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Background: Genome-wide association studies (GWASs) explain the genetic susceptibility between 
diseases and common variants. Nevertheless, with the appearance of large-scale sequencing profiles, we could 
explore the rare coding variants in disease pathogenesis.
Methods: We estimated the genetic correlation of nine respiratory diseases and lung cancer in the UK 
Biobank (UKB) by linkage disequilibrium score regression (LDSC). Then, we performed exome-wide 
association studies at single-variant level and gene-level for lung cancer and lung cancer-related respiratory 
diseases using the whole-exome sequencing (WES) data of 427,934 European participants. Cross-trait meta-
analysis was conducted by association analysis based on subsets (ASSET) to identify the pleiotropic variants, 
while in-silico functional analysis was performed to explore their function. Causal mediation analysis was 
used to explore whether these pleiotropic variants lead to lung cancer is mediated by affecting the chronic 
respiratory diseases.
Results: Five respiratory diseases [emphysema, pneumonia, asthma, chronic obstructive pulmonary 
disease (COPD), and fibrosis] were genetically correlated with lung cancer. We identified 102 significant 
independent variants at single-variant levels for lung cancer and five lung cancer-related diseases. 
15:78590583:G>A (missense variant in CHRNA5) was shared in lung cancer, emphysema, and COPD. 
Meanwhile, 14 significant genes and 87 suggestive genes were identified in gene-based association tests, 
including HSD3B7 (lung cancer), SRSF2 (pneumonia), TNXB (asthma), TERT (fibrosis), MOSPD3 
(emphysema). Based on the cross-trait meta-analysis, we detected 145 independent pleiotropic variants. 
We further identified abundant pathways with significant enrichment effects, demonstrating that these 
pleiotropic genes were functional. Meanwhile, the proportion of mediation effects of these variants ranged 
from 6 to 23 (emphysema: 23%; COPD: 20%; pneumonia: 20%; fibrosis: 7%; asthma: 6%) through these 
five respiratory diseases to the incidence of lung cancer.
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Introduction

Lung cancer is one of the most common and fatal cancer. 
A few respiratory diseases have been described as possible 
risk factors for lung cancer (1,2), such as chronic obstructive 
pulmonary disease (COPD) and emphysema. Existing 
studies have confirmed that the close relationship between 
COPD and lung cancer is not just about shared smoking 
exposure, but is likely to reflect in part, a shared genetic 
susceptibility to chronic smoking-induced inflammation (3). 
By parity of reasoning, these respiratory diseases might 
share a common mechanism with the development of lung 
cancer. Studying them can identify shared genetic factors 
and provide an important foundation for lung cancer 

prevention and early warning.
In the past decade, genome-wide association study 

(GWAS) has thoroughly changed the perception of complex 
diseases and provided us with a number of significant and 
compelling risk variants (4,5). However, GWAS tends to 
concentrate on common variants, which usually have weak 
effect sizes and are difficult to map to causal genes (6). From 
the view of natural evolution, common variants appear early 
and have withstood natural selection pressure. Nevertheless, 
low-frequency variants have emerged late and have not been 
eliminated during human evolution and are more likely to 
be functional (7). Thus, rare variants may play an essential 
role in the development of disease.

In recent years, next-generation sequencing technologies 
have been iteratively upgraded, and large cohort studies 
have been scaled up. The UK Biobank (UKB) provides 
us with an unprecedented chance to explore the effect of 
both common and rare variants in human diseases (8-10). 
Compared with previous sequencing studies with limited 
sample size, large-scale exome sequencing population 
enables sufficient statistical power that could be used to 
identify rare coding variants associated with diseases (11,12).

In this study, we analyzed lung cancer and five 
respiratory diseases (asthma, COPD, emphysema, fibrosis, 
and pneumonia) with significant genetic correlations with 
lung cancer. We performed a comprehensive association 
study using exome sequencing data from 427,934 UKB 
participants of European ancestry at both variant-level and 
gene-level. Subsequent cross-trait meta-analysis, functional 
analyses, and causal mediation inference comprehensively 
depicted the genetic relationship between these five 
respiratory diseases and lung cancer.

Methods

Study population and phenotypes

The UKB is a large population-based prospective cohort 
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study from the UK with deep phenotypic and genetic data 
on approximately 500,000 individuals aged 40–69 years at 
enrollment (13). The work described herein was approved by 
the UKB under application No. 57471. All the phenotype 
data were accessed in March 2022. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). Health-related outcomes were ascertained 
via individual record linkage to national cancer and mortality 
registries and hospital in-patient encounters. Cancer 
diagnoses were coded by the International Classification 
of Diseases version 10 (ICD-10) codes. Individuals with 
at least one recorded incident diagnosis of a borderline, 
in situ, or primary malignant cancer were defined as cases 
collected from data fields 41270 (diagnoses: ICD-10), 41202 

(diagnoses: main ICD10), 40006 (type of cancer: ICD-10), 
and 40001 (primary cause of death: ICD-10). ICD-10 codes 
for other diseases included in the study is shown in Table S1.

The UKB provides detai led diseases fol low-up 
information linked to whole-exome sequencing (WES) 
for approximately 450,000 participants (data field: 23148). 
We included 427,934 white European participants in this 
research, and detailed inclusion information is presented in 
Table S2. Ten respiratory diseases were analyzed (Table 1), 
including lung cancer (n=5,003), asthma (n=38,627), COPD 
(n=17,561), emphysema (n=4,002), idiopathic pulmonary 
fibrosis (n=2,340), pneumonia (n=21,424), bronchiectasis 
(n=4,660), acute bronchitis (n=14,364), chronic bronchitis 
(n=1,382), and tuberculosis (n=654).

Genetic correlation estimation

To find the respiratory diseases with significant genetic 
relationships with lung cancer, we used the linkage 
disequilibrium score regression (LDSC) (14) to assess the 
genetic correlation between each disease pair using the 
imputed genetic variants from the UKB (data field: 22828) (15).  
We conducted a genetic correlation analysis on ten 
respiratory diseases using the imputed genotype data from 
the Haplotype Reference Consortium (HRC) and UK10K 
haplotype resource (data field: 22828), and utilized the 
resulting summary data to estimate genetic correlations, 
which was not biased by sample overlap (15). Diseases 
significantly genetically correlated with lung cancer 
(nominal P<0.05) were included in further analyses.

Quality control for the genetic variants

WES data for UKB participants were generated using the 
IDT xGen v1 capture kit on the NovaSeq6000 platform. 
The UKB 450k release was performed with a Functional 
Equivalence specification that retained the original quality 
scores (OQFE protocol) in the CRAM files (16). The 
OQFE protocol mapped to a full GRCh38 reference version 
including all alternative contigs in an alt-aware manner. 
The OQFE CRAMs were then called for small variants 
with DeepVariant 0.0.10 to generate per-sample genome 
variant call formats (gVCFs), which were aggregated and 
joint-genotyped with GLnexus 1.2.6 to create a single 
multi-sample VCF [project VCF (pVCF)] for all UKB 450k 
samples. Genotype depth (DP) filters [single nucleotide 
variant (SNV) DP ≥7, indel DP ≥10] were applied prior to 
variant site filters requiring at least one variant genotype 

Table 1 Demographic characteristics and respiratory disease 
information in the UKB

Characteristics N (%)

Sex

Female 232,409 (54.31)

Male 195,525 (45.69)

Age (years)

38–49 95,773 (22.38)

50–59 141,946 (33.17)

60–73 190,215 (44.45)

Smoke

Ever 259,671 (60.68)

Never 166,895 (39.00)

Diseases

Lung cancer 5,003 (1.17)

Asthma 38,627 (9.03)

COPD 17,561 (4.10)

Emphysema 4,002 (0.94)

Fibrosis 2,340 (0.55)

Pneumonia 21,424 (5.01)

Bronchiectasis 4,660 (1.09)

Acute bronchitis 14,364 (3.36)

Chronic bronchitis 1,382 (0.32)

Tuberculosis 654 (0.15)

UKB, UK Biobank; COPD, chronic obstructive pulmonary 
disease.

https://cdn.amegroups.cn/static/public/TLCR-24-4-Supplementary.pdf
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passing an allele balance (AB) filter (heterozygous SNV AB 
>0.15, heterozygous indel <0.20). The detailed parameters 
were described in Category 170 of the UKB showcase. In 
addition, all the variants with call rate <90% and minor 
allele count (MAC) ≤1 were filtered out.

Single-variant association tests

Single-variant association tests were performed on 427,934 
European participants. All the variants with MAC ≥10 were 
incorporated in the following association tests. We used 
SAIGE v1.1.4 (11) to conduct association tests based on 
logistic mixed models adjusting for age, gender, smoking 
status, and top five ancestry principal components to assess 
the association between the respiratory diseases and genetic 
variants (17,18). A genetic relationship matrix (GRM) was 
created to fit the model to eliminate the effect of kinship. 
We also included five principal components in mixed 
model to adjust for both population structures and non-
genetic confounders (19). We included all the variants 
that passed quality control in the WES dataset, including 
loss-of-function (LOF), missense, synonymous, and a 
small proportion of non-coding variants. Variants passed 
the genome-wide significance threshold (P≤5×10−8) were 
defined as significant and independent variants were pruned 
out using the PLINK v1.9 clump function (-clump-r2 
0.50, -clump-kb 500). We calculated the adjusted genomic 
inflation factor λadj. Because the genomic inflation factor 
increases with sample size, we rescaled the genomic 
inflation factor λobs to adjusted the genomic inflation factor 
λadj reflecting a standardized sample size of 1,000 cases and 
1,000 controls based on the following formula:

( )

1 1

1 1 1 1
1,000 1,000

cases controls
adj obs

N Nλ λ
+

= + − ×
+

 [1]

If genomic inflation arose, SAIGE integrated linear 
mixed models to control for population structure and 
familial relationships, effectively mitigating genomic 
inflation.

Gene-based association tests for rare variants and ultra-
rare variants

Afterward, we performed gene-level association tests using 
the SKAT-O method (20), which was implemented by 
SAIGE-GENE+ (21). Variants with minor allele frequency 
(MAF) ≤1% were considered rare, while variants with MAC 

≤10 were considered ultra-rare. To improve power to detect 
the association signals, we performed tests for rare variants 
with different MAF cutoffs (MAF ≤1%, MAF ≤0.1%, 
and MAF ≤0.01%). According to the latest research that 
synonymous mutations may be strongly non-neutral (22), we 
considered all the functional annotations. Therefore, multiple 
variant sets with different MAF cutoffs and functional 
annotations (LOF, missense, and synonymous) were analyzed. 
We reported the association results with the lowest P value 
for one gene to collectively capture a wide range of genetic 
architectures (23). We used a P value threshold of P≤1×10−5 
to report genes associated with these diseases.

Cross-trait meta-analysis for the respiratory diseases

We conducted cross-trait meta-analysis via the R package 
association analysis based on subsets (ASSET) (24). Briefly, 
ASSET explored all possible subsets of all six diseases 
(five lung cancer-related diseases and lung cancer) for 
the presence of association signals, resulting in the best 
combination of diseases to maximize the test statistic. 
According to the result of single-variant association tests, 
the variants with P value ≤1×10−4 in any one of the six 
diseases association tests were included. Because the method 
explores all possible subsets of studies and evaluates fixed-
effect meta-analysis-type test-statistics for each subset, to 
avoid excessive computational effort, we used a relatively 
lenient P value to comprehensively consider all suggestive 
association variants across the six respiratory diseases.

By ASSET, we achieved the P values of significance for 
the overall evidence of association of a variant across these 
diseases as well as the “best subset” that contributed to the 
overall association signal (24). Finally, all the independent 
variants with P<5×10−8 were reported.

Intermediate pathways analysis

We were interested in whether there was a mediating 
effect of variants causing other respiratory diseases and 
consequently leading to lung cancer. Based on the cross-
trait meta-analysis, we searched for variants shared between 
lung cancer and five other respiratory diseases. Then, we 
constructed polygenic scores (PGSs) for the shared variants 
found for each respiratory disease (25). PGS is not applied 
here for the purpose of disease risk prediction, but for 
the purpose of using the idea of PGS to comprehensively 
measure the impact of all shared variants and calculate 
the mediation effect using a unified indicator. The beta 
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coefficients of each variant was used as the weight in PGSs: 

i iPRS SNVβ=∑  (26). We calculated the area under the 
receiver operator characteristic curves (AUCs) of all PGSs 
used for mediation analyses using Bootstrap. Finally, we 
carried out mediation analyses by these polygenic risk scores 
and identified mediating effects for these five respiratory 
diseases. All the mediation analyses were performed by R 
package “mediation”.

Genetic functional analysis

To explore further biological explanations and assess the 
biological functions of the pleiotropic genes, we conducted 
pathway enrichment analysis via Metascape (27). During 
this analysis, the gene list we detected were compared 
to thousands of gene sets defined by their involvement 
in specific biological processes, protein localization, 
pathway member, or other features (27). Pathway and 
process enrichment analysis had been carried out with the 
following ontology sources: Kyoto Encyclopedia of Genes 
and Genomes (KEGG), Gene Ontology (GO) biological 
processes, reactome gene sets, canonical pathways, and 
WikiPathways.

Metascape reported the terms with a P value <0.01, a 
minimum count of 3, and an enrichment factor >1.5 (the 
enrichment factor was the ratio between the observed 
counts and the counts expected by chance). Then the terms 
were grouped into clusters based on their membership 
similarities. Kappa scores were used as the similarity metric 
when clustering on the enriched terms (28), and sub-trees 
with similarity >0.3 were considered a cluster.

To further understand the protein-protein interactions, 
we used the Search Tool for the Retrieval of Interacting 
Genes-Proteins (STRING) database, which considered both 
physical interactions as well as functional associations (29). 
The protein-protein interaction network was clustered into 
different colors using k-means clustering.

We used the R software (version 4.2.0) for statistical 
analysis and graphing. All P values were two-sided.

Results

Genetic correlation of the respiratory diseases

Figure 1 depicts the study design and workflow. The cross-
trait genetic correlation calculated by LDSC showed 
intricate relationships among respiratory diseases. Lung 
cancer was significantly genetically correlated with five 

respiratory diseases, including emphysema (rg=0.61, 
P=0.0001), pneumonia (rg=0.64, P=0.0018), asthma 
(rg=0.24, P=0.0056), COPD (rg=0.69, P=9×10−7), and 
idiopathic pulmonary fibrosis (rg=0.60, P=0.0285) (Figure 
S1). Therefore, we focused on the shared genetic basis for 
them and lung cancer in the subsequent exome sequencing 
analyses.

Single-variant association tests

In the single-variant association analysis, 102 independent 
loci mapped to 53 genes passed the genome-wide 
significance level (P<5×10−8). Of them, six were associated 
with lung cancer, six were associated with COPD, six were 
associated with emphysema, three were associated with 
idiopathic pulmonary fibrosis, three were associated with 
pneumonia, and 88 were associated with asthma (Figure 2). 
The adjusted genomic inflation factor λadj did not suggest 
population stratification (Figure S2). Noteworthy, only 
one genomic region 15q25.1 had shared signals with lung 
cancer. The sentinel variant 15:78590583:G>A (missense, 
HGVSp: p.Asp398Asn) in CHRNA5 were significant in 
lung cancer {odds ratio (OR) [95% confidence interval (CI)]: 
1.22 (1.18, 1.26), P=8.41×10−20}, emphysema [OR (95% CI): 
1.22 (1.16, 1.28), P=1.50×10−14], and COPD [OR (95% CI): 
1.13 (1.10, 1.15), P=7.79×10−25]. CHRNA5 was related to the 
mechanism of nicotine addiction (30) in smoking that could 
lead to respiratory diseases (31,32).

In addition, the missense variant 11:1167980:C>T [MAF 
=4.0%, OR (95% CI): 2.21 (1.87, 2.61), P=1.98×10−20] in 
MUC5AC was significant in fibrosis. The synonymous 
variant 6:32584335:A>G [MAF =9.3%, OR (95% CI): 1.18 
(1.15, 1.21), P=2.20×10−37] in HLA-DRB1 was associated 
with asthma. Moreover, we identified 15 additional 
rare variants with MAF ≤1% in asthma, emphysema, 
and pneumonia. For example, the missense variant 
9:5073770:G>T in JAK2 [MAF =0.03%, OR (95% CI): 
6.23 (3.69, 10.51), P=7.14×10−12] was associated with 
pneumonia. These rare variants with large effects may play 
an essential role in the onset of respiratory diseases (33). All 
the association results for independent single variants with 
P<5×10−8 are shown in Table S3.

Gene-based association tests

We analyzed 18,184 protein-coding genes in the gene-
based association tests and identified 14 significant genes 
(P≤1×10−5) (Figure 3, Table S4). Among them, HSD3B7 

https://cdn.amegroups.cn/static/public/TLCR-24-4-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-24-4-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-24-4-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-24-4-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-24-4-Supplementary.pdf
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Variants with MAF ≤1%

Ten common respiratory diseases

Genetic correlation estimation

Five respiratory diseases associated 
with lung cancer

Emphysema Lung cancer COPD

Asthma Fibrosis Pneumonia

Variants with MAC ≥10

Single-variant association tests Gene-based association tests

Cross-trait-meta analysis 
(ASSET)

Pleiotropic genes Genes

Pathway enrichment 
analysis

Protein-protein 
interaction network

Link to intermediate 
pathways

Figure 1 Workflow of this study. COPD, chronic obstructive pulmonary disease; MAC, minor allele count; MAF, minor allele frequency; 
ASSET, association analysis based on subsets.

(P=7.7×10−7) and TARM1 (P=9.2×10−6) were associated 
with lung cancer; LACRT (P=6.8×10−6) was associated 
with COPD; MOSPD3 (P=2.7×10−6) was associated with 
emphysema; TERT (P=3.8×10−7) and LMNA (P=1.1×10−6) 
were associated with fibrosis; SRSF2 (P=7.4×10−15) and 
JAK2 (P=2.5×10−6) were associated with pneumonia; TNXB 
(P=2.4×10−7), C6orf10 (P=9.4×10−7), NOTCH4 (P=8.2×10−6), 
HLA-DQA2 (P=8.3×10−6), TTK (P=8.9×10−6), and SPINK7 
(P=9.4×10−6) were associated with asthma. Moreover, 87 
genes showed suggestive significance (P≤1×10−4) (Table S4).

Shared genetic variants for the six respiratory diseases

A total of 781 independent variants that reached P<10−4 in 
any disease were included in the cross-trait meta-analysis. 
Strong evidence supported the shared genetic foundation 

underlying these six diseases that 145 independent variants 
had P ≤5×10−8 (Figure 4A, table available at https://cdn.
amegroups.cn/static/public/tlcr-24-4-1.xlsx). The number 
of variants that overlapped between disease pairs is 
demonstrated in Figure 4B. Best subset of these diseases 
that contributed to the overall association signal is shown in 
Figure 4C. It was illustrated that lung cancer and its related 
respiratory diseases were genetically linked.

In summary, the independent pleiotropic genes 
associated with any two or more of these six diseases 
are shown in Figure 4D. Intuitively, human leukocyte 
antigen (HLA) family made a remarkable contribution to 
genetic interactions among these diseases. The pleiotropic 
genes that overlapped with lung cancer with the largest 
OR among all the significant genes in cross-trait meta-
analysis are displayed in Table 2. In the previous analysis, 

https://cdn.amegroups.cn/static/public/TLCR-24-4-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tlcr-24-4-1.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-4-1.xlsx
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few genes shared by respiratory diseases and lung cancer 
were found, but a large number of shared genes associated 
with lung cancer were found in this step. For example, 

missense variant 10:132909243:C>T in CFAP46 (MAF 
=1.2×10−5), missense variant 1:38017675:C>T in UTP11 
(MAF =1.8×10−5), synonymous variant 19:42079623:C>T 
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i n  Z N F5 7 4  ( M AF  = 8 .2 × 1 0 − 4) ,  an d  L O F va r i an t 
1:16208697:G>A in ARHGEF19 (MAF =1.2×10−4) were all 
associated with lung cancer. Moreover, these genes were 
also strongly associated with other respiratory diseases.

Intermediate causal pathways

Based on the identified pleiotropic variants, we screened 
for shared genetic variants for the respiratory diseases 
and lung cancer, and the shared variants and their weights 
are provided in table available at https://cdn.amegroups.
cn/static/public/tlcr-24-4-2.xlsx. Then, the PGS was 
constructed for these five respiratory diseases. The AUCs 
(95% CI) of PGS_asthma (PGS_AS), PGS_COPD, PGS_
emphysema (PGS_EM), PGS_fibrosis (PGS_FI), and PGS_
pneumonia (PGS_PN) are shown in Table S5. Because only 
shared variants with lung cancer were included in the PGS 
models, the AUCs performed moderately, but they were all 
statistically significant.

Applying causal mediation analysis to these polygenic 
risk scores, we identified the mediating effect of variants 
causing other respiratory diseases and consequently leading 
to lung cancer. The direct effect (DE), indirect effect (IE), 
proportion of mediation, and corresponding significant 
P value are all shown in Figure 5. The mediating effect of 
COPD was 20%, the mediating effect of emphysema was 
23%, and the mediating effect of pneumonia was 20%. This 
further suggested the existence of some shared variants by 
causing the development of these three respiratory diseases, 
which in turn allowed patients to eventually develop lung 

cancer. However, the mediating effect of asthma and fibrosis 
was relatively low.

Pathway enrichment analysis and protein-protein 
interaction network for the pleiotropic genes

We performed gene set enrichment analyses for the 157 
unique pleiotropic genes based cross-trait meta-analysis 
and gene-based association tests using Metascape. We 
discovered 146 significant pathways [false discovery rate 
(FDR)-q <0.05] (table available at https://cdn.amegroups.
cn/static/public/tlcr-24-4-3.xlsx). The top significant 
pathways were immune-related, such as phosphorylation 
of CD3 and TCR zeta chains (P=1.35×10−13), which was 
associated with T cell receptors (34,35). For the KEGG 
terms, Th17 cell differentiation (P=1.62×10−6) and T helper 
(Th)1 and Th2 cell differentiation (P=2.88×10−8) were 
significant. The biological process of these pleiotropic genes 
was prominently enriched in positive regulation of immune 
response (P=5.01×10−8) and regulation of immune effector 
process (P=3.98×10−7) (Figure S3A).

Furthermore, additional functional pathways were 
discovered, including regulation of leukocyte proliferation 
(P=8.13×10−6), response to the bacterium (P=3.09×10−5), 
regulation of cell-cell adhesion mediated by cadherin 
(P=1.70×10 −4) .  Meanwhi le ,  the  KEGG and Wiki 
enrichment analysis identified these genes enriched in some 
respiratory-related pathways, such as asthma (P=2.12×10−10), 
staphylococcus aureus infection (pulmonary infection, 
P=7.26×10−7), tuberculosis (P=4.90×10−6), pathogenesis 

Table 2 The pleiotropic genes that overlap with lung cancer with the largest OR

Marker ID MAF Gene Annotation P OR (95% CI) Subset

10:132909243:C>T 1.2×10−5 CFAP46 Missense 3.80×10−8 245.01 (39.31, 1,527.15) LC, COPD, EM, PN, AS

1:38017675:C>T 1.8×10−5 UTP11 Missense 1.03×10−8 240.05 (36.84, 1,564.14) LC, COPD, EM, PN, AS 

14:94055016:T>C 1.3×10−5 DDX24 Missense 4.64×10−9 174.38 (33.01, 921.28) LC, COPD, EM, PN, AS

19:32383003:G>A 2.6×10−5 ZNF507 Missense 8.74×10−10 155.66 (32.04, 756.23) LC, COPD, EM, FI, PN

1:53264370:G>A 2.1×10−5 LRP8 Missense 1.71×10−10 64.05 (15.98, 256.72) LC, COPD, EM, FI, PN, AS

19:42079623:C>T 8.2×10−4 ZNF574 Synonymous 1.96×10−8 11.47 (4.73, 27.80) LC, COPD, FI, PN

1:16208697:G>A 1.2×10−4 ARHGEF19 LOF 4.05×10−9 11.42 (5.44, 24.00) LC, COPD, EM, FI, PN

1:43313932:G>A 1.6×10−4 TIE1 Synonymous 3.87×10−8 5.00 (2.74, 9.11) LC, EM, PN, AS

1:171783869:C>T 5.9×10−4 METTL13 Missense 1.18×10−9 2.26 (1.70, 3.02) LC, EM, PN, AS

OR, odds ratio; MAF, minor allele frequency; CI, confidence interval; LC, lung cancer; COPD, chronic obstructive pulmonary disease; EM, 
emphysema; PN, pneumonia; AS, asthma; FI, fibrosis; LOF, loss-of-function.

https://cdn.amegroups.cn/static/public/tlcr-24-4-2.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-4-2.xlsx
https://cdn.amegroups.cn/static/public/TLCR-24-4-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tlcr-24-4-3.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-4-3.xlsx
https://cdn.amegroups.cn/static/public/TLCR-24-4-Supplementary.pdf
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Figure 5 Causal mediation analysis plot shows these pleiotropic variants lead to lung cancer is mediated by affecting the chronic respiratory 
diseases. The DE, IE, proportion of mediation and corresponding significant P value were all shown in the figure. IE, indirect effect; 
COPD, chronic obstructive pulmonary disease; PGS, polygenic score; DE, direct effect; EM, emphysema; PN, pneumonia; AS, asthma; FI, 
fibrosis.

of SARS-CoV-2 mediated by nsp9-nsp10 complex 
(P=1.71×10−4) and lung fibrosis (P=3.30×10−4).

Meanwhile, we used the STRING database to explore 
all known and predicted protein-protein interactions 
among these 157 protein-coding genes (Figure S3B). We 
identified four large clusters: first was related to the HLA 
and immune function; second was related to cell adhesion 
and leukocyte proliferation (including asthma); third was 
related to pulmonary diseases (lung cancer and COPD) and 
telomerase; the last was related to inflammatory response. 
Overall, these results further supported the effect of the 
identified pleiotropic genes on the respiratory system.

Discussion

In the present work, we comprehensively evaluated the 
shared genetics of human exome on lung cancer-related 
respiratory diseases in approximately 420,000 UKB 
participants of European ancestry, which could improve 
the statistical power and compensate for the neglect 

of rare variants in GWASs. To our knowledge, this is 
the first exome-wide association study for respiratory 
diseases including almost the whole UKB population. 
We systematically examined nine common respiratory 
diseases and identified five that were significantly associated 
with lung cancer. Based on the single-variant and gene-
based association tests, we carried out cross-trait meta-
analysis and pathway enrichment analysis, which provided 
crucial insights into genetic background underlying these 
diseases and revealed their shared genetic factors with 
lung cancer. It is worthy to note that there is a small 
overlap of cases among between these six diseases in which 
while overlapping subjects can inflate the test statistics of 
association signals (36,37). Therefore, we adopted ASSET 
to perform cross-trait meta-analysis to reduce the bias by 
overlapping subjects (38). Moreover, based on the signal 
genes and pleiotropic genes, we analyzed protein-protein 
interaction and identified key modules. Pathway enrichment 
analysis confirmed that these genes were associated with 
immune system function and cancer development.

https://cdn.amegroups.cn/static/public/TLCR-24-4-Supplementary.pdf
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Our first major discovery was that exome-wide signals 
were associated with the lung cancer-related respiratory 
diseases. In addition to some known genes (e.g., CHRNA3, 
CHRNA5) (39,40), we identified novel genes that have not 
been reported. HSD3B7, which had previously found to be 
been linked to immune and bile acid function (41,42), was 
found to be associated with lung cancer. The 3-beta-HSD 
enzymatic system plays a crucial role in the biosynthesis 
of all classes of hormonal steroids and HSD VII is active 
against four 7-alpha-hydroxylated sterols. SRSF2 and JAK2 
are highly associated with the occurrence of pneumonia, 
SRSF2 is necessary for the splicing of pre-messenger 
RNA (pre-mRNA), and is required for formation of the 
earliest ATP-dependent splicing complex and interacts with 
spliceosomal components bound to both the 5’- and 3’-splice 
sites during spliceosome assembly. While SRSF2 was found 
to contribute to myelodysplasia in previous study (43), JAK2 
regulates non-receptor tyrosine kinase involved in various 
processes such as cell growth, development, differentiation 
or histone modifications, and mediates essential signaling 
events in both innate and adaptive immunity.

Our second major contribution was the exploration of 
the pleiotropic variants shared among lung cancer-related 
diseases. In single-variant association tests, we did not identify 
lots of shared variants between respiratory diseases and 
lung cancer. Nevertheless, we identified 83 shared variants 
between lung cancer and other five respiratory diseases 
through cross-trait meta-analysis. Among these shared 
variants, there were several with incredibly large OR values. 
This was attributed to the inverse relationship between 
MAF and OR, where smaller MAFs yield larger ORs. If 
these variants meet significance thresholds, it suggests their 
potential significant roles in the occurrence and progression 
of respiratory diseases, warranting focused investigation. We 
observed strong functional evidence for the identified genes 
from the KEGG pathway, GO pathway, Wiki pathway, 
and protein-protein interaction network. These genes 
significantly enriched in immune, inflammation, and cell 
adhesion pathway, which were closely associated with the 
development of diseases. From protein-protein interaction 
network, we found these pleiotropic genes could be grouped 
into four clusters with distinct biological function. The 
most well-known is HLA family locating on chromosome 
6, which is considered as the most polymorphic regions of 
the human genome (44). Various mutations of HLA are 
deeply related with immune evasion events and progression 
of diseases including multiple cancers (45,46). Other clusters 
included cell adhesion and leukocyte proliferation, pulmonary 

diseases and telomerase and inflammatory response. These 
biological processes are closely related to the development of 
respiratory diseases and even lung cancer, further confirming 
the important role of these pleiotropic genes in lung cancer 
and its related respiratory diseases.

Our third major contribution was the exploration of 
the relation of genetic variants and intermediate causal 
pathways. We assume that some pleiotropic variants might 
contribute to the development of lung cancer by causing 
other respiratory diseases first. Many respiratory diseases 
have been commonly considered to be risk factors for 
lung cancer (3,47,48). It is reasonable to assume that there 
may be some variants that first cause certain respiratory 
diseases that lead to the development of lung cancer. We 
calculated the mediating effects of COPD, emphysema, 
pneumonia, asthma, and fibrosis. The mediating effect was 
significant for all five lung cancer-related diseases, and the 
proportions of the mediating effect for COPD, emphysema, 
and pneumonia all exceeded 20%, which further proved the 
relationship between these shared pleiotropic variants and 
the occurrence of lung cancer. Understanding the impact 
of these common respiratory diseases on lung cancer at the 
level of shared pleiotropic variants can help us to better 
assess the risk of lung cancer and to provide effective early 
warning and prevention of lung cancer.

Our work has several prominent features. First, we 
comprehensively evaluated the exome-wide genetic variants 
in six respiratory diseases among 420,000 participants and 
discovered many coding variants that are difficult to find 
in traditional GWAS studies. We analyzed the genetic 
pleiotropy centered on lung cancer and identified the 
potential shared genes through cross-trait meta-analysis. 
Second, we identified the proportion of mediation effects 
of these pleiotropic variants by causing other respiratory 
diseases to develop, which in turn cause lung cancer. Third, 
we explored the relationship between identified genes and 
diseases by exhaustive enrichment pathway analysis and 
protein-protein interaction analysis.

It is essential to acknowledge the limitations of our study. 
First, this study was conducted with the UKB population 
only. The results need further replication in external 
independent cohorts with large-scale sequencing profiles. 
Second, we focused on individuals of European ancestry 
only, and the number of incident lung cancer cases in the 
UKB is low (n≈4,000) and provides insufficient power to 
assess the effects of rare variants. It is necessary to include 
individuals from non-European ancestries in genetic 
analyses, which is crucial for healthcare equity and genetic 
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discovery (49). Third, the candidate genes were reported 
based on statistical evidence and further basic medical 
experimental studies are still needed to confirm.

Conclusions

Our study provides novel insights into human exomes and 
rare variants through comprehensive analyses of genetic 
susceptibility to lung cancer-related diseases and subsequent 
exploration of shared pleiotropic genes and potential causal 
pathways.
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