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Peptidylarginine deiminases (PADs) are a group of enzymes that catalyze post-
translational modifications of proteins by converting arginine residues into citrullines.
Among the five members of the PAD family, PAD2 and PAD4 are the most frequently
studied because of their abundant expression in immune cells. An increasing number of
studies have identified PAD2 as an essential factor in the pathogenesis of many diseases.
The successes of preclinical research targeting PAD2 highlights the therapeutic potential
of PAD2 inhibition, particularly in sepsis and autoimmune diseases. However, the
underlying mechanisms by which PAD2 mediates host immunity remain largely
unknown. In this review, we will discuss the role of PAD2 in different types of cell death
signaling pathways and the related immune disorders contrasted with functions of PAD4,
providing novel therapeutic strategies for PAD2-associated pathology.
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HIGHLIGHTS

• Peptidylarginine deiminase (PAD) enzymes catalyze the conversion of arginine residues to
citrulline, regulating activity of host immunity.

• PAD2 plays an important yet different role in immune cells than its isozyme PAD4. Although
PAD4 is previously identified to be the key regulator in the formation of neutrophil extracellular
traps (NETosis), PAD2 also takes part in NETosis in the absence of PAD4.

• Pad2 deficiency decreases macrophage pyroptosis while Pad4 deficiency increases pyroptosis.
• PAD2, differing from the other PAD family members, citrullinates arginine 1810 (Cit1810) in

repeat 31 of the carboxyl-terminal domain of the largest subunit of RNA polymerase II, which
enables the efficient transcription of highly expressed genes needed for cell cycle progression,
metabolism, and cell proliferation.
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INTRODUCTION

Peptidylarginine deiminases (PADs) are a group of enzymes that
catalyze post-translational modification of proteins by converting
arginine residues into citrullines (Figure 1A) (1, 2). The PAD family
consists of five members: PAD1, PAD2, PAD3, PAD4, and PAD6
(3). As the most widely expressed member, PAD2 can be found in
many tissues and organs, including brain (4), spinal cord (4), spleen
(5), pancreas (6), skeletal muscles (7), secretory glands, and immune
cells (8, 9). By citrullinating proteins, PAD2 regulates a number of
cellular processes such as gene transcription (10, 11), antigen
generation (12), extracellular trap formation (also termed ETosis)
(13, 14), and pyroptosis (15).

ETosis is a described cell death that results in the release of a
complex lattice of chromatin containing DNA, histones, and
Frontiers in Immunology | www.frontiersin.org 2
other associated proteins (16–18). These extracellular chromatin
webs can entrap and kill microbial organisms. Originally, this
phenomenon was described in neutrophils, termed NETosis
(Neutrophil Extracellular Traps). However, researchers later
found that this mechanism also exists in other cell types such
as macrophages, eosinophils, and mast cells (19). Thus, some
researchers recommend that the mechanism of this cell death be
generalized as “ETosis” (20–22), while others prefer using
NETosis or macrophage ETosis (METosis) for the death of
specific cell sources.

Similar to the structure of PAD4 (23), the N-terminal of
PAD2 consists of two immunoglobulin-like domains, IgG
domain 1 (residues 1-115) and IgG domain 2 (residues 116-
295), and a catalytic domain, the C-terminal (residues 296-665)
(24). There are six calcium-binding sites in PAD2 (Ca1-6).
A

B

FIGURE 1 | Scheme of citrullination and PAD2 structure. (A) A simplified equation describing that PAD2 catalyzes the citrullination of a peptidylarginine residue in
the presence of calcium ions (Ca2+). (B) Transition of inactivated PAD2 to activated PAD2. Ca1 and Ca6 in PAD2 protein are permanently occupied by Ca2+; when
the levels of Ca2+ in cytoplasm are elevated, Ca2, Ca3, Ca4 and Ca5 are filled with Ca2+ for PAD2 activation. Ca1, Ca2, Ca3, Ca4, Ca5, and Ca6, Calcium-binding
sites 1, 2, 3, 4, 5, and 6; IgG, immunoglobin; PAD, peptidylarginine deiminase.
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Ca1 and Ca6 are occupied by calcium in both inactivated and
activated PAD2. During the activation of PAD2, calcium ions
bind to sites Ca3-5. Afterwards, calcium binds to Ca2, which
causes conformational changes at the active site. R347 moves out
of the active site, and C647 moves in. As such, a pocket-like
structure is generated for substrate binding (Figure 1B). Then,
where does the calcium come from for PAD2 activation? A
previous study revealed that adenosine triphosphate (ATP)-
induced PAD2 activation can be dramatically diminished in
mast cells cultured in calcium-free media, suggesting that
calcium needed for PAD2 activation mainly comes from the
extracellular space (25). Zheng et al. also demonstrated that
Annexin A5 (ANXA5) can bind to the plasma membrane to
facilitate calcium influx and further contribute to PAD2
activation (26). Thus, sufficient extracellular calcium is
required for the activation of PAD2.

The substrates of PAD2 are quite diverse in vivo, including
cell structural proteins (27, 28), immunomodulating molecules
(29, 30), and histones (31). For instance, vimentin, which is an
important part of the cytoskeleton in skeletal muscles and
macrophages, is a PAD2 substrate (28). Another crucial
protein for cell structure, actin, can also be citrullinated by
PAD2 (27). PAD2 can mediate thrombotic activities via
citrullinating antithrombin (32) and fibrinogen (33). PAD2-
catalyzed citrullination of certain immunomodulating
cytokines, such as the chemokine (C-X-C motif) ligand
(CXCL) 10 (34), interleukin (IL)-8 (29), and CXCL12 (30) is
associated with an altered immune response. Additionally, PAD2
can translocate into nuclei and citrullinate histones, regulating
gene transcription (10, 26).

Citrullination can change the net charge and increase the
hydrophobicity of proteins, which subsequently alters the
structures and functions of the proteins (35–39). The effects of
citrullination are variable and debated. Hojo-Nakashima et al.
revealed that PAD2 is beneficial as it catalyzes vimentin
citrullination in THP-1 cells (a human monocytic cell line) to
promote the differentiation and maturation of macrophages (40).
By contrast, vimentin citrullinated by PAD2 is identified as an
autoantigen in rheumatoid arthritis (RA), exhibiting the
potentially detrimental role of PAD2 (32). Apart from vimentin, a
large number of proteins are found to trigger autoimmune responses
following PAD2-mediated citrullination (32). Interestingly,
dysregulation of PAD2 activity has been implicated in many
diseases such as RA (41), multiple sclerosis (MS) (42), and
neurodegenerative disorders (43). Moreover, previous studies
revealed that PAD2-catalyzed citrullination is an essential process
during various modes of immune cell death, such as ETosis (13, 14)
and pyroptosis (15). Thesemodalities of immune cell deathmay play
a major role in the pathogenesis of sepsis and other inflammatory
diseases (44, 45). Consequently, it is critical to understand the role of
PAD2 in host immunity and related diseases. In the following
sections, the mechanisms via which PAD2 mediate cellular
processes, regulate immune response, and cause diseases will be
reviewed and discussed. Understanding the mechanisms of host
immunity regulated by PAD2 may ultimately allow for design of
novel therapeutic strategies for a multitude of immune disorders.
Frontiers in Immunology | www.frontiersin.org 3
PAD2 EXPRESSION IN IMMUNE CELLS

PAD2 in Macrophages
Macrophages are immune cells which exhibit relatively rich
PAD2 expression (9). Macrophages play an important role
both in innate and adaptive immunity. Phagocytosis and
pyroptosis are two major pathways involved in the pathogen
clearance by innate immunity (46–50). Macrophages contribute
to adaptive immunity by presenting the antigens of pathogens to
T cells (51–53). PAD2 can affect these immune actions through
regulating the differentiation of macrophages (9, 40).
Macrophages are derived from monocytes in circulation.
Interestingly, although PAD2 mRNA can be detected in
monocytes, it is not translated into PAD2 proteins until the
initiation of differentiation (9). Moreover, a previous study
revealed that the levels of PAD2 mRNA and proteins exhibit
concomitant increases in THP-1 cells during the differentiation
into macrophages (40). Nonetheless, the underlying mechanisms
through which PAD2 mediate monocyte differentiation
remain elusive.

PAD2 also mediates the activation of pyroptosis (Figure 2),
another important signaling pathway associated with anti-
pathogen activities in macrophages (15). Pyroptosis is an
inflammatory form of macrophage death induced by infection
or chemical stimulation and mediated by Caspase-1 and/or
Caspase-11 (54). Prior to the activation of Caspase-1, the
stimulating signals are sensed by pattern recognition receptors,
including NOD-like receptors and AIM2-like receptors, and
initiate the assembly of inflammasomes (55–57). During the
formation of inflammasomes, a quick increase of protein
citrullination can be observed in macrophages (15).
Specifically, ASC (apoptosis-associated speck-like protein
containing a CARD), a critical component of inflammasomes,
is also citrullinated. After PAD2 and PAD4 are dually suppressed
by Cl-amidine, a pan-PAD inhibitor (58), the citrullination of
ASC is reduced (15). Additionally, the activation of NLRP3
inflammasomes is also dampened, which subsequently
diminishes macrophage pyroptosis. In agreement with these
findings, our most recent experiments revealed that the
knockout of Pad2 in macrophages can decrease Caspase-1
mediated pyroptosis induced by Pseudomonas aeruginosa
sepsis (PA-sepsis) (59). In contrast, Pad4 depletion in the
macrophages can increase Caspase-1 mediated pyroptosis in
the mouse model of PA-sepsis (59). Therefore, PAD2-mediated
ASC citrullination is probably a significant step during
inflammasome assembly, which then regulates the activation of
Caspase-1 and pyroptosis. Nonetheless, since little effort has
been taken to explore the association between PAD2 and
pyroptosis, the underlying mechanisms via which PAD2 affects
Caspase-1 activation remain to be elucidated.

Aside from pyroptosis, macrophages are also reported to
undergo another form of cell death termed METosis (Figure 2)
(13), which describes the release of extracellular trap-like
structures from macrophages (20, 60). Similar to NETs,
Macrophage ETs (METs) are found in response to various
microorganisms (61). METs are capable of trapping and
November 2021 | Volume 12 | Article 761946
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immobilizing microbes to assist in microbial clearance (20).
Several studies demonstrated that histone hypercitrullination
catalyzed by PADs is an essential step during METosis (13, 62).
Due to the alterations in net charges and structures,
hypercitrullinated histones render chromatins more susceptible
to decondensation (63). Most prior studies conclude that the
process of citrullination is driven by PAD4, but a study by
Mohanan et al. identified PAD2 as a major mediator in tumor
Frontiers in Immunology | www.frontiersin.org 4
necrosis factor (TNF)-a induced MET release from Raw264.7
macrophages (13). Therefore, further work is needed to clarify the
association between PAD2 and METosis.

PAD2 in Neutrophils
Overall, PAD2 seems to have minimal effects on neutrophils due
to low expression. The distribution of PAD2 and PAD4 are
different in neutrophils. Unlike in macrophages, the PAD that is
FIGURE 2 | The role of PAD2 in METosis and pyroptosis in macrophages. Pathogens trigger calcium influx into cytoplasm of macrophages. Subsequently, PAD2 is
activated due to elevated levels of calcium. Activated PAD2 translocates into the nucleus to induce histone citrullination and chromatin decondensation, leading to
METosis. Also, PAD2 mediates pyroptosis via citrullinating ASC. Citrullinated ASC participates in the assembly of inflammasomes which activate Caspase-1.
Caspase-1 facilitates the maturation of IL-1b and IL-18 via cleaving their precursors. Meanwhile, Caspase-1 cleaves and activates PFMs which insert into plasma
membrane to create pores allowing massive water to flux in. As a result, macrophages swell and rupture to accomplish pyroptosis, releasing mature IL-1b and IL-18.
ASC: apoptosis-associated speck-like protein containing a CARD domain; IL, interleukin; METosis, macrophage death with release of macrophage extracellular
traps; PAD2, type 2 peptidylarginine deiminase; PFMs, pore forming molecules; PRR, pattern recognition receptor.
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predominantly expressed in neutrophils is PAD4 (64–66). PAD4
exists in granules, plasma membrane, and nucleus, while PAD2
is mainly detected in granules (64). Like macrophages,
neutrophils can form NETs to defend against microbial
infection (65, 67–69). NETosis also requires PAD-catalyzed
histone hypercitrullination, which induces chromatin
decondensation (63). In contrast to METosis, the citrullinating
process in neutrophils is believed to be entirely mediated by
PAD4 (65). However, our recent study found that selective
inhibition of PAD2 can significantly decrease the generation of
Citrullinated histone H3 (CitH3) in lipopolysaccharide (LPS)-
stimulated neutrophils (70). The result suggests that PAD2 may
also play a role in citrullinating actions within neutrophils.
Furthermore, the extracellular release of PAD2 from
neutrophils may still be able to citrullinate histone H3 and
fibrinogen (64).

PAD2 in T Cells
There are two major subtypes of T cells which are CD4+ T cells
and CD8+ T cells (71). CD8+ T cells directly kill microbe-
infected cells or tumor cells (72), while CD4+ T cells usually act
indirectly to regulate immune response, thus coined “helper T
cells” (Th) (73). The relationship between CD8+ T cells and
PAD2 is not well studied, while several studies revealed that
PAD2 can modulate the polarization and functions of CD4+ T
cells (11, 74, 75).

The expression of PAD2 in naïve CD4+ T cells is much lower
than that in memory CD4+ T cells, indicating that PAD2 may
have effects on the differentiation of CD4+ T cells (74). Actually,
the fate of differentiating CD4+ T cells is decided by two key
transcription factors, GATA3 and RORgT (76). PAD2 can directly
citrullinate these two transcription factors, which changes their
DNA binding ability to modulate gene expression (11). PAD2
inhibition decreases the differentiation of Th17 cells but promotes
the differentiation of Th2 cells from naïve CD4+ T cells (11).
Reversely, PAD2 overexpression in human peripheral blood
mononuclear cells reduces Th2 cell polarization and increases
Th17 cell polarization (77). Meanwhile, PAD2 regulates the
functions of CD4+ T cells (11). PAD2 deficiency enhances
cytokine production in Th2 cells but suppress cytokine
generation in Th17 cells. Interestingly, although PAD2 is not
associated with Th1 polarization, PAD2 inhibition can impair
interferon-g production in Th1 cells (11).

In addition to directly altering the functions and polarization
of CD4+ T cells, PAD2 can affect T cell activities by citrullinating
certain chemotaxins (i.e., CXCL10 and CXCL11) that mediate
the chemotaxis of T cells (34). T cells exhibit lower sensitivity to
citrullinated CXCL10 and CXCL11. Therefore, fewer T cells will
be attracted to inflammation sites, resulting in attenuated
inflammatory response.

PAD2 in B Cells
B cells are a subset of immune cells, which are responsible for
antibody production and antigen presentation (78). The expression
of PAD2 is low in B cells (79). Nonetheless, PAD2 is probably
required for the transition of B cells to plasma cells, as the knockout
of Pad2 can cause a significant reduction in bone marrow plasma
Frontiers in Immunology | www.frontiersin.org 5
cells in a mouse model of TNF- a induced arthritis (80).
Consequently, IgG produced by plasma cells is also decreased in
Pad2-/- mice, which is associated with alleviated severity of TNF-a
induced arthritis (80). This may indicate that PAD2 is required for
the development of plasma cells. However, given that PAD2-
citrullinated proteins are antigens for B cells, another explanation
may also be established: Pad2 knockout reduces the generation of
citrullinated proteins, thus resulting in decreased activation of B cells.
Hence, further work is needed to clarify the role of PAD2 in B cells.

PAD2 in Other Immune Cells
PAD2 can also interact with other cells to modulate immune
response. For example, ATP upregulates the expression of
Adamts-9, Rab6b, and TNFRII through activation of PAD2 in
mast cells, contributing to the pathogenesis of RA (25). PAD2
and PAD4 inhibition by Cl-amidine also hampers functional
maturation of dendritic cells induced by toll-like receptor
agonists (81). As evidenced, there remains a paucity of studies
exploring the interplay between PAD2 and immune cells.
Further clarifying the mechanisms by which PAD2-mediated
citrullination participates in immune activities can continue to
advance the field in the future clinical applications of PAD2
guided therapies.
PAD2 IN HOST IMMUNITY

The immunomodulatory effects of PAD2 are mostly exerted by
citrullinating key proteins involved in the cell signaling
pathways. Thus, PAD2 may display different impacts on host
immunity under different circumstances, which is determined by
the roles of the citrullinated proteins in these pathways. The
involvement of PAD2 in autoimmune diseases reflects its pro-
inflammatory activity. The pathogenesis of RA is associated with
elevated levels of PAD2-citrullinated proteins in synovial fluid
(82). B cells can recognize the citrullinated epitopes and generate
autoantibodies against the citrullinated proteins (83–85). In 70%
of patients with RA, elevated levels of anti-citrullinated protein
antibodies (ACPA) can be detected (86). After treatment with
antirheumatic drugs, ACPA levels in circulation are significantly
reduced correlated with decreased severity of RA (87, 88). These
results suggest that protein citrullination by PAD2 can trigger an
intensified inflammatory response in RA patients. Of note, RA
patients who develop antibodies against PAD2 tend to suffer
from less severe damage in joints and other organs (89).
However, PAD2 sometimes exhibits the ability to inhibit
inflammatory response. For example, Loos et al. reported that
PAD2-mediated citrullination of CXCL10 and CXCL11 can
reduce their chemotactic ability and thus result in diminished
accumulation of inflammatory cells (34). PAD2 can also
citrullinate certain transcription factors to mediate the
differentiation of immune cells. The knockout of Pad2 gene in
mice can cause a shift in maturation of Th cells, which increases
the differentiation of Th2 cells but decreases the differentiation of
Th17 cells, rendering the mice susceptible to allergic airway
inflammation (11).
November 2021 | Volume 12 | Article 761946
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The close association between PAD2 and host immunity is
partly due to the relatively abundant expression in immune cells
(74, 79). PAD2 functions as an important factor not only in the
differentiation of immune cells, but also in several cell death
signaling pathways (13, 15, 90, 91). Although PAD4 is identified
to be the key regulator in NETosis (63, 92, 93), PAD2 may also
play a part in the process as NETosis can still occur in the
absence of PAD4 (94). Another type of cell death, pyroptosis,
which mostly takes place in macrophages, is found to be
regulated by PAD2 and PAD4 (15) . Addit ional ly ,
overexpression of PAD2 in Jurkat cells, which are derived from
human T lymphocyte cells, can trigger enhanced apoptosis (91).
Collectively, these findings indicate that PAD2 has an intimate
relationship with immune cells and host immunity.

Infections
Sepsis
Sepsis is characterized by a dysregulated inflammatory response
that may result in multi-organ failure (95). The role of PADs in
sepsis has been identified in some previous studies (70, 96–98).
However, most of them explored the association between PAD4
and sepsis. This was probably due to the critical effects of PAD4
on NETosis, which is believed to be an important signaling
pathway involved in the pathogenesis of sepsis (99). The
application of pan-PAD inhibitors, which inhibit the activity of
both PAD2 and PAD4, can remarkably improve the survival in
mouse models of LPS-induced endotoxemia and cecal ligation
and puncture (CLP)-induced sepsis (100–102). Nonetheless,
when Pad4-/- mice were used to explore the individual effects
of PAD4 on sepsis, researchers found that Pad4-deficiency did
not improve survival nor ameliorate bacteremia (94, 98).
Accordingly, we revealed that a selective PAD4 inhibitor does
not affect survival in LPS-induced endotoxic shock (70).
Therefore, we began to hypothesize that the protective effects
were derived from PAD2 inhibition. As expected, the
employment of a selective PAD2 inhibitor in the same model
of LPS-induced endotoxic shock significantly increased survival
(70). Thereafter, our studies further demonstrated that the
knockout of Pad2 can improve survival in CLP-induced sepsis
and PA-sepsis (59, 103). Therefore, it can be inferred that PAD2
likely acts as a critical mediator in the pathogenesis of sepsis.

Given the minimal effect of PAD4 on sepsis, it raises
questions as to why NETosis is closely related to sepsis and
why septic animals can benefit from anti-NET therapies. The
pathogenicity of NETs is derived from numerous components
such as myeloperoxidase, DNA, and Citrullinated histone H3
(CitH3) (104). Such components are also found in extracellular
traps released by other immune cells, such as METs, which are
more likely to be mediated by PAD2, as PAD2 is more
abundantly expressed in macrophages than PAD4 (61). “Anti-
NET therapies” are referred to as the clearance of extracellular
DNA or CitH3 (105–107), which also eliminate detrimental
molecules from other sources including METs at the same
time. In contrast, the knockout of PAD4 can only decrease the
molecules coming from NETosis. This possibly explains why
PAD4 inhibition is not protective during sepsis. In addition, we
Frontiers in Immunology | www.frontiersin.org 6
discovered that selective inhibition of PAD2 can decrease the
release of CitH3 in neutrophils (Figure 3) (70). Furthermore,
antibody neutralization of circulation CitH3, by a commercially
available anti-CitH3 antibody, was not shown to attenuate
endotoxemia (105). However, administration of the antibody
recognizing CitH3 generated from both PAD2 and PAD4
significantly improved survival (105). These findings display
the differing effects of PAD2 and PAD4 inhibition during sepsis.

In a mouse model of CLP-induced lethal sepsis, we have newly
demonstrated that PAD2 protein is elevated in serum and lung
tissue after CLP (103). In septic patients, serum concentrations of
PAD2 are positively correlated to lactate (r=0.5, p=0.04) and
procalcitonin (PCT) levels (r=0.67, p=0.003) (108). Since lactate
and PCT are considered markers for the prognosis and the severity
of sepsis (109, 110), elevated PAD2 levels in serummay also serve as
a future clinical biomarker and predictor of outcomes. Circulating
CitH3 was also found to be positively correlated with blood PAD2 (r
values=0.0452, p<0.001) and PAD4 levels (r value=0.363, p<0.01),
respectively (108). The levels of PAD2 in bronchoalveolar lavage
fluid (BALF) from patients with sepsis and respiratory distress
syndrome (ARDS) are also significantly increased compared with
those in a healthy control group (108). Furthermore, the Pad2 gene
was found to be over-expressed in cells of the BALF of patients with
septic specific ARDS. The consistent findings support the possible
usage of PAD2 as a biomarker for sepsis specific ARDS and may
serve as a distinguishing factor between sepsis specific ARDS and
other non-infectious causes of ARDS. PAD2 can mediate the onset
of sepsis by directly regulating pyroptosis. We recently found that
PA-sepsis induced pyroptosis in macrophages is dramatically
decreased in the absence of PAD2, thereby attenuating acute lung
injury and improving survival (59). In the murine CLP-sepsis
model, Pad2 depletion enhances bacterial clearance, attenuates
sepsis-induced vascular permeability of lung and kidney, and
improves survival (103). Moreover, we found that macrophages
stimulated by LPS undergo diminished Caspase-11-dependent
pyroptosis in the absence of PAD2, which can explain how Pad2
knockout improves the outcomes of septic mice (Figure 3) (103).
These findings have highlighted the detrimental role of PAD2-
mediated pyroptosis in the pathogenesis of sepsis (Figure 3). PAD2
also catalyzes the generation of CitH3 which is recognized as a
“danger” signaling molecule (70, 111, 112). Furthermore, it has been
reported that “danger” signaling molecules (i.e., ATP and double
strand DNA) can elicit the activation of pyroptosis via the Caspase-
1 dependent pathway (113, 114). Based on this data, we hypothesize
that CitH3 may play a role in activating the pyroptotic pathway and
that PAD2 can also modulate pyroptosis in an indirect way.
Altogether, PAD2 has the potential as both a biomarker and
therapeutic target of sepsis.

Although we have demonstrated the effects of PAD2 activation
on sepsis, the mechanisms by which PAD2 activation leads to these
downstream effects in sepsis remain poorly understood. A previous
study demonstrated that ATP induces PAD2 activity via P2X7
receptors (25). While ATP is required for almost all biological
reactions as the universal energy source (115), once host cells are
damaged, stressed, or infected by pathogens, intracellular ATP can
be released to become extracellular ATP which serves as a key
November 2021 | Volume 12 | Article 761946
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“danger” signaling molecule (116–118). Additionally, certain
pathogens can also produce and secrete extracellular ATP (119,
120). The extracellular ATP may then bind to P2X7 receptors to
induce calcium influx, leading to subsequent PAD2 activation (25).
Nonetheless, there is limited evidence supporting that ATP release
is responsible for the activation of PAD2 during infections. Thus,
further work is required to elucidate the association between
infection and PAD2 activity.

Immune Disorders
Rheumatoid Arthritis
The manifestations of RA are characterized by chronic synovitis,
systemic inflammation, and the generation of ACPA and
rheumatoid factors (121). ACPA recognizes and binds to
PAD2/4-citrullinated proteins, including vimentin, keratin,
enolase, fibrinogen, and filaggrin (32, 122). ACPA can serve as
a useful biomarker with high sensitivity and specificity, and is
often a predictor of poor prognosis (123–126).

Among all the citrullinated proteins associated with RA,
vimentin is the most frequently studied. Vimentin is an
intermediate filament protein that plays a significant role in
fixing the position of cytosolic organelles (127). Macrophages,
which also express vimentin, are found in high levels in synovial
fluid aspirates of RA joints (128). During calcium ionophore-
Frontiers in Immunology | www.frontiersin.org 7
induced macrophage apoptosis, vimentin is found to be
citrullinated by PADs (90). Given the low expression of PAD4
in macrophages, PAD2 is likely the predominant PAD in the
citrullination of vimentin. The cleavage of vimentin also occurs
in the presence of calcium during macrophage pyroptosis (129).
Since PAD2 is a calcium-dependent enzyme, it can be inferred
that vimentin possibly undergoes citrullination prior to
macrophage pyroptotic death. However, the mechanisms
which citrullinated vimentin is associated with the
pathogenesis of RA are not clear. One explanation is that the
host loses its self-tolerance to citrullinated vimentin due to
hereditary factors, which leads to production of ACPA (122,
130). As a result, massive ACPA-citrullinated vimentin
complexes deposit in the joints, causing activation of
complement systems leading to prolonged inflammation (131).
Although genetic factors are closely related to the incidence of
RA, the effects of environmental factors cannot be neglected
(132). For example, a number of RA cases were found to be
linked with infection (133). Thus, it is possible that infectious
agent-induced macrophage death may be the initial step of RA
onset. During the death processes of macrophages, vimentin is
citrullinated by PAD2 and released. Meanwhile, more
macrophages and other immune cells are attracted to the
infected sites due to chemotaxis. Thereafter, citrullinated
FIGURE 3 | The detrimental effects of PAD2-mediated pyroptosis and ETosis during sepsis. PAD2 facilitates the activation of Caspase-11, a key regulator in non-
canonical pyroptosis, and causes macrophage death. In addition, PAD2 can translocate into the nuclei of neutrophils or macrophages and citrullinate histone H3 to
induce ETosis. CitH3 generated during this process may further activate the canonical pyroptotic pathway as a danger signal. aCaspase-1/11, activated Caspase-1/
11; CitH3, Citrullinated histone H3; ETosis, cell death with release of extracellular traps (ETs); H3, Histone H3; HMGB1, high mobility group box 1; IL, interleukin; M/
NETosis, neutrophil/macrophage death with release of extracellular traps; MPO, myeloperoxidase; NE, neutrophil elastase. Lines, pathways already known; Dotted
lines, proposed hypothesis for the pathway to elucidated.
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vimentin is recognized as an autoantigen which triggers the
generation of ACPA. However, this hypothesis cannot explain
the pathogenesis of ACPA-negative RA. Therefore, further work
is required to understand the complexity of RA.

PAD2 can be detected in synovial fluid from RA patients
(134). It was demonstrated that the major sources of PAD2 are
inflammatory cells (8). RA patients with higher PAD2 levels in
synovial fluid tend to have enhanced disease activity, suggesting
that the level of PAD2 in synovial fluid is a potential prognostic
indicator (135). Additionally, PAD2 can also be taken as an
autoantigen by the host. RA patients who developed
autoantibodies against PAD2 are likely to display attenuated
joint inflammation and RA-related lung disease (89).

M1 macrophages, which are activated by the classical
pathway, can secrete proinflammatory cytokines such as TNF-
a and IL-1 and cause joint erosion. While M2 macrophages,
which are activated by the alternative pathway, can produce anti-
inflammatory cytokines (mainly IL-10 and TGF-b), contributing
to vasculogenesis and tissue remodeling and repair, as recently
observed in systemic sclerosis. Markers for both macrophage
phenotypes may coexist on the same cell (136, 137). Recent
studies have revealed that M1/M2 macrophage imbalance
strongly contributes to osteoclastogenesis of RA (138).
Eghbalzadeh et al. reported that NETs support macrophage
polarization toward an M2 phenotype, displaying anti-
inflammatory properties. PAD4 deficiency aggravates acute
inflammation and increases tissue damage post- acute
myocardial infarction, partially due to the lack of NETs (139).
It remains largely unknown whether PAD2 affects
macrophage polarization.
Multiple Sclerosis
MS is an autoimmune disorder in central nervous system
characterized by chronic demyelination of nerve cells (140).
Patients with MS usually suffer from loss of sensitivity, changes
in sensation, difficulties in coordination or problems with vision
(141). The effects of PAD2 on the pathogenesis of MS remain in
debate. Researchers revealed that citrullination of myelin
basic proteins (MBP) is increased in MS patients (42, 142,
143). Overexpression of PAD2 in mice leads to MBP
hypercitrullination and myelin loss in central nervous system
(144). Hypercitrullination will not only decrease the stability of
MBP, but also put MBP at higher risks of being attacked by T
cells (28, 75). Th17 cells, a subtype of T cell, shows enhanced
reactivity to citrullinated MBP (75). As mentioned above, PAD2
can facilitate the polarization of CD4+ T cells into Th17 cells
(11). Thus, PAD2 plays a critical role in MS pathogenesis. In line
with these findings, a study demonstrated that PAD2 inhibition
can attenuate disease severity in animal models mimicking MS
(145). On the contrary, a study reported that deletion of Pad2
gene in mice decreased levels of citrullinated MBP but did not
reduce the incidence rate of experimental autoimmune
encephalomyelitis (146). A recent study discovered that PAD2-
mediated citrull ination is indispensable during the
differentiation and myelination of oligodendrocytes (147).
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Knockout of Pad2 in mice will result in motor dysfunction and
even decreased myelination in axons (147). Therefore, it is
critical to keep a balanced PAD2 level in central nervous
system as it maintains the normal structure and functions of
nerve cells and further studies should continue to elucidate the
role of PAD2 on MS.

Cancers
Currently, PAD2 is implicated in skin tumors (148), breast
cancer (10), colorectal cancer (149), and glioblastoma
multiforme (150, 151). The intimate relationship between
PAD2 and tumors is likely due to the role of PAD2 in
modulating gene transcription. PAD2 is the only PAD that
citrullinates arginine1810 (Cit1810) in repeat 31 of the
carboxyl-terminal domain (CTD) of the largest subunit of
RNA polymerase II (RNAP2) (152). Cit1810 is crucial for
RNAP2 to overcome the pausing barrier close to the
transcription start site, which enables the efficient transcription
of highly expressed genes needed for cell cycle progression,
metabolism, and cell proliferation (152).

The effects of PAD2 on the development of different tumors
are not the same. For example, overexpression of PAD2 has been
shown to augment the malignancy of skin tumors (153), while
increased PAD2 expression has been linked to improved survival
in patients with estrogen receptor (ER)-positive breast cancer
(112). However, upregulated PAD2 expression in breast cancer is
associated with resistance to tamoxifen treatment (154). These
findings make PAD2 a mysterious modulator in tumorigenesis.
In the pathogenesis of breast cancer and glioblastoma
multiforme, PAD2 modulates gene transcription via
citrullinating histones (112, 151). In colorectal cancer,
however, PAD2 prevents tumor progression by citrullinating
b-catenin thus inhibiting the Wnt signaling pathway. PAD2
inhibition will increase the sensitivity of breast cancer cells to
tamoxifen (154), while the knockout of Pad2 will induce great
resistance to nitazoxanide in colorectal cancer cells (149). More
work is needed to investigate the involvement of PAD2 in other
tumors (149).

The therapeutic potential and applications of PAD2 in cancer
remains to be further clarified. However, given the role of PAD2
in tumorigenesis and response to chemotherapy, PAD2 will
continue to be a biomarker and target of continued interest in
the era of personalized cancer care.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Citrullination is a posttranslational protein modification
catalyzed by PADs and is involved in host immunity. PAD2
has wide-reaching roles through its citrullination of a variety of
target proteins. Dysregulated activity of PAD2 is associated with
a series of immune disorders including sepsis, RA, MS, and
tumor formation (Figure 4). In this review, we have summarized
PAD2 specific functions on cell death control, transcription
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regulation by citrullination of arginine 26 on histone H3 (e.g.,
sepsis, tumor), and citrullination of vimentin (e.g., RA). We
highlight several citrullinated proteins to demonstrate the
contributions of PAD2-mediated protein citrullination to RA,
sepsis, and cancer within each specific environment. Given that
CitH3 is also found to be a biomarker in patients with cancers
(155, 156), more epigenetic studies are needed to explore if and
how citrullination of histone H3 interferes with transcription
factors to regulate RA, sepsis, and cancers. We propose that
PAD2 is a promising novel biomarker and therapeutic target for
a broad spectrum of diseases including autoimmune and
inflammatory diseases, sepsis, MS, and several types of cancer.
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