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Abstract

Background: Intrahepatic cholestasis of pregnancy (ICP) is a common disease affecting up to 5% of pregnancies and which
can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC),
which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium
destabilization in cultured neonatal rat cardiomyocytes (NRCM). Apart from their hepatic functions bile acids are ubiquitous
signalling molecules with diverse systemic effects mediated by either the nuclear receptor FXR or by a recently discovered
G-protein coupled receptor TGR5. We aim to investigate the mechanism of bile-acid induced arrhythmogenic effects in an
in-vitro model of the fetal heart.

Methods and Results: Levels of bile acid transporters and nuclear receptor FXR were studied by quantitative real time PCR,
western blot and immunostaining, which showed low levels of expression. We did not observe functional involvement of
the canonical receptors FXR and TGR5. Instead, we found that TC binds to the muscarinic M2 receptor in NRCM and serves
as a partial agonist of this receptor in terms of inhibitory effect on intracellular cAMP and negative chronotropic response.
Pharmacological inhibition and siRNA-knockdown of the M2 receptor completely abolished the negative effect of TC on
contraction, calcium transient amplitude and synchronisation in NRCM clusters.

Conclusion: We conclude that in NRCM the TC-induced arrhythmia is mediated by the partial agonism at the M2 receptor.
This mechanism might serve as a promising new therapeutic target for fetal arrhythmia.
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Introduction

Intrahepatic cholestasis of pregnancy (ICP) is a maternal

metabolical disease characterised by raised maternal serum bile

acids. It can be complicated by fetal distress, intrauterine death,

and pre-term labour [1–4]. ICP is common, affecting 1 in 200

pregnancies in the UK [5]and is more prevalent in other countries,

e.g. Chile where it affects up to 5% of pregnant women [6]. The

aetiology of the fetal death is poorly understood. It is thought to

occur suddenly, as there is no evidence of preceding utero-

placental insufficiency and the fetal autopsy is normal[1].

Bradycardia and an abnormal fetal heart rate (#100 or $180

beats/minute) have been observed in some studies with ICP [7,8].

Furthermore there was a case report of fetal tachyarrhythmia in

association with atrial flutter during labour in ICP [9]. Tauro-

conjugated primary bile acids predominate in cholestatic preg-

nancies, and our previous work has focussed on the influence of a

tauro-conjugate of cholic acid (TC) on cardiomyocyte func-

tion[10]. Previously, we hypothesised that raised fetal serum bile

acids in ICP cause fetal arrhythmia and sudden intrauterine death

and demonstrated that TC can acutely alter the rate and rhythm

of cardiomyocyte contraction and cause abnormal Ca2+ dynamics

of single cells[11]. Superfusion of a culture with TC had the

arrhythmogenic effects in individual cells, such as a reduction in

amplitude of contraction as well as Ca2+ related arrhythmias

[11,12]. However, the molecular mechanisms of bile-acid induced

arrhythmogenesis are still elusive.

There is growing evidence that bile acids are versatile signalling

molecules endowed with systemic endocrine functions[13]. It is

likely that transport of bile acids across the plasma membrane can

influence their adverse effects on contraction and calcium

dynamics. The repertoire and properties of fetal transporter

proteins may differ from those in the adult and this may explain

the more potent effect of bile acids on fetal cardiomyocytes. In

hepatocytes, bile acids are tightly regulated due to their inherent

toxicity[14,15]. Transported into the cell, bile acids modulate

several nuclear hormone receptors including farnesoid X receptor

(FXR; also known as NR1H4) which regulate downstream

functions in a genomic signaling manner[16–21]. While the

pathways of bile homeostasis are becoming increasingly char-
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acterised in hepatocytes, little is known about pathways that are

involved in bile acid effects on cardiomyocytes. Our previous data

have confirmed that the genes encoding FXR, BSEP and MDR3

are expressed in human cardiomyocyte cultures[22], adult rat

hearts, fetal rat hearts and neonatal rat cardiomyocyte cultures.

Recently, a bile acid-specific G-protein-coupled receptor TGR5

(also known as GPBAR1, M-BAR and BG37) has been

identified[23]. This receptor has been associated with immuno-

modulatory properties of bile acids[23] and some hepatic

functions[24]. In endothelial cells TGR5 regulates nitric oxide

production via cyclic AMP-dependent activation of endothelial

nitric oxide synthase[25]. However, the presence of TGR5 in

cardiomyocytes has not been investigated. Some other reports

have suggested that bile acids might affect muscarinic cholinergic

receptor signaling[26]. Stimulation of muscarinic receptors on

colon cancer cells by bile acids was attributed to cell proliferation

and neoplasia[26]. The bile acid TLCA has been shown to
interact with M3 isoform of muscarinic receptor in
chinese hamster ovary ((CHO)) cells expressing rat or
human muscarinic receptor[27]. In some other cell types

such as gastrointestinal smooth muscle cells, biliary epithelium,

vascular endothelium and dermal neurons bile acids have been

suggested to interact with muscarinic receptors. However, little is

known about the possible action of bile acids on cardiac

muscarinic receptors[26].

Here we extensively investigated the mechanism of bile-acid

induced arrhythmogenesis and found that TC is a partial agonist

of the muscarinic M2 receptor and that its arrhythmogenic effect

in fetal cardiomyocytes is mediated via inhibition of cAMP and

impairment of contraction.

Results

Fxr and TGR5 are not involved in TC-induced arrhythmia
Initially we investigated whether the bile acids act through

receptors on the cell surface and whether they are transported into

the cytoplasm of NRCM where they interact with nuclear

receptors. First we quantified the cellular uptake of radioactively

labeled TC which appeared to be negligible in NRCM compared

to primary human hepatocytes (Fig. 1a). We studied nuclear

translocation of fxr, as a marker of fxr activation. We did not

observe significant translocation of fxr in NRCM treated with TC

as observed in human hepatocyte cell line Huh7 after 5 minutes

treatment with TC (Fig. 1b). Therefore interaction with nuclear

receptors was not considered to be of relevance to cardiac cells.

Indeed, expression of bile transporters in cardiomyocytes was

generally lower than in hepatocytes (Table S1) and, importantly,

despite its abundant expression in cardiomyocytes (Fig. 1c), fxr did

not show a typical redistribution from the cytoplasm to the nucleus

upon treatment with bile acids (Fig. 1b,d). Likewise, we could not

detect any expression of the bile acid specific TGR5 in NRCM by

immunohystochemistry (Fig. 2a). In line with these findings,

agonists of fxr (GW4064) and TGR5 (oleanolic acid) also did not

influence cardiomyocyte contraction, nor did they protect against

TC-induced arrhythmia (Fig. 2b).

TC is a partial agonist at the muscarinic M2 receptor
Since the involvement of muscarinic receptors in bile acid

signalling has been previously suggested in non-cardiac cells[26],

we sought to investigate whether TC can bind to and activate the

M2 receptor subtype, which is most relevant for cardiomyocyte

Figure 1. Fxr interaction with TC in NRCM. (a) The 3H TC influx assay showed low uptake of 3H TC in NRCM (closed circle) compared to primary
human hepatocytes (open circle). While hepatocytes showed uptake of 200000 units of TC in the first 20 minutes, cardiomyocytes did not take up
more than 50 units of radioactive TC. fxr in neonatal cardiomyocytes (b-d). (b) Graph quantifying the relative expression of fxr protein from western
blots performed using NRCM and the human hepatocyte cell line Huh7 treated with TC 0.1 mmol/L at 0, 5, 30 and 60 minutes. (c) Representative
western blot showing expression of fxr protein in rat neonatal cardiomyocytes with and without addition of TC. (d) Control human hepatocyte cell
line Huh7 stained for fxr; pre (i) and post-bile acid treatment (ii). NRCM stained for fxr; control (iii) and after 1 incubation with TC 1 mmol/L (iv). FITC
(green) = fxr; DAPI (blue) = nucleus; yellow arrow fxr nuclear region staining. (n = 3 observations).
doi:10.1371/journal.pone.0009689.g001

M2 Receptor-Fetal Arrhythmia
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physiology. First, we prepared cell membranes from cultured

neonatal cardiomyocytes and performed radioligand binding

assays with the muscarinic receptor antagonist N-methylscopola-

mine. Similar to our observations in muscarinic receptor-

overexpressing CHO-M2 cells (Fig. S1), competitive binding

displacement experiments showed that TC can bind to the

muscarinic receptors endogenously expressed on cardiomyocytes

with an apparent Kd of ,17 mmol/L (Fig. 3a).

To study whether TC can act as a ligand of the M2 receptor and

induce downstream signaling responses, we analyzed the inhibi-

tory effect of TC on cAMP production in NRCM expressing the

FRET-based cAMP sensor Epac2-camps[28]. Treatment of cells

with TC led to a decrease in basal cAMP levels which reached its

maximum after ,1 min, similar to the full receptor agonist

carbachol. However, the TC-induced inhibition was partial

(,30%) compared to the effect of carbachol (Fig. 3b, c), suggesting

that TC acts as a partial agonist of this receptor.

Muscarinic M2 receptor mediates TC effects of cardiac
contraction

Prior to addition of TC the NRCM contracted spontaneously at

a rate of about 106 bpm66.08 (mean6SEM, n = 5). When TC

0.2 mmol/L and 1 mmol/L were added to the culture medium of

these cells there was a significant reduction in the rate of

contraction, 61.20 bpm65.33 and 61.32 bpm67.55 (mean6SD,

n = 6. P,0.001) respectively (Fig. 4a, c). To investigate whether

the inhibitory effect of TC on cardiomyocyte contraction is

mediated by muscarinic receptors, we used pharmacological

inhibition and knock-down approaches. Preincubation with either

pertussis toxin to inhibit Gi–proteins or with the M2 receptor-

specific inhibitor methoctramine abolished the negative chrono-

tropic effect of TC after 10 minutes treatment with either 0.2 or

1 mmol/L TC (Fig. 4a, c). The muscarinic receptor agonist,

carbachol, caused a similar reduction in contractility to that

observed with TC but with much higher potency (Fig. 4b). In

contrast, preincubation with either M1 receptor-specific inhibitor

pirenzepine or M3 receptor-specific inhibitor 4-diphenylacetoxy-

N-methylpiperidinemethiodide did not inhibit the bile acid-

induced reduction in contraction (Fig. 4c), suggesting that M2

receptors are responsible for the effect of TC on contraction. We

further confirmed this observation by siRNA knockdown of the

M2 receptor. Transfection of NRCM with siRNA led to a 65%

reduction in the receptor mRNA expression (Fig. S3) and and

substantially reduced the impact of high concentration of TC

1 mmol/L (Fig. 4d) and 0.1 mmol/L carbachol on the rates
of contraction (Fig. S2).

The data obtained using optical contractility measurements

were further substantiated by scanning ion conductance micros-

copy (SICM), a new advanced microscopic technique. Recordings

of the vertical displacement of contractions by SICM revealed that

TC not only reduced the frequency of contraction but also made

cardiomyocyte contraction irregular (Fig. 5a,b,e, Fig. S4).

However, this TC effect was abolished by M2 receptor knockdown

(Fig. 5c, d, e), even at a TC concentration of 1 mmol/L. (Fig. S5).

Functional involvement of the muscarinic M2 receptor in
the TC-induced calcium desynchronization

The effect of TC on calcium desynchronization and the

involvement of M2 receptors in this process were investigated in

small 3 days old NRCM clusters (,1006100 mm, Fig. 6a, Video

S1). Optical recordings of Ca2+ transient amplitude for 4 seconds

before and after acute exposure (20 min) to 0.2 mmol/L TC

showed a complete loss of Ca2+ transient synchronisation in

control clusters and in clusters of cells transfected with scrambled

siRNA clusters after TC treatment (Fig. 6b,c, Video S1). In

contrast, cell clusters transfected with siRNA targeting the M2

receptor, did not show these abnormalities (Fig. 6d). The

maximum Ca2+ peak in the presence of TC scaled to pre-

Figure 2. Involvement of TGR5 and fxr in TC induced arrhythmia in NRCM. (a) Lack of expression of TGR5 in cardiac cells. Top panels: TGR5
immunolocalisation in a rat liver section (left) and cultured rat Kupffer cells (right) Scale bar 10 mm. Bottom panels. Immunostaining for TGR5 in a
cluster of NRCM (left and right panels, red colour). Nuclei are stained with Hoechst dye (left panel, blue colour) (b) Graph demonstrating that the
TGR5 agonist Oleanolic acid (0.1 mmol/L) and the fxr agonist GW4064 (0.01 mmol/L) do not protect NRCM from TC-induced arrhythmia. (* Control vs
P,0.05); n = 3 observations).
doi:10.1371/journal.pone.0009689.g002
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treatment clusters showed a significant reduction in control and

non-targeting siRNA knockdown (P,0.05) clusters, whereas the

reduction in clusters with siRNA transfection was less marked and

comparable with the control group (Fig. 6b-d, Table 1).

Discussion

ICP is a severe disease of pregnancy associated with detrimental

effects of bile acids on the fetal heart. The molecular mechanisms of

this cardiotoxicity have remained elusive. To unravel the mechanism

of the bile-acid induced arrhythmia, we first hypothesized that the

effects of nuclear receptors activated by bile acids transported into

cardiac cells might be involved. However, we have shown that all the

main bile acid transporters are expressed at relatively low levels in the

fetal heart and in neonatal cardiomyocyte cultures. Our data are

consistent with previous published data [29].

Interestingly, the nuclear receptor FXR [30,31] which regulates

target genes that influence bile, glucose homeostasis and lipoprotein

metabolism in the liver is highly expressed not only in bile acid-target

organs, like liver and gut but also in the kidney, adrenal glands, thymus

and heart[32–34]. It has been suggested that FXR ligands play roles in

cardiovascular diseases[34,35].

Surprisingly, although the bile acid nuclear receptor fxr is

expressed in cardiomyocytes, it did not undergo nuclear

translocation upon treatment with TC (Fig. 1). In line with the

data on low expression levels of bile acid transporters in

cardiomyocytes (Table S2), the uptake of radioactively labeled

TC into these cells was negligible compared to human

hepatocytes, and the fxr receptor agonist GW4064 had no effect

on contraction.

This led us to hypothesise that TC acts on cardiomyocytes via

membrane receptors. The well-characterized membrane receptor

for bile-acids TGR5 was not expressed in these cells, whereas

other G-protein-coupled receptors which play an important role in

cardiac physiology, namely the muscarinic receptors, have been

unexpectedly found to mediate the cardiac effects of bile acids.

Here we unequivocally demonstrate that TC can bind to the

muscarinic M2 receptor on the membranes of CHO-M2 cells and

neonatal cardiomyocytes. TC serves as a partial agonist of this

receptor. The partial agonism has been confirmed at the level of

the second messenger cAMP and in several functional assays.

Previous studies have known that in ventricular cardiomyocytes

M2 muscarinic receptors inhibit cAMP production[36]. We show

that TC induced a partial muscarinic effect at the cAMP level

which was characterized by ,30% inhibition of intracellular

cAMP levels compared to carbachol (Fig. 3b,c). At the functional

level, TC reduced the rate of contraction with slightly lower

efficacies compared to carbachol, but the potency of TC in

inhibiting contraction was much lower (Fig. 2a,b), supporting the

idea of its partial agonistic effect. This effect was dependent on the

Gi-proteins and was blocked by the selective M2 receptor

antagonist methoctramine and not by M1 and M3 receptor

antagonists (Fig. 4c). It is known that stimulation of muscarinic M2

receptors within the mammalian heart[37,38], modulates pace-

maker activity and atrioventricular conduction, and directly (in

atrium) or indirectly (in ventricles) influences the force of

contraction[39]. Indeed, knocking down M2 receptors in the

mouse abolishes bradycardia in response to carbachol[36],

emphasizing the functional importance of this receptor subtype.

Stimulation of the heart with the muscarinic receptor agonist

Figure 3. TC is a partial agonist of the M2 muscarinic receptor. (a) Specific binding of TC to muscarinic receptors in cardiomyocyte
membranes. Competitive displacement of 3H-NMS with TC is shown (Kd values were 17.267.3 mmol/L, n = 3). (b) FRET-based cAMP measurements in
NRCM upon stimulation with TC show its partial agonistic effect compared to the full agonist carbachol (CCh). Isoproterenol (Iso) was used a positive
control to stimulate cAMP production. Representative experiment (n = 5), quantification is shown in (c).
doi:10.1371/journal.pone.0009689.g003

M2 Receptor-Fetal Arrhythmia
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carbachol causes a decrease in heart rate (i.e. bradycardia) in

mice[36].

In addition, siRNA knockdown of the M2 receptor completely

abolished the negative effect of TC on contraction (Fig. 4 and 5)

and protected against the arrhythmogenic effect of TC which was

characterized by a pronounced calcium desynchronization (Fig. 6).

While it is generally assumed that parasympathetic stimulation of

the heart acts through the M2-muscarinic acetylcholine receptors

to regulate channel activity and subsequent cardiac inotropic and

chronotopic status, there are varieties of proposed mechanisms.

The intracellular Na+ current increases in guinea pig ventricles

[40]and in sheep cardiac purkinje fibers [41] in the presence of

either acetylcholine or carbachol. Alteration of Na+/K+ and Na+/

Ca2+ pumps was also proposed to be the M2 agonist stimulant

[41,42,42]. More recently it has been shown that the (PTX)-

sensitive Gai2 coupling protein but not Gai3 is required for the

inhibitory action of muscarinic receptor on cell contractility and L-

type calcium current in adult ventricular myocytes [43].

The structural basis for the specific and functional interaction of

TC with muscarinic receptors is not fully understood, but it is

possible to speculate that structural similarity exists between TC and

other muscarinic receptor agonists (Fig. S6). Considerable likeness

can be found between the portion of carbachol and TC side chain. It

is electrostatic concordance between the two molecules, rather than

perfect atomic alignment that may allow for the similar interaction

with the muscarinic receptor. The ester carbonyl group of carbachol

which carries a partial negative charge aligns with sulfonic acid in

TC, and the amide of TC aligns with the ammonium ion of

carbachol. It is likely that the interaction of these molecules with

muscarinic receptors is based on electrostatic binding since two other

molecules with similar interaction with muscarinic receptors, LCT

and acetylcholine, share overall charge composition but not the

atomic alignment [26,27].

In conclusion, we have identified partial agonism at the M2

receptor as a novel mechanism for bile acid-induced arrhythmia in

a model of the fetal heart. Abolishing the M2 receptor resulted in

elimination of the TC-induced-arrhythmia in cardiac tissue as

revealed but the mechanical and optical mapping experiments

respectively (Fig. 5, Fig. 6). The findings of this study indicate that

muscarinic M2 receptor might be identified as a new therapeutic

target to prevent fetal arrhythmia associated with the cholestasis of

pregnancy and other diseases.

Figure 4. The muscarinic receptor is involved in TC-induced arrhythmia. Contraction of NRCM expressed as beat per minutes (bpm). (a)
Treatment with TC or the muscarinic agonist carbachol in the presence or absence of the Gi protein blocker PTX. (b) Dose dependent effect of
carbachol (CCh) and taurocholate (TC). (c) Pharmacological inhibition of muscarinic receptors, treatment with M1, M2 and M3 muscarinic receptor
antagonists. (d) Scramble (non-targeting) siRNA and M2 siRNA knockdown of cells. (* Control vs P,0.001); n$3 observations).
doi:10.1371/journal.pone.0009689.g004

M2 Receptor-Fetal Arrhythmia
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Materials and Methods

Reagents
3H-taurocholic acid (specific activity 5 Ci/mmol) and Ultima

Gold scintillation cocktail were purchased from PerkinElmer

(Boston, MA). All chemicals were purchased from Sigma-Aldrich

(Gillingham, UK) unless otherwise stated.

Neonatal rat Cardiomyocytes
Ventricular neonatal rat myocytes (NRCM) were isolated from

the hearts of 1–2 day old Wistar rats according to Gorelik et. al,

2002[11] and under approval from the NHLI Imperial College

London ethical committee (No. 1213456789). Experimental

procedures using animals were performed in accordance with the

U.K. Animals (Scientific Procedures) Act, 1986. Cells were kept in

plating media (DMEM supplemented with 17% Medium 199 (v/v),

10% horse serum (v/v), 5% foetal calf serum (v/v), 200 mg/ml

streptomycin, 200 U/ml penicillin). Cells were used following 2–3

days culture when small networks of cardiomyocytes had formed.

3H-Taurocholate (3HTC) Influx Assay
3H-taurocholic acid (specific activity 5 Ci/mmol) and Ultima

Gold scintillation cocktail were purchased from PerkinElmer

(Boston, MA). All chemicals were purchased from Sigma-Aldrich

(Gillingham, UK) unless otherwise stated. NRCM and primary

human hepatocytes (material and methods S1) seeded into 24-well

plates were incubated at 4uC/37uC with 250 ml of influx media

consisting of 0.2 mmol/L 3HTC and 0–99.8 mmol/L TC in L-15

media for 0–60 minutes. Influx activity was stopped by washing

with 500 ml of ice-cold 1 mmol/L TC and cells lysed with 250 ml

of RIPA buffer (Sigma-Aldrich Gillingham, UK), 175 ml of which

was mixed with 2 ml scintillation cocktail for radioactivity

counting and the remainder used to assay protein quantity (Pierce

BCA protein assay kit, Cramlington, UK) for normalisation. Cell

membranes isolated from NRCM (20 mg protein) were incubated

for 2 h at room temperature in assay buffer (25 mmol/L

phosphate buffer saline, 5 mmol/L MgCl2, pH 7.4) with 0.1–

10 nmol/L [3H]-N-methylscopolamine ([3H]-NMS) (Amersham,

Freiburg, Germany). Nonspecific binding was determined in the

presence of 10 mmol/L atropine and reactions terminated by

vacuum filtration through GF/B glass fibre filters (Millipore,

Schwalbach, Germany).

Radioligand binding assays
Cell membranes isolated from NRCM (20 mg protein) were

incubated for 2 h at room temperature in assay buffer (25 mmol/

Figure 5. Muscarinic M2 receptor mediates TC effects of cardiac contraction. Representative measurement of the amplitude contraction of
NRCM using SICM.(a-b) Scramble (non-targeting) siRNA NRCM showed regular contraction and alterations in rhythm and amplitude following TC
treatment.(c-d) cardiomyocytes showed regular contraction following siRNA knockdown of M2 and TC treatment did not have an effect on rhythm of
contraction. (e) Graph demonstrating the influence of adding 0.2 mmol/L and 1.0 mmol/L TC on the amplitude of contraction of non-targeting siRNA
(grey bar) and siRNA-M2 knockdown (black bar) of NRCM. This is represented as a percentage (%) of the amplitude of contraction in cells prior to the
addition of TC (designated controls). The extent to which the amplitude of contraction returns to normal after transfer of cells into TC-free medium is
also shown. (* Control vs P,0.05); n = 6 observations).
doi:10.1371/journal.pone.0009689.g005

M2 Receptor-Fetal Arrhythmia
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L phosphate buffer saline, 5 mmol/L MgCl2, pH 7.4) with 0.1-

10 nM [3H]-N-methylscopolamine ([3H]-NMS) (Amersham,

Freiburg, Germany). Nonspecific binding was determined in the

presence of 10 mmol/L atropine and reactions terminated by

vacuum filtration through GF/B glass fibre filters (Millipore,

Schwalbach, Germany).

RNA isolation and quantitative PCR (Q-PCR)
Total RNA was isolated from NRCM using the Qiagen

RNEasy kit. 0.5 mg of RNA was reverse-transcribed using the

Advantage RT-for-PCR Kit (Takara Biosciences, Saint-Germain-

en-Laye, France). Relative gene expression was assayed using q-

PCR detection of SYBR Green (JumpStart ReadyMix, Sigma-

Aldrich), calculated using the DDCt method and the following

gene-transcript levels normalised to l19: ntcp, shp, fxr (n1rh4)and

mrp3 (for sequences Table S2).

Nuclear protein extraction and western blot
NRCM and human hepatocytes cells line Huh7 seeded in 6-well

plates were treated with 0.2 mmol/L TC for 0–60 minutes. Huh7

cells were a kind gift from Dr. Louise Collins The Rayne Institute,

London. Nuclear protein was extracted with the NucBuster

protein extraction kit (Novagen) according to manufacturer’s

protocol. Nuclear proteins were run on a 10% SDS-PAGE and

analyzed by western blot. For detection of fxr protein, cells were

lysed in ice-cold RIPA buffer and sonicated for 45 seconds on ice.

Lysates were centrifuged at 10,000 rpm for 15 minutes at 4uC.

Protein concentration was determined using the BCA assay kit

Figure 6. Functional involvement of the muscarinic M2 receptor in the TC-induced calcium desynchronization. (a) Overview of a cluster
loaded with 5 mg/ml Fluo-4 AM (scale bar = 10 mm). Representative of intracellular Calcium dynamics recorded in NRCM pre and post-treatment with
0.2 mmol/L TC. (b) Ca 2+ transients recorded in untreated (left panel) and treated (right panel) of control cells. (c) Ca 2+ transients recorded in
untreated (left panel) and treated (right panel) of scramble (non-targeting) siRNA knockdown cells. (d) Ca 2+ transients recorded in untreated (left
panel) and treated (right panel) of siRNA M2 knockdown cells. n.5 observations.
doi:10.1371/journal.pone.0009689.g006

Table 1. Effects of 0.2 mmol/L TC on Ca2+ amplitude and percentage of desynchronized cluster after treatment with TC.

Condition of cells
Percentage of calcium peak reduction
compared to pre-treatment (Means 6 SEM)

Loss of Ca 2+ Transient
Synchronization after TC (% of cells)

Control 45.4611.35 67

Scrambled siRNA 38.763.87 70

siRNA M2 7.660.28 3.57

Data are normalized to pre treatment condition and scale accordingly to dF/F 10%, n.5 observations.
doi:10.1371/journal.pone.0009689.t001

M2 Receptor-Fetal Arrhythmia
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(Perbio), 30 mg protein was fractionated on 10% SDS-PAGE gels

and transferred to Protran nitrocellulose membrane (Schleicher

and Schuell) by submerged transfer apparatus (Bio-Rad) in

(25 mmol/L,Tris, 192 mmol/L glycine, 20% v/v methanol.

Membranes were blocked for 1 hour at room temperature with

5% nonfat milk in PBS containing 0.05% Tween-20 and

incubated with antibodies specific to fxr (1:2000) or b-Actin

(1:10000; Santa Cruz Biotechnology) overnight at 4uC. The blots

were probed with 1:7000 dilution of horseradish peroxidase

(HRP)-conjugated anti-mouse IgG and visualized using the ECL

system (Amersham Biosciences). Blots were exposed to autoradio-

graphic X-ray film and bands were quantified with ImageJ

software and normalised again to b-Actin.

Immunohistochemistry and Immunocytochemistry
Preparations were washed with PBS, fixed for 10 minutes with

4% (v/v) formaldehyde, washed with PBS and permeabilized for 40

minutes with 0.2% Triton X-100 (v/v). Post-permeabilisation,

NRCM were blocked with 0.1% bovine serum albumin (w/v) for 15

minutes and subsequently probed overnight at 4uC with an anti-fxr

antibody (1:100; R&D Systems). Following antibody incubation,

NRCM were incubated with fluorescein-conjugated secondary

antibody for 1 hour at RT. NRCM nuclei were stained with DAPI

for 20 minutes at 37uC. The cells were washed with PBS and the

coverslips were mounted on glass slides using Vectashield.

For immunofluorescent studies, isolated rat Kupffer cells and

neonatal cardiomyocytes were seeded on glass coverslips and

fixed in 100% methanol (5 min, 220uC). Cryosections (5 mm) of

perfused rat liver were prepared with a Leica cryotome, air-dried

for 1 hour and fixed in 100% methanol (5 min, 220uC). An

antibody against the C-terminus (aa 306–329) of rat TGR5 was

used at 1:150[25]. A Cyanin-3 conjugated secondary antibody

(Jackson Immuno Research Laboratories, West Grove, PA) was

diluted 1:500 and Hoechst 34580 (Invitrogen) was added at

1:10,000 respectively. Immunostained samples were analyzed on

Zeiss LSM 510 META confocal microscope (Zeiss, Oberkochen,

Germany) using the same settings for all samples.

Assessment of beating frequencies
Beating frequencies in each cell were visually recorded according

to Clark et. al. (1991)[44]. Cardiomyocytes were pre-incubated at

37uC humidified with 5% CO2 with 1 mmol/L atropine, 1 mmol/L

methoctramine, 1 mmol/L pirenzepine, 1 mmol/L 4-DAMP,

100 mmol/L carbachol (CCh), 50 nmol/L Pertussin Toxin (PTX),

100 mmol/L oleanolic acid (0.1 mmol/L) or 10 mM GW4064 for

30 minutes pre-bile acid treatment. NRCM contraction rates were

counted under a light microscope. NRCM were treated with 0.2/

1 mmol/L TC for 10 minutes and contraction rate re-counted.

siRNA-mediated Gene Silencing of chrm2
siRNA against M2 and control scramble sequences were

purchased from Thermo Scientific Dharmacon (siM2 catalogue

M-092972, siScramble catalogue D-001210). 100 nmol/L con-

centration of siM2/Scramble was transfected into 60–70%

confluent NRCM using Dharmafect1 for 48 hours according to

manufacturer’s protocol. Post-transfection, NRCM were washed

and cultured in phenol red free DMEM with 2% DCC-FCS. M2

knockdown levels were assessed with qRT-PCR.

Measurement of contraction using Scanning Ion
Conductance Microscope (SICM)

The scanning ion conductance microscope (SICM) provides

accurate measurement of the rate, rhythm and amplitude of

contraction on NRCM. The physiological L-15 medium (Gibco,

Parsley, UK) was used as the bath and micropipette solution.

Optical recording of Calcium transients
The characteristics of Ca2+ transients were assessed optically after

staining the preparations with 5 mg/ml of Fluo-4 AM (Invitrogen) for

20 min at 37uC. During the experiments, preparations were

continually superfused at 36uC with Hanks’ balanced salt solution

(HBSS) containing (mmol/L) NaCl 137, KCl 5.4, CaCl2 1.3, MgSO4

0.8, NaHCO3 4.2, KH2PO4 0.5, NaH2PO4 0.3 and HEPES 10. The

solution was titrated to pH 7.40 with 1 mol/L NaOH. Changes in

fluorescence corresponding to intracellular Ca2+ changes were

assessed using a fast CMOS camera (MiCAM Ultima, Scimedia)

coupled to a Nikon inverted microscope Ti/U equipped for

epifluorescence (magnification 206, N.A 0.75). This system is able

to record calcium activity in an area measuring 1 mm61 mm with a

spatial resolution of 5 mm and a temporal resolution of 1 ms. The

assessment of calcium transient in a given preparation was limited to

2-5 recordings, 4 s each, in order to avoid phototoxic effects of the

dyes. Optical raw data were analyzed using dedicated software from

the camera manufacturer (BVAnalyze V8.02, SciMedia). After offset

correction the maximum dF/F was setting at 10% in order to scale the

traces with the Ca2+ amplitude measured in pre-treated preparations.

Experiments were performed with 3-day-old preparations.

Acute effect of Taurocholate on Calcium Transient
After measuring Ca2+transients in normal superfusion solution

(HBSS), the same preparations (control, scramble and siRNA M2)

were superfused with an HBSS solution containing TC 0.2 mmol/

L and Ca2+ transients were recorded again after 20 min perfusion

in the same conditions. Cardiomyocyte clusters were included in

the analysis if they fulfilled the following criteria: (i) the clusters had

to denote spontaneous beating activity, (ii) the clusters had to

consist only of cardiomyocytes and (iii) the clusters had to be

isolated with a maximum dimension of 1006100 mm.

FRET imaging of cAMP
FRET imaging of cAMP in living neonatal cardiomyocytes was

performed in cells infected for 48 h with Epac2-camps adenovirus.

Cells were washed twice and measured at room temperature in

buffer A. The imaging system was built around a Nikon TE2000

microscope equipped with a mercury lamp (HB0103W/2,

Osram), EX436/20 excitation filter combined with DM455

dichroic mirror. Cell fluorescence was split into YFP and CFP

channels using a DualView (Optical Insights) equipped with 535/

40 and 480/30 emission filters and monitored by the ORCA-ER

CCD camera (Hamamatsu, Welwyn Garden City, UK). FRET

ratios were corrected for the bleedthrough of CFP into the YFP

channel and analyzed using Origin software (OriginLab Corpo-

ration, Northampton, MA).

Supporting Information

Material and Methods S1 Cell culture of Primary Human

Hepatocytes. Human liver tissue was taken at the tumor-free

margins of resection specimens removed by surgical intervention

for secondary liver tumors, with fully informed consent and local

research ethics approval (RFH 38-2000).

Found at: doi:10.1371/journal.pone.0009689.s001 (0.03 MB

DOC)

Table S1 Primers for gene expression.

Found at: doi:10.1371/journal.pone.0009689.s002 (0.03 MB

DOC)
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Table S2 Fold decrease in the expression of bile acid

transporters and receptors in rat adult heart and fetal heart as

compared to adult rat liver. Quantitative RT-PCR was performed

on Applied Biosystems Prism on RNA extracts of respective

tissues. First we looked at the expression of various transporters

that have been previously reported to be involved in bile acid

transport in other cells, mostly hepatocytes. As a control, bile acid

transporter expression in the liver was examined. We wanted to

compare the levels of expression between adult heart and fetal

heart, as these differences may contribute to the differences in

susceptibility of the fetal heart to bile acids. We also wanted to

know whether cultures neonatal cardiomyocytes that we use as a

model of fetal heart behave similarly to fetal heart in respect of

transporter expression. Table shows the expression of bile acids

and nuclear transporters in neonatal heart and cardiomyocytes as

compared to adult liver. Using qRT-PCR we have shown that of

all the main transporters mdr2, ntcp2, shp and fxr are expressed in

adult and fetal rat hearts as well as in rat neonatal cardiomyocytes

cultures compared to adult rat liver. The expression of mrp2 is

significantly lower. All the genes studied are expressed substan-

tially less in the adult and fetal hearts and the cultured

cardiomyocytes than in the adult liver. Most genes show similar

level of gene expression between adult heart, fetal heart and

cultured cardiomyocytes. There is no significant difference

between adult and fetal heart.

Found at: doi:10.1371/journal.pone.0009689.s003 (0.03 MB

DOC)

Figure S1 Specific binding of TC to the CHO-M2 cell

membranes measured as described in Methods. A representative

competition displacement curve for TC is shown.

Found at: doi:10.1371/journal.pone.0009689.s004 (0.41 MB TIF)

Figure S2 The muscarinic receptor is involved in CCh-induced

arrhythmia. Contraction of NRCM expressed as beat per minutes

(bpm).Scramble (non-targeting) siRNA and M2 siRNA knock-

down of cells. (* Control vs P,0.001); n$3 observations).

Found at: doi:10.1371/journal.pone.0009689.s005 (0.41 MB TIF)

Figure S3 Efficiency of the siRNA knockdown is confirmed by

qRT-PCR. (* Control vs P,0.001); n = 3 observations.

Found at: doi:10.1371/journal.pone.0009689.s006 (0.31 MB TIF)

Figure S4 Representative measurement of the amplitude

contraction of NRCM using SICM. Scramble (non-targeting)

siRNA cardiomyocytes showed regular contraction and TC-

treatment with showed effect on rhythm and amplitude.

Found at: doi:10.1371/journal.pone.0009689.s007 (0.34 MB TIF)

Figure S5 Representative measurement of the amplitude

contraction of rat neonatal cardiomyocytes using SICM. siRNA

M2 knockdown NRCM showed regular contraction and TC

treatment showed no effect on rhythm of contraction.

Found at: doi:10.1371/journal.pone.0009689.s008 (0.36 MB TIF)

Figure S6 Chemical structures of Taurocholate (TC) and

Carbachol (CCh).

Found at: doi:10.1371/journal.pone.0009689.s009 (0.38 MB

TIF)

Video S1 Representative video of intracellular Calcium dynam-

ics recorded in NRCM pre and post-treatment with 0.2 mmol/L

TC.

Found at: doi:10.1371/journal.pone.0009689.s010 (2.29 MB

WMV)
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