miR-574-5p and others (Vasilescu 
et  al. 2009; Ma et  al. 2018; Roderburg et  al. 2013; Wu 
et al. 2018; Wang et al. 2012b, 2013b, 2012c; Tacke et al. 
2019; Rahmel et al. 2018). Altogether, these results indi-
cate circulating miRNAs could have the ability to screen 
and monitor the progress of sepsis.

miRNAs and the endothelium in sepsis
Given the crucial role of a dysfunctional endothelium in 
sepsis, it is with no surprise that our search on miRNAs 
and sepsis yielded a significant number of reports focus-
ing on blood vascular ECs. The first thing that stands out 
is miR-126, noted in three papers (Guo et al. 2016; Chu 
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et al. 2016; Jones Buie et al. 2019). One of the earlier of 
the three papers found increased miR-126 aided in bar-
rier function in cell culture (Guo et al. 2016). Chu et al. 
(2016) recapitulated results whereby decreased levels 
of miR-126-3p were detrimental to vascular perme-
ability and proliferation and can alter adhesion proteins 
in mice aortas (Chu et al. 2016). Taking it one step fur-
ther, delivery of miR-126-5p in mice improved survival 
(Jones Buie et al. 2019). A second notable sepsis miRNA 
in the endothelial cell was miR-150, which was discussed 
above..

Several papers have tried to address alterations in the 
function of endothelial cells with respect to miRNA 
deregulation and correlation with sepsis outcomes. One 
of the earlier papers compared between septic patients 
and human HCs found upregulated levels of miRNA-
34a in patients who develop septic shock, while miR-
15a and miR-27a were decreased (Goodwin et al. 2015). 
Interestingly, these miRNAs are believed to be relevant 
to particular endothelial responses in sepsis, such as 
LPS-stimulated signaling cascades, vascular endothe-
lial growth factor (VEGF) signaling, and apoptosis. Of 
these three miRNAs, miR-34a was further interrogated 
in endothelial cells. It was shown that increasing miR-
34a levels attenuated TNF-α and NF-κB activation while 
IL-10 and Notch-1 levels increased after LPS treatment 
(Ge et  al. 2017a). Overall, the concurrent regulation of 
these pathways may reduce endothelial damage in  vivo, 
but this remains to be tested.

An exceptional level of inspection was undertaken by 
Vasques-Novoa et al. (2018). They identified a correlation 
between increased plasma levels of miR-155 and sepsis-
related mortality and cardiac injury in humans. Moreo-
ver, in mice models, genomic deletion or pharmacological 
depletion of miR-155 reduced sepsis-associated cardio-
vascular dysfunction and mortality. Closer examination 
revealed miR-155 expression in macro- and microvas-
cular endothelial cells and some leukocytes. In  vitro 
examination of the function of miR-155 in microvascular 
endothelial cells revealed its ability to suppress cytokine 
and cell adhesion molecule expression. They also found 
that removal of miR-155 improved AngII reactivity and 
blunted sepsis-induced systemic and myocardial nitric 
oxide overproduction. This work showed that the usage 
of miR-155 is a plausible marker for sepsis outcomes in 
addition to being a possible therapeutic intervention.

From a different perspective, Wang et  al. (2017) pub-
lished a thorough analysis of circulating endothelial cells 
(CECs), which can encompass endothelial cells that have 
detached from the blood vessel (Wang et al. 2017). They 
examined the role of these CECs and associated miRNAs 
with sepsis and acute kidney injury (AKI). CECs from 
septic AKI, non-septic AKI, septic non-AKI patients and 

healthy volunteers were isolated and their secreted prod-
ucts tested for function. Septic AKI CEC secretions led 
to cell shrinkage, decreased cell adhesion protein E-cad-
herin, and cell apoptosis in human kidney tubule cells. 
Further analysis revealed increased amounts of miR-107 
in septic AKI CECs. Inhibition of miR-107 in septic AKI 
mice through injection recapitulated in vitro findings and 
preserved the normal renal morphology and decreased 
the serum creatinine level in mice.

Out of these microRNAs, miR-155 appears to be a 
robust biomarker compared to other biomarkers such 
as miR-107 and miR-34a, as it has been found across 
numerous other publications reviewed here as a sepsis 
biomarker, although the exact subpopulation of patients 
may need further refinement (Tacke et  al. 2014, 2019). 
In addition to biomarkers, miRNAs may offer possible 
therapeutic intervention through the addition of miR-
NAs which are downregulated in sepsis. As endothelial 
progenitor cells (EPCs) and CECs can be ex vivo cultured 
and their exosomes can be harvested as a delivery vehi-
cle, miRNAs such as miR-107 are of interest as a possi-
ble therapeutic given that its method of action occurs via 
circulation.

MiRNAs and Myeloid‑derived suppressor cells 
in sepsis
Myeloid-derived suppressor cells (MDSC) are a het-
erogeneous class of immature myeloid cells which act 
in an immunosuppressive manner and expand during 
certain inflammatory conditions. Originally described 
as suppressors of T-cells, it is now appreciated that they 
interact with numerous immune cells to manifest their 
suppressive function (Sinha et al. 2007; Sica and Bronte 
2007; Schrijver et  al. 2019). Although mainly described 
for their functions in cancer, recent studies have shown 
that MDSCs play an important role in sepsis (Schrijver 
et al. 2019). Some groups have reported increases in the 
number of Gr1+CD11b+  MDSCs in the bone marrow 
and spleens of mice during polymicrobial sepsis (Bru-
decki et al. 2012; Delano et al. 2007). In the acute phase 
of sepsis, MDSCs are thought to be advantageous in sup-
pressing inflammation (Cuenca and Moldawer 2012). 
However, if MDSCs continue to expand and infiltrate 
inflamed tissues, they can induce significant pathophysi-
ology including host immunosuppression that contrib-
utes to worsened septic patient outcomes (Hotchkiss 
et al. 2013).

Within the past decade, the role of miRNAs in 
the function of MDSC in sepsis has become a small 
but active area of research. Much of this work has 
built upon the first published paper in 2014, which 
focused on two miRNAs in mouse models, miR-21 
and miR-181b (McClure et  al. 2014). They found an 
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upregulation of miR-21 and miR-181b occurred early 
in sepsis and was sustained into late sepsis which con-
tributed to the expansion of immature Gr1+CD11b+ 
MDSC (McClure et  al. 2014). The activity of these 
miRNAs appears to be upstream of the transcrip-
tion factor NFI-A, which when deleted, abrogates 
MDSC immunosuppressive function (Dai et  al. 2018). 
Importantly, in  vivo inhibition of the two miRNAs 
after the initiation of sepsis decreased the bone mar-
row Gr1+CD11b+ myeloid progenitors. The possible 
clinical importance can be seen through the fact that 
inhibition also led to improved bacterial clearance and 
reduced late-sepsis mortality by 74%.

Sheng and colleagues examined other mechanisms of 
action of miR-21 in the regulation of MDSC in sepsis 
(Sheng et  al. 2017). They found miR-375 levels were 
downregulated but miR-21 was upregulated in human 
sepsis patients, and their expression were negatively 
correlated. In mouse models, miR-375 ectopic expres-
sion decreased the number of septic Gr1+CD11b+ 
MDSC through inhibition of the JAK2-STAT3 pathway 
(Sheng et al. 2017). The convergence on these findings 
has been hinted in mouse models of late sepsis, where 
S100A9 stabilizes the Stat3-C/EBPβ protein complex 
that activates the miR-21 and miR-181b promoters. In 
an effort to ensure many of these findings were spe-
cific to the MDSC rather than other aspects of in vivo 
manipulation, Alkhateeb et al. , examined chronic sep-
sis in mice (Alkhateeb et  al. 2019). They performed 
eloquent experiments reconstituting S100A9 protein 
to Gr1+CD11b+ cells from S100A9 knockout mice 
with late sepsis and found that it restored the Stat3-
C/EBPβ protein complex and miR-21 and miR-181b 
expression, and resulted in the immunosuppressive, 
MDSC phenotype.

At the clinical level, Hollen and colleagues investi-
gated the function of MDSCs over time in survivors of 
sepsis who developed chronic critical illness (CCI) and 
whether such changes were paralleled by complemen-
tary miRNA expression patterns (Hollen et  al. 2019). 
Circulating MDSCs from survivors of surgical sepsis 
were investigated at various intervals over 6  weeks. 
They found that the number of MDSCs remained for 
high for 6  weeks after infection but only exhibited a 
suppressive phenotype at day 14 post septic insult. At 
the miRNA level, septic patients who developed CCI 
displayed significant differences in 215 MDSC miRNA 
levels when compared to patients who rapidly recov-
ered from sepsis across every time point. Overall, this 
interesting study suggested that the function of MDSC 
in sepsis may be at least partly regulated via miRNA 
function.

Extracellular vesicles of the septic patient
The presence of extracellular vesicles (EVs) offers unique 
approaches to understanding sepsis. Much of the focus 
in the literature has been on circulating vesicles in the 
vasculature, particularly the smaller exosomes which are 
released to aid in repair of other regions of the vascula-
ture through their contents, often including miRNAs. 
Moreover, these EVs can be isolated, and their contents 
analyzed for the purposes of biomarker and therapeutic 
discovery.

Initial work examining the presence and function of 
extracellular vesicles in sepsis revealed a possible pro-
inflammatory role. In 2016, Balusu et  al. identified a 
novel way of blood–brain communication activated by 
peripheral inflammation in mice via secretion of choroid 
plexus epithelium (CPE)-derived, miRNA-containing EVs 
(Balusu et  al. 2016) The systemic inflammation induced 
an increase in EVs and associated pro-inflammatory 
miRNAs, including miR-146a and miR-155, in the CSF. 
Functionally, EVs enter the brain parenchyma and are 
taken up by astrocytes and microglia, inducing miRNA 
target repression and inflammatory gene up-regulation. 
Further characterization of EVs in mice led to the obser-
vation that plasma EVs from septic mice were smaller 
in size, but higher in number, compared to control mice 
and injection of mice with septic EVs affected significant 
peritoneal neutrophil migration (Xu et  al. 2018). Septic 
EVs contained increased amounts of certain miRNAs 
and proinflammatory markers, and the effects of septic 
EVs were dampened by miRNA inhibitors against miR-
34a, miR-122, and miR-146a. One particularly elegant 
mouse study from Subramani et al. (2018) tried to under-
stand the functional differences in RBCs in septic mouse 
models and the role of plasma EVs, rather than examin-
ing traditional inflammatory responses (Subramani et al. 
2018). They found a significant ex vivo decrease in RBC 
deformability following sepsis after EVs treatment from 
septic mice. Moreover, EVs showed distinct molecular 
profiles in septic mice, particularly a significant increase 
in expression of miR-6538, and miR-2137.

An in-depth analysis of exosomes in sepsis was a 
human study profiling total serum, serum exosomes 
and blood cells to compare miRNAs between the com-
partments (Reithmair et  al. 2017). This group identified 
numerous miRNAs which were differentially regulated 
in sepsis, of which miR-27b-3p was present in all three 
compartments. Further breakdown of the compart-
ments showed miR-199b-5p was a potential early indi-
cator for sepsis and septic shock in the blood cellular 
compartment, while miR-125b-5p and miR-26b-5p were 
regulated in exosomes and serum, respectively. The par-
ticular role for these miRNAs in their specific compart-
ments and the clinical relevance of modulating these 
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microRNAs has yet to be seen. Another milestone for the 
clinical usage of exosomes as biomarkers in sepsis was 
done by Real et al. (2018). They demonstrated that differ-
ential exosomal miRNA expression of thirty-five miRNAs 
were stable up to 7  days in sepsis compared to normal 
patients. Moreover, this paper also showed that exosomal 
miRNAs could be clustered according to patient survival 
and suggested a possible role for dysregulation of the cell 
cycle in septic patients.

Zhou et al. (2018) took an alternative approach to the 
therapeutic relevance of exosomes in sepsis (Zhou et al. 
2018). EPCs have been well established for the repair of 
distal damaged tissues through migration but mainly 
the release of exosomes containing beneficial payloads. 
They found septic mice treated with EPC exosomes had 
improved survival, lower lung and renal vascular leakage, 
reduced liver and kidney dysfunction. The miRNA con-
tent of EPC exosomes included abundant miR-126-5p 
and -3p, known to exist in large quantities in endothelial 
cells. Importantly, exosomal miR-126-5p and 3p sup-
pressed LPS-induced inflammatory markers in in  vitro 
endothelial cell models. The validity of these findings was 
supported by inhibition of miR-126-5p and -3p, which 
abrogated the beneficial effects of EPC exosomes.

Deregulated miRNAs and their role in COVID‑19 
disease
The clinical features of severe COVID-19 illness and sep-
sis have a high degree of overlap. The literature thus far 
does not present a clear picture as to whether both enti-
ties are the same disease in a particular clinical context 
versus different versions of a similar pro-inflammatory 
syndrome. As an example, surviving sepsis guidelines 
have been written specifically for COVID-19 (Alhazzani 
et al. 2021), yet have a high degree of overlap for manag-
ing sepsis in general. Published reports refer to patients 
with “sepsis caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2)” (Shappell et  al. 2022), 
while others underline the differences between the two 
diseases (Klaz 2021). At the very least, the two conditions 
have many parallels at the clinical as well as molecular 
level suggesting a similar underlying pathogenesis (Olwal 
et  al. 2021; Baghela et  al. 2022). In this regard, we have 
herein sought to understand whether a role for miR-
NAs has been implicated in the COVID-19 severe illness 
syndrome.

A pubmed search of “miRNA or small RNA or micro-
RNA” in a predefined general COVID-19 filter (selects 
only articles related to COVID-19 or SARS-CoV-2) 
yielded over one thousand results as of July 2022, sug-
gesting an integral role of small RNA biology in COVID-
19 pathogenesis. We have not scoured through each 
article as was done in our original search described above 

(this was beyond the scope of the current analysis) but 
noted that many articles studied circulating miRNAs in 
patients with COVID-19, similar to numerous reports 
in sepsis (Gonzalo-Calvo et al. 2021; Garcia-Giralt et al. 
2022; Li et  al. 2021, 2020a; Fayyad-Kazan et  al. 2021). 
One study identified six miRNAs in human plasma asso-
ciated with COVID-19 illness severity: miR-148-3p, 
miR-451a, miR-486-5p, miR-192-5p and miR-323a-3p 
(distinguishing between ward, ICU patients, survivors 
and non-survivors) (Gonzalo-Calvo et al. 2021). Another 
report explored differential plasma miRNA expression 
between patients with COVID-19 and healthy controls, 
with the following miRNAs showing expression differ-
ences: miR-17-5p, miR-142-5p, miR-15a-5p, miR-19a-3p, 
miR-19b-3p, miR-23a-3p, miR-92a-3p and miR-320a. 
Circulating miR-369-3p was shown to be associated with 
acute respiratory distress syndrome in COVID-19 critical 
illness (Garcia-Giralt et al. 2022).

Since miR-146a and miR-150 surfaced as prominent 
sepsis-related miRNAs in our review, we specifically 
searched the literature for their role, if any, in COVID-
19 disease. Two reports found circulating miR-150 to be 
downregulated (as was the case in most sepsis reports—
see Table  1) in COVID-19 (Akula et  al. 2022; Nicoletti 
et al. 2022). Sabattinelli et al. looked at miR-146a in the 
serum of 30 COVID-19 positive patients and 29 healthy 
controls. Interestingly, they found downregulated miR-
146 levels for non-responders to tocilizumab and among 
the non-responders, lower miR-146a levels in patients 
with more adverse outcomes (Sabbatinelli et  al. 2021). 
The literature on miRNA levels in COVID-19 supports 
the notion that small RNA molecules are implicated in its 
pathogenesis, thus warranting further study on this topic. 
Furthermore, the similar direction of change of miR-150 
and miR-146a in COVID-19 and sepsis may suggest over-
lapping molecular pathogenesis for both diseases.

Conclusion
The current review aimed to give a broad understanding 
of the role of miRNAs systemically involved in the sep-
tic disease process. Of note, this review involved a search 
of articles up to January 2021, thus not including recent 
publications. Only Pubmed was used as a search engine 
and in this regard, potentially important information 
available via other search engines is lacking. Furthermore, 
organ specific (namely kidney, heart, lung and liver) 
miRNA involvement in sepsis was not included here but 
reviewed elsewhere (Manetti et al. 2020; Brandenburger 
et al. 2018).

After a thorough search of the literature, it is evident 
that circulating miRNAs in peripheral blood, with their 
ease of access and mechanistic involvement in the sep-
tic process, have great potential for use as diagnostic 
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and prognostic tools. This conclusion arises despite 
remarkable heterogeneity noted in the miRNA and 
sepsis literature. However, miRNAs such as miR-146a 
and miR-150 show consistent changes in human blood 
across many studies, with strong pathophysiological 
involvement in the septic process to account for the 
observations. To improve upon the heterogeneity in 
reports in future work, a more uniform and accurate 
methodical strategy is imperative. To this end, the work 
of Shen et al. has shown improved diagnostic accuracy 
with miRNAs in serum rather than plasma, use of sep-
sis-3 criteria versus sepsis-1 or sepsis-2 and non-U6 
internal reference for normalization (Shen et al. 2020). 
Interestingly, a recent report has outlined miRNAs sig-
natures that vary with aging, which may suggest that 
analyzing miRNA differences should take into account 
age-matched cohorts for more accurate analyses (Fehl-
mann et al. 2020). We strongly advocate that, at mini-
mum, future work include an improved normalization 
strategy beyond U6, and ideally employ software pro-
grams like Genorm and Normfinder to identify the 
best normalizers in the experimental context (Vandes-
ompele et al. 2002; Andersen et al. 2004).

MiRNAs have potential as future treatment strategies 
for sepsis but therapeutics remain a more complicated 
issue. In  vitro and in  vivo work on several miRNAs 
involved in the septic process, such as miR-146a, have 
convincingly identified great candidates to be consid-
ered for drug delivery, but this is where larger prob-
lems arise. The delivery of miRNA therapeutic agents 
has been complicated by safety concerns and off-target 
effects (Garzon et al. 2010; Lieberman 2018; Beg et al. 
2017). Few miRNA therapeutic agents have progressed 
to clinical trials with the majority being antisense mol-
ecules given that single-stranded oligonucleotides are 
easier to optimize in  vivo, an example being onco-
genic miR-155 in lymphoma (Rupaimoole and Slack 
2017; Setten et al. 2019; Cheng et al. 2015). Therapeu-
tic replacement of miRNAs has proven challenging 
because of chemical modifications of the miRNA nec-
essary to avoid nuclease attack, which then interferes 
with intracellular processing. That being said, a few 
synthetic miRNA mimics such as miR-29/remlarsen 
have progressed to initial clinical testing (Rupaimoole 
and Slack 2017). Indeed, research on delivery systems 
for small RNA is still ongoing and results in mouse 
models have become more streamlined and specific, 
with miRNAs having been shown to be successfully 
offloaded to specific cell types (Su et al. 2020). We urge 
the sepsis research community to continue to identify 
sepsis-specific miRNAs and define their mechanistic 
action and, in parallel, continue to evolve delivery sys-
tems so that, perhaps one day, the two paradigms may 

neatly intertwine to offer a revolutionary approach in 
the treatment of this disease.
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