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Abstract

We explain the anomaly of election results between large cities and rural areas in terms of

urban scaling in the 1948–2016 US elections and in the 2016 EU referendum of the UK.

The scaling curves are all universal and depend on a single parameter only, and one of the

parties always shows superlinear scaling and drives the process, while the sublinear expo-

nent of the other party is merely the consequence of probability conservation. Based on the

recently developed model of urban scaling, we give a microscopic model of voter behavior

in which we replace diversity characterizing humans in creative aspects with social diversity

and tolerance. The model can also predict new political developments such as the fragmen-

tation of the left and the immigration paradox.

Introduction

Formation of cities is the result of socio-economic advantages of concentrating human popula-

tions in space outpacing associated costs. Urban agglomeration effects are systematic changes

in socio-economic performance, innovation, trade and infrastructure characteristics of all cit-

ies as functions of their size. A variety of disciplines including economics [1–3], geography [4,

5], engineering [6] and complex systems [7–9] explain the existence of agglomeration or scal-

ing effects and relate macroscopic properties of a city to its scale (population size). Such rela-

tions are known across the sciences as scaling relations [10], and the systematic study of such

relationships in cities is known as urban scaling [11–14]. Using the population N as the mea-

sure of city size, power law scaling takes the form

Y ¼ Y0 � Nb; ð1Þ

where Y can denote material resources such as energy or infrastructure or measures of social

activity such as wealth, patents and pollution; Y0 is a normalization constant. The exponent β
reflects general dynamic rules at play across the urban system. Similar scale-free, fractal-like

behavior has been observed in many human social networks [15] including cities [16]. There-

fore, it is natural and compelling that the essential features of a quantitative, predictive theory

of cities originate in the dynamics and structure of social [17, 18] and infrastructural networks

[19], and that these underlie the observed scaling relations and the values of the exponents
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[20–22]. In the case of innovation [23], scaling has been related to the long-distance ties that

are prevalent in a higher proportion when a larger population provides the potential for pro-

ductive social interactions.

Most urban socioeconomic indicators have superlinear β> 1 exponents and as a result,

larger cities are disproportionally the centers of innovation and wealth. Sublinear scaling β< 1

characterizes material quantities displaying economies of scale associated with infrastructure,

where the agglomeration into cities pays off in having to provide fewer roads, shorter cables

etc. Thus, material costs related to living in larger cities is disproportionally low. Linear scaling

β� 1 is usually associated with individual human needs such as jobs, housing or water con-

sumption [14].

Gomez-Lievano, Patterson-Lomba and Hausmann in Ref. [24] recently proposed a new

model (GLPLH model) of superlinear scaling and demonstrated its validity on 43 urban

phenomena related to employment, innovation, crime, education and diseases. The model

accounts for the difference in scaling exponents and average prevalence across phenomena as

well as for the difference in the variance within phenomena across cities of similar size. The

central idea is that a number M of necessary complementary factors must simultaneously be

present for an urban phenomenon to occur. For example, to get a patent at least the following

six factors should be present: have a technological problem, have a solution, present the idea

clearly, apply for a patent, include subsequent corrections from examiners, and satisfy all the

legal requirements.

The fraction of factors that an individual does not have and is expected to require from the

city in order to be counted into a phenomenon is q 2 (0, 1), and it quantifies the complexity of

that phenomenon. The fraction of factors that a city provides for an individual is r 2 (0, 1). It

represents a measure of urban diversity and tends to accumulate logarithmically r = a + b � log N
with the population size, where a and b has been found to be constant across a wide range of

urban phenomena. Alternatively, the fraction of factors not present in a city is 1 − r = b � log

N0/N, where log N0 = (1 − a)/b, and N0� 1.8 � 1014 is a hypothetical maximal diversity attainable

in a city. Given a city with m factors present, the probability that an individual requires any num-

ber of the m factors that the city has, but none of the M − m factors that the city does not have is

P = (1 − q)M − m� eq(M − m) for q� 1, and the average number of occurrence of the phenomena

is Y = NhPiN, yielding Y� NeqM(1 − r(N)) = NeqMb log N0/N where we used he−qmiN� e−Mr(N) and

averaging goes for cities of population N. Introducing the the scaling exponent β = 1 + Mbq, this

scaling curve then takes the universal form

Y ¼ N0

N
N0

� �b

; ð2Þ

where N is now the part of population conceivably susceptible to the given urban phenomena.

Scaling laws and universality have been observed in various aspects of the political process

and elections [25–31], that can be even used to detect election anomalies [32]. In the last

decade complex systems-based approaches via social contagion theory has been developed

[33–39] for understanding scaling in election data. Here, we concentrate on the phenomeno-

logical aspects of the observed scaling only, and don’t study the detailed mechanism behind

the process.

In the recent presidential elections in the US it has been noticed that votes for Democrats

were disproportionally high in large cities [40], and in the UK major cities also voted to remain

in the EU. While this phenomenon can be understood int he context of social contagion,

where larger cities are shown to facilitate opinion spreading due to network effect [39], the

exact statistical properties of the dependence of the votes on city size can be better explained
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through scaling laws. Here we show that election data in the US and the referendum votes in

the UK show strong evidence of urban scaling. Moreover, in the US, the scaling curves follow

a hidden rule, a single parameter family of scaling curves, for both parties and for all the elec-

tions in the investigated period of almost 70 years. Using the concept that tolerance and diver-

sity are strongly coupled in cities [41], we develop a microscopic model of voter behavior

which produces the macroscopic level urban scaling, explains the observed single parameter

scaling, and describes the distribution of deviations from the macroscopic curve. The new

model can even explain unexpected voter behaviors like the immigration paradox in Britain,

that is, communities that had the fewest recent immigrants from the EU were the most likely

in wanting to leave the EU [42].

Results and discussion

First, we analyze data for the votes cast for the two main political parties in urban areas in all

post-World War II US presidential elections [43] and in the UK EU referendum [44] (see Sec-

tions A-B in S1 File for method details). In Fig 1A we show votes for the political options as a

function of voter turnout for the 912 largest Metropolitan and Micropolitan Statistical Areas

representing about 82% of the total voter population for the 2016 presidential election in the

US. Fig 1B shows the votes as a function of voter turnout for the Remain and Leave opinions in

the 2016 EU referendum for the urban electoral districts of the UK. The votes for Democrats

and Remain in the EU scale superlinearly with exponents βD� 1.14 and βrem� 1.09, while

votes for Republicans and Leave the EU follow sublinear scaling with βR� 0.92 and βlea� 0.91,

with high regression coefficients R2� 0.9 indicating robust urban scaling. While the elections

took place in two different political situations, nevertheless they show very similar exponents.

In Fig 2 we show the historical record of scaling exponents of the Democrats βD and of the

Republicans βR for the 18 presidential elections in the period 1948–2016. The exponent of the

Democrats has an increasing, while the exponent of the Republicans a decreasing historical

trend. The Democrat and Republican curves roughly mirror each other in the whole period.

Fig 1. Urban scaling in the presidential elections in the US and in the EU referendum in the UK. Best OLS fit line slopes β and regression coefficients R2 are

in the insets (see Section B in S1 File for method details). A Doubly logarithmic plot of votes cast for Republicans (red) and Democrats (blue) as the function of

the voter turnout for the 912 largest Metropolitan and Micropolitan Statistical Areas of the US in 2016. B Doubly logarithmic plot of votes cast for Leave (red)

and Remain (blue) as the function of the voter turnout for UK urban electoral districts (see Section B in S1 File for method details).

https://doi.org/10.1371/journal.pone.0192913.g001
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The relation of the two exponents becomes apparent when we plot the Republican exponent as

a function of the Democrat exponent in Fig 3A.

For each election and for each party we can determine the scaling exponent β and the con-

stant Y0 independently from the fits. In Fig 3B we plot log Y0 as a function of β. We find a very

strong (R2 = 0.96) linear relation

logY0 ¼ � abþ d; ð3Þ

for both parties and for all elections, with α = 12.111 and δ = 11.396. This indicates that the

form of the scaling relation is independent of the party and election and has the universal form

Y ¼ ed� aN�
N
N�

� �b

�
1

2
N�

N
N�

� �b

; ð4Þ

where N is the voter turnout in a city, β is the exponent of the party and log N� = α. The

Fig 2. Scaling exponents for the Republicans (red) and Democrats (blue) with error bars for the 18 presidential elections of the US from 1948 to

2016.

https://doi.org/10.1371/journal.pone.0192913.g002
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numerical factor eδ − α is equal to 1/2 within numerical error and the parameter N� � 182,000

is the average turnout of a US city of total population 429,000 in 2016. This is about the size of

Fort Wayne IN, the 125th Metropolitan Statistical Area of the US.

The remarkable property of this scaling relation is that in average at turnout N = N� the par-

ties share the votes equally (YD = YR = N�/2) independent of their exponents βD and βR or of

the year of the election and unaffected by historic changes in population. For cities above turn-

out N� the party with higher β gets the majority of votes, while below this turnout the party

with smaller β succeeds in average. While in 2016 already 125 metropolitan areas surpassed

the population corresponding to this critical turnout, only 45 did so in 1948.

The observed linear relationship (3) and the single parameter form (4) of the scaling curve

is predicted by the GLPLH model, therefore, it is reasonable to assume that it can be adapted

to the election process. Formally, we recover our scaling curve (4) from this theory by identify-

ing the susceptible population with half of the voter turnout N/2 and by setting N0 = N�/2.

There are two discrepancies between our scaling curve (4) and that of the GLPLH model. The

GLPLH model is applicable for superlinear β> 1 (Mq > 0) values only, while in case of elec-

tions both superlinear and sublinear exponents arise, and the numerical value of N0� 1.8 � 105

is nine orders of magnitude smaller for elections.

The main difference of elections from other urban phenomena is that the scaling curves

influence each other via the competition for votes. This competition is expressed mathemati-

cally by the probability conservation YD/N + YR/N = 1 for the sum of the fraction of votes the

parties get. Using (4) and averaging for all cities yields

1

2
ðN=N�ÞbD � 1
D E

þ
1

2
ðN=N�ÞbR � 1
D E

¼ 1: ð5Þ

This equation guarantees that one of the exponents will be superlinear while the other sub-

linear (see Section D in S1 File for details). Its numerical solution is shown in Fig 3A. Since we

can determine the scaling exponent of one of the parties from the other, a single parameter,

the scaling exponent of one of the parties, fully determines the urban scaling curves for both

Fig 3. Interrelation of the parameters of urban scaling in US elections. A Urban scaling exponents of Republicans as a function of the Democrats for

18 US presidential elections from 1948 to 2016 (dots) and the theoretical curve (red line) derived from probability conservation (5). B Intercepts of the

scaling relations log Y0 as a function of the scaling exponent β for Republicans (red) and Democrats (blue) for presidential elections in the period 1948–

2016. Fitted line (3) with parameters and regression coefficient in the inset.

https://doi.org/10.1371/journal.pone.0192913.g003

Universal scaling laws in metro area election results

PLOS ONE | https://doi.org/10.1371/journal.pone.0192913 February 22, 2018 5 / 11

https://doi.org/10.1371/journal.pone.0192913.g003
https://doi.org/10.1371/journal.pone.0192913


parties. Accordingly, only one of the scaling exponents needs a detailed explanation. A model

derived for the results of one of the parties will determine the results of the other party via

probability conservation. The strategy of one of the parties will result in a superlinear expo-

nent, which can be explained by an adaptation of the GLPLH model, while the result of the

party with the sublinear exponent is just a consequence of the other party’s strategy and the

probability conservation law. The explanation of a strategy that results in a superlinear scaling

follows later.

Next, we analyze the results in the period 2000–2016, where the Democratic party has a pro-

nounced superlinear scaling, and the Republican party a sublinear scaling. We show that the

statistical distribution of the results for Democrats is in accordance with the GLPLH model,

while the distribution of the votes for Republicans deviates from it and is merely the conse-

quence of probability conservation. We note here, that while our fits show a superlinear scaling

for the Republican party before 1960, the R2-values of these fits are not as reliable as that of the

more recent ones, and therefore, we will continue our analysis of superlinear processes and of

the model only for the aforementioned years.

A Scale-Adjusted Metropolitan Indicator [13, 45–48] (SAMI) is the logarithmic deviation

of the value Yi from the average scaling curve for a city with population Ni

xi ¼ logYi � logY0 � b logNi: ð6Þ

The articles [13, 46] predict that SAMIs for a given city size range are normally distributed

if the investigated measure obeys the urban scaling laws. The GLPLH model states that the

SAMI variance can be expressed with the former complexity parameter q and the number of

complementary factors M as s2
SAMI ¼ q2Mbð logN0 � h logNiÞ; where hlog Ni is the mean of

the logarithm of city sizes. It can also be expressed with the scaling exponent

s2
SAMI ¼ qðb � 1Þð logN0 � h logNiÞ: ð7Þ

In Fig 4 we check the general validity of this formula for both parties and for all elections in

the 1948–2016 period. For the variance averaged over all metropolitan areas, though the data

is noisy, we cannot reject the notion of proportionality with β − 1 (see inset of Fig 4A), indicat-

ing also that the complexity parameter q is approximately constant over several elections.

From the fitted line and from the numerical value hlog Ni = 10.55 for the 2016 election, we get

q� 0.28. Then, in the 2000–2016 period for the superlinearly scaling results of the Democrats,

we can make a more detailed calculation for ten windows of city sizes. In Fig 4A (main) we can

see that curves of s2
SAMI=ðb � 1Þ for different elections in these windows collapse onto the

same curve. While for low city sizes the linear relationship expected after the data collapse

does not fit well, for greater city sizes, where statistical errors are lower, the collapse confirms

that the complexity parameter is constant. This implies that the change of the scaling exponent

βD for the Democrats in this period comes solely from the change of the number of comple-

mentary factors M.

Deviations of cities from the average scaling curves can then be standardized in the win-

dows using the window-wise variances. In Fig 4B we show the distribution of these standard-

ized SAMIs for both parties. The distribution of these standardized SAMIs for Democratic

party is standard Gaussian, in agreement with the SAMI literature [13, 46]. However, the same

procedure results in a skewed distribution for the Republicans. Their rescaled SAMI distribu-

tion is not normal and the GLPLH model doesn’t apply. This also confirms that two parties

don’t have an equal role in the coupled urban scaling phenomenon.

Now, the question arises, what the necessary complementary factors in the context of elec-

tions are that must simultaneously be present in order to vote for Democrats in the 1988–2016
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period, where their exponent is superlinear? These factors can be best understood in the terms

of issue voting, where voters choose a candidate or an opinion by comparing their own view-

points in different political issues to that of the voted one [49–51].

We found that the complexity parameter q is approximately constant. Thus, from the 4–6

times growth of βD − 1 in this period we can conclude that the number of issues M got multi-

plicated about 4–6 times. The concrete value of M cannot be determined from our data, only

the product bM that changed from about 0.09 to 0.52 with b being constant. If we could find

these factors, then Republicans (or the Leave campaign) could be characterized as comprising

of those voters, who don’t accept at least one of those M issues that are necessary for a voter

voting for the superlinearly scaling opinion or party.

Here, we can just conjecture based on the agenda of Democrats, that these are liberal values

in general, and the Democrat voter typically accepts all of these M values or issues simulta-

neously. Such values include tolerance and acceptance towards various social groups ranging

from women and blacks at the beginning and middle of the 20th century to LGBT communi-

ties, immigrants, refugees and various other social minorities recently. In case someone is not

able to accept at least one of these, then he or she will probably not vote for the Democrats.

That explains why groups of the Republican and the Leave voters look so heterogeneous: they

consist of groups that oppose at least one of these liberal values, and that are not held together

by a common political agenda otherwise. This also explains the recent steady increase of the

Democrat exponent: as more and more M values are introduced, it increases the exponent,

making bigger cities having disproportionally more Democrats than smaller ones. This result

is in line with the findings of [39], who explain the same phenomenon via the increasing

impact of social contagion in the more populated areas of the United States.

In this context, we can identify q as a probability that a voter—left on its own devices—

rejects one of the M liberal values, and r(N) is the probability that a city of size N makes a voter

Fig 4. Fluctuations around the average scaling curve. A, Variance of the deviation from the average scaling curve as a function of the logarithmic city size,

measured in voter turnout. City sizes are binned into 20 windows of uniform sizes on logarithmic scale. In the inset, standard deviation of SAMIs (6) for all

metropolitan areas in our study as a function β − 1. Best fit line parameters are in the inset. B, Standardized deviation of SAMIs for the last five US presidential

elections. Lower panel: Scatter plot for the Democrat (left) and Republican (right) standardized deviations (horizontal axis) and logarithmic city size (vertical

axis). Upper panel: Distribution of the standardized deviations. For the Democrats (left) it is a standard normal distribution (solid line). For Republicans (right)

it is a skewed distribution deviating from the standard normal distribution (solid line). We used the Kolmogorov-Smirnov test to check the normality of the

distributions at a significance level of 5% (see Section G in S1 File for details).

https://doi.org/10.1371/journal.pone.0192913.g004
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tolerant towards those values. Social diversity grows with the city size and voters in cities can

face an increasing number of social issues and can develop tolerance towards them. This is in

accordance with the immigration paradox in Britain, where voters living near immigrants

develop a tolerance, while those who do not are more likely to reject them [42]. Therefore, we

expect that just like other types of diversities in cities, tolerance grows like r(N)*log N/N0, but

the number of maximal social diversity is reached at N0� 4 � 105, which is smaller than the

diversity N� � 1.8 � 1014 observed for the more general type of diversity, characterizing

humans in creative aspects. Finally, there is one more consequence of this model: as the num-

ber of liberal values M seems to grow continuously, the potential voters who don’t accept one

of them also increases, and becomes detrimental for electoral success. This leads to the frag-

mentation of the political left, since a larger number of smaller parties accepting only a subset

of the M values, or even “single-issue” parties can minimize the number of estranged voters

and maximize the aggregated votes of all these parties.

Conclusion

We applied urban scaling theory to the number of votes cast in the Metropolitan and Micro-

politan Statistcal Areas in the 1948–2016 presidential elections of the US and the votes cast in

the urban areas of the 2016 EU referendum in the UK. We found that out of the two voting

options (Democrat/Republican, Remain/Leave), one always follows a superlinear, while the

other a sublinear scaling. Using the historical dataset, we showed that instead of four parame-

ters (two for both scaling fits), the single exponent of the superlinearly scaling party is enough

to characterize all processes across the elections and the parties. We derived the other exponent

from the superlinear exponent by using the conservation of voting probabilities, and showed

that the city turnout distribution determines that this other exponent must be sublinear. We

then analyzed the fluctuations around the scaling curve distributions and found that the distri-

bution corresponding to the superlinear exponent is lognormal. We concluded that the two

parties play different roles in urban scaling. The party with superlinear exponent drives the

process, while the scaling of the party with the sublinear exponent is merely the result of proba-

bility conservation. In the context of elections we identified the the elements of the GLPLH

model and showed that social tolerance and diversity replaces creative diversity in this context.

We pointed to new political consequences of the model. We believe that he model and the cal-

culations could further be extended to metropolitan areas in other countries or to electoral sys-

tems with multiple choices.

Materials and methods

See Sections A-G in S1 File for details.

Supporting information

S1 File. Detailed materials and methods. The file contains detailed description of the data

sources, fitting procedures (power laws and the Kolmogorov-Smirnov test) and calculations.

(PDF)
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