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Abstract: Background: Drug resistance represents a major challenge for treating patients with
colon cancer. Accumulating evidence suggests that Insulin-like growth factor (IGF)-associated
signaling promotes colon tumorigenesis and cancer stemness. Therefore, the identification of
agents, which can disrupt cancer stemness signaling, may provide improved therapeutic efficacy.
Methods: Mimicking the tumor microenvironment, we treated colon cancer cells with exogenous IGF1.
The increased stemness of IGF1-cultured cells was determined by ALDH1 activity, side-population,
tumor sphere formation assays. Destruxin B (DB) was evaluated for its anti-tumorigenic and stemness
properties using cellular viability, colony-formation tests. The mimic and inhibitor of miR-214 were
used to treat colon cancer cells to show its functional association to DB treatment. In vivo mouse
models were used to evaluate DB’s ability to suppress colon tumor-initiating ability and growth
inhibitory function. Results: IGF1-cultured colon cancer cells showed a significant increase in
5-FU resistance and enhanced stemness properties, including an increased percentage of ALDH1+,
side-population cells, tumor sphere generation in vitro, and increased tumor initiation in vivo.
In support, using public databases showed that increased IGF1 expression was significantly associated
with a poorer prognosis in patients with colon cancer. DB, a hexadepsipeptide mycotoxin, was able
to suppress colon tumorigenic phenotypes, including colony and sphere formation. The sequential
treatment of DB, followed by 5-FU, synergistically inhibited the viability of colon cancer cells. In vivo
studies showed that DB suppressed the tumorigenesis by 5-FU resistant colon cells, and in a greater
degree when combined with 5-FU. Mechanistically, DB treatment was associated with decreased
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the mammalian target of rapamycin (mTOR) and β-catenin expression and an increased miR-214
level. Conclusion: We provided evidence of DB as a potential therapeutic agent for overcoming 5-FU
resistance induced by IGF1, and suppressing cancer stem-like properties in association with miR-214
regulation. Further investigation is warranted for its translation to clinical application.

Keywords: colon cancer; destruxin B; cancer stem-like cells; 5-FU resistance; mTOR/β-catenin
signaling and miR-214

1. Introduction

Colon cancer is one of the most prevalent malignancies in developed countries, as it is the third
most common cancer causing death in the United States [1]. The underlying causes for the development
of colon cancer are multifactorial, including risks from the environment, genetic background,
and dietary habits [2]. Due to the complexity of the aetiology, the development of effective therapeutic
agents has been limited, while cytotoxic chemotherapeutic agents, such as FOLFOX, remains as
the standard treatment option. However, patients in advanced stages of the disease often develop
resistance against treatment, so alternative approaches and/or targets are urgently needed.

The existence of cancer stem-like cells (CSCs) has been identified in virtually all cancer types
and is indicated to be involved in tumorigenic processes, including initiation, progression, metastasis,
and drug resistance [3,4]. Growing evidence suggests that the microenvironment of the tumor
plays a key role in generating and harboring CSCs—the exchange of cytokines and/or chemokines,
tumor cells, and stromal cells promote a favorable microenvironment for tumorigenesis and the
generation/maintenance of CSCs [5,6]. Insulin-like growth factor (IGF) signaling has been shown to be
one of the key cytokines present in the colon tumor microenvironment, and is likely to be a promoter of
colon tumorigenesis via promoting Wnt/β-catenin oncogenic signaling [7,8]. CSCs are characterized by
their increased ability to resist treatments and to repopulate tumor mass post-interventions. Based on
these premises, we intend to identify and screen for agents which can prevent the generation of and/or
eliminate CSCs.

Chemicals derived from natural sources have been and still are the major source of new drug
development, as exemplified by taxanes [9–11]. Destruxins are the most abundant secondary
metabolites identified from the entomopathogenic fungus, Metarhizium anisopliae. Different members
of destruxins have been identified and characterized. For instance, Destruxin A, B, and E (DA,
DB, and DE) represents a class of cyclic depsipeptides, with the ability to disrupt macromolecular
syntheses (such as DNA, RNA, and protein), and inhibit and prevent viral infections [12]. Our team
has previously discovered that Destruxin B exhibited anti-cancer activities both in vitro and in vivo
by suppressing Wnt/β-catenin signaling [13–15]. We further our previous findings by investigating
DB’s potential as an inhibitor of colon CSCs, since Wnt/β-catenin signaling plays an instrumental
role in maintaining the stemness in intestinal stem cells, and its increased activity has been shown to
contribute colon tumorigenesis [16,17]. We first established that exogenous IGF1 treatment induced
the exhibition of cancer stemness, including increased side-population (SP) and ALDH1 activity,
accompanied by the increased resistance against the chemotherapeutic agent, 5-FU, and enhanced
tumor-initiating ability in vivo. We found that DB treatment significantly suppressed IGF1-induced,
CSC-associated properties, and acted synergistically with 5-FU to inhibit colon cancer proliferation.
Mechanistically, DB-mediated anti-colon cancer activities was associated with the downregulation of
stem/oncogenic markers, including β-catenin, c-Myc, and mTOR-associated molecules, while there
was upregulation in a tumor suppressor, miR-214. In summary, we provide preclinical support and a
rationale for the potential use of DB in conjunction with 5-FU in drug-resistant colon cancer patients in
the future.
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2. Materials and Methods

2.1. Cell Culture

The human colon cancer cell lines HCT116 and DLD-1 used in this study were purchased from
the American Type Culture Collection (ATCC) (Manassas, VA, USA) and maintained and passaged
according to the protocols provided. For CSC-enrichment experiments, IGF1 (200 ηg/mL, Millipore,
Taipei, Taiwan) was added to the culture medium for 48 h (after the first 24 h, the culture medium was
discarded and fresh medium containing IGF1 was replenished and cells cultured for an additional
24 h). IGF1-treated cells were then harvested for further analyses.

2.2. Stemness Assays

To determine the enrichment of CSCs, the ALDEFLUOR™ assay (Stem Cell Technologies,
Vancouver, BC, Canada) which measures the cellular aldehyde dehydrogenase (ALDH) activity
was performed according to the manufacturer’s protocol. Accuri™ (BD BioSciences, Taibei, Taiwan)
was used to determine and analyze ALDH1 activity of colon cancer cells used in this study. We also
used a side-population assay as another methodology for examining the cancer stemness. In brief,
the percentage of side-population cells (SP) were identified in both IGF1-treated HCT116 and DLD-1
cells, as well as the relative changes in SP percentage after DB treatments (1.0 and 2.0 µM) using a
flow cytomerter, the FACSAria™ III sorter (BD Biosciences, Taipei, Taiwan). Verapamil (100 µM final
concentration) was used to specifically inhibit ABC pumps 15 min prior to the addition of Hoechst.
Verapamil was used as a control to confirm SP identification.

2.3. In Vitro Cell Viability and Drug Test

Sulforhodamine B (SRB, Sigma-Aldrich, Taibei, Taiwan) assay was used for determining the cell
viability of colon cancer cells under different conditions. Colon cancer cells were harvested and seeded
into 96-well plates (5000 cells/well) for the assay. The cells were treated with different regimens: in the
presence of 5-FU (ranging from 0 to 400 µM) and/or DB (ranging from 0 to 2 µM) for 48 h. In the
case of the drug combination test, DB was added first for 24 h followed by the addition of 5-FU for
an additional 24 h. Drug-treated cells were collected and fixed with 10% TCA. The fixed cells were
then stained with 0.4% (w/v) SRB, which was then dissolved in 1% (v/v) acetic acid and solubilized in
20 mM Tris. The optical density (OD) of the samples was measured by a microplate reader (Molecular
Devices, Sunnyvale, CA, USA) at 562 nm.

2.4. Western Blot Analysis

HCT116 and DLD-1 human colon cancer cells (parental and/or spheres) post different treatments
were analyzed by SDS-PAGE and western blots using standard protocols. Protein samples (20–40 µg
each well) were dissolved in sample buffer, denatured, and separated using 10% SDS-PAGE gels.
The proteins were transferred onto nitrocellulose membranes and blocked in TBST (50 mM Tris-HCl
pH 7.5, 150 mM NaCl, 0.2% Tween-20, 5% skim milk). Membranes were then incubated with respective
primary and secondary antibodies. The protein–antibody interactions were determined by an enhanced
chemiluminescence kit (ECL-Plus, Amersham Pharmacia Biotech, Piscataway, NJ, USA) and captured
using the BioSpectrum® Imaging System (Upland, CA, USA).

2.5. Colony-Forming and Tumor Sphere-Forming Assays

The colony-forming assay was carried out in the following conditions. Briefly, colon cancer
cell lines, HCT116 and DLD-1 cells were seeded in six-well plates with (500 cells, 2.8 µM ovatodiolide,
equivalent of IC10 values) and without ovatodiolide. The plates were then stained using 0.005% crystal
violet, and the colonies were counted. The cells were allowed to grow for another week. The cells were
then harvested, fixed, and counted. The migratory ability of the cells was examined using the Transwell
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migration assay (ThermoFisher, Taipei, Taiwan). To evaluate the self-renewal ability of cancer cells,
we used a sphere-forming assay. Colon cancer cells were cultured under serum-deprived conditions
and using Ultra-Low Attachment Plates (Corning Inc., Taipei, Taiwan). The culture conditions were
modified slightly from Lo et al. [18]. Colon cancer cells (density: 104 cells/mL) were cultured in a
medium composed of 20 ng/mL epidermal growth factor (EGF), 10 ng/mL basic fibroblast growth
factor (BFGF), 5 µg/mL insulin, and 0.4% Bovine Serum Albumin (BSA). After approximately 5–7 days
of culture (depending on the cell type), tumor spheres were formed, and the numbers were counted
under a phase-contrast microscope (40×magnification). The self-renewal ability was represented by
the average number of spheres generated. The average sphere number formed was obtained from
three different views.

2.6. Animal Study

The in vivo experiments were performed by following the regulations of the Animal Care and
User Committee at Taipei Medical University (Protocol #LAC-2017-0161). 8-week old NOD/SCID mice
were purchased from BioLASCO (Taipei, Taiwan). Mice were housed in a specific pathogen-free (SPF)
environment, and a week of acclimation was allowed prior to experiments. Two models were used
in this study. The first model was to test the tumor-initiating ability of IGF-treated colon cancer cells
in vivo. DLD-1 cells (50,000 cells per injection) cultured with and without exogenous IGF1 (100 ng/mL,
48 h) were subcutaneously injected. Tumor-initiating ability was measured and determined by the
relative intensity of the bioluminescence (IVIS 200, Caliper, Taipei, Taiwan). In the second model,
different drug regimens were tested. NOD/SCID mice were subcutaneously injected with 1 × 106

DLD-1 colon cancer cells and randomly divided into 4 groups consisting of the vehicle control,
DB (5 mg/kg, i.p injection, 5 times a week); 5-FU (25 mg/kg, i.p injection, 2 times a week), and the
combination regimen: a decreased 5-FU concentration (10 mg/kg, i.p injection, 2 times a week) while
maintaining DB dosage. Once the tumors became palpable, the starting tumor volume was recorded,
and the treatment commenced. The tumor volume was recorded once a week with a standard formula:
tumor size = (L ×W2)/2, where L is the length and W is the width of the tumor. The body weight of
the mice was monitored weekly. After the experiment, the animals were humanely sacrificed using
cervical dislocation, and tumor samples were harvested for further analysis. All animal experiments
were performed in accordance with the institutional guidelines for the care and use of laboratory
animals approved by the Animal Care and User Committee at Taipei Medical University (Protocol
#LAC-2017-0161) and the National Institute of Health guide for the care and use of laboratory animals.

2.7. Statistical Analysis

All experiments were performed at least in triplicates. Two-tailed t tests were used for analyses
by GraphPad Prism software where a p-value < 0.05 was considered statistically significant.

3. Results

3.1. Exogenous IGF1 Enriched Cancer Stem-Like Colon Cancer Cells and Induced 5-FU Resistance

The insulin/IGF/mTOR system has been shown to play a key role in CRC development due to
its complex involvement in the cancer’s cellular metabolism, proliferation, and differentiation [19,20].
Here, we showed that the exogenous IGF increased the cancer stem cell properties. Increased ALDH1
activity has been used to identify normal stem cells and/or cancer stem cells [21,22]. Here, we used
flow cytometry to demonstrate increased cellular ALDH1 activity in IGF1-treated HCT116 and DLD-1
cells as compared to their naïve counterparts (Figure 1A). Notably, both HCT116 and DLD-1 cells
pre-treated with IGF1 showed significantly increased ALDH1 activity. For instance, IGF1-treated
HCT116 showed an approximately 6% increase in ALDH1 activity (Figure 1A). These IGF1-induced
CRC cells were subsequently isolated and cultured under serum-deprived conditions. We found that
these IGF1-treated CRC cells exhibited an enhanced ability to generate CSC-like spheres, as compared
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to their IGF1-naïve counterparts (Figure 1B). IGF1-treated CRC cells also demonstrated an increased
ability to resist 5-FU treatment, as reflected by the higher IC50 values, than their naïve counterparts
(Figure 1C). For instance, the IC50 values of 5-FU in naïve HCT11 increased from 11.2 to 41.9 µM,
while it was from 15.9 to 60.0 µM in DLD-1 cells (Figure 1C). More importantly, we demonstrated that
IGF1 treatment promoted tumor initiation in vivo. DLD-1 tumor spheres cultured with and without
IGF1 were injected into NOD/SCID mice for evaluation. We found that IGF1-cultured tumor spheres
appeared to initiate tumorigenesis with a significantly higher rate than their counterparts without
IGF1 treatment (60% versus 20%), respectively (Figure 1D).
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Figure 1. IGF1 promotes the generation of cancer stem-like (CSC) colon cancer cells. (A) Flow cytometry
analysis showed that IGF1-treated colon cancer cells exhibited significantly higher ALDH1 activity.
The DEAB Inhibitor of the ALDH enzyme was used as a control for ALDH1 analysis. (B) IGF1 treatment
resulted in increased tumor sphere-generating ability in both DLD-1 and HCT116 cells, as compared to
their naïve counterparts. (C) IGF1-treated HCT116 and DLD-1 cells became more resistant against 5-FU
treatment. The insert describes the IC50 values obtained from both cell lines with and without IGF1
treatment. (D) Bioluminescence in vivo monitoring tumor-initiating ability of DLD-1 cells (50,000 cells
per injection). Tumor spheres generated from IGF1-treated DLD-1 cells (100 ng/mL, 48 h) showed
significantly enhanced tumor-initiating ability in vivo (60%) as compared to their naïve counterparts
(20%), four weeks post inoculation. * p ≤ 0.05; *** p ≤ 0.001.

3.2. IGF1 and β-Catenin Expression Is Associated with Drug Resistance and Poor Prognosis in Colon
Cancer Patients

To add support to our in vitro and in vivo results, we analyzed the public databases and
demonstrated that the IGF1 mRNA level was significantly higher in patients with colon cancer [23]
(Figure 2A). In addition, an increased IGF1 mRNA was detected in the methotrexate-resistant colon
cancer cells [24] (Figure 2B). Analysis from a cohort of colon cancer patients (GSE17536 series) [25] using
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PrognoScan software showed that higher IGF1 expression in the patients was significantly associated
with shorter survival (Figure 2C). Using another database (GSE14333) [26], we found that increased
expression in both IGF1 and CTNNB1 (β-catenin) in patients was associated with significantly shorter
disease-free survival (Figure 2D).Cancers 2018, 10, x FOR PEER REVIEW  6 of 14 
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Figure 2. Increased IGF1 and β-catenin expression is associated with a higher incidence of colon cancer
and poorer prognosis. (A) Using the SurvExpress database, we found that an increased IGF1 mRNA
level was associated with a higher risk of developing colon cancer. (B) Our GEO (Gene Expression
Omnibus) database analysis showed that a significantly higher level of IGF1 mRNA was detected in
methotrexate-resistant colon cancer cells than the more sensitive counterparts. (C) The Kaplan-Meier
survival curve obtained from a small cohort (N = 177) showed that increased IGF1 expression is
significantly associated with a lower survival ratio in patients with colon cancer. (D) Disease-free
survival (DFS) analysis of the GSE14333 cohort indicates a shorter DFS in patients with colon cancer
expressing a higher level of both IGF1 andβ-catenin (CTNNB1). (** p ≤ 0.01 as statistically significant).

3.3. DB Treatment Suppressed Drug-Resistant Colon Tumorigenesis and Stemness

Our previous studies have demonstrated that DB treatment significantly suppressed
tumorigenesis in different cancer types [13–15,27,28]. In this study, we examined the potential
inhibitory effect of DB using 5-FU resistant colon cancer cells, induced by IGF1. We found that
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DB treatment significantly suppressed the viability of both IGF-treated HCT116 and DLD-1 (Figure 3A).
For instance, DB treatment achieved the half maximal inhibitory effect on the cell viability on HCT116
and DLD-1 cells at 3.04 and 4.99 µM, respectively. In addition, DB (0.5 µM) markedly inhibited the
formation of colonies and tumor spheres in both IGF-treated colon cancer cell lines (Figure 3B,C).
The percentage of the side-population activity in both IGF1-treated HCT116 and DLD-1 cells was also
dose-dependently reduced (Figure 3D). For example, IGF1-cultured HCT-116 cells were originally
found to contain approximately 5.8% of SP cells, but with DB treatment (at 2 µM, 24 h), the percentage
of SP cells significantly reduced down to approximately 0.17% (upper panels, Figure 3D).
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Figure 3. Destruxin B (DB) treatment suppressed tumorigenesis of 5-FU-resistant colon cancer cells.
(A) Cell viability assay of IGF1-trained colon cancer cell lines in response to DB treatment. Both 5-FU
resistant HCT116 and DLD-1 cells were sensitive towards DB treatment, as reflected by their respective
IC50 values, 3.04 and 4.99 µM. Colony (B) and tumor sphere (C) formations were also significantly
reduced by the DB treatment in both cell lines. (D) Side-population (SP) assay demonstrated that DB
dose-dependently decreased the percentage of SP cells in both IGF1-cultured HCT-116 and DLD-1 cells.
(** p ≤ 0.01 and *** p ≤ 0.001).

3.4. DB and 5-FU Synergistically Suppresses Viability of Colon Cancer Cells

Next, we examined the plausibility of combining DB and the clinical chemotherapeutic agent
5-FU for treating colon cancer cells. We tested different combinations of DB (ranging from 0–5 µM)
and 5-FU (from 0–15 µM) to determine the combination index (CI). Using CompuSyn software,
we plotted isobolograms derived from the different concentrations of DB versus 5-FU. Several specific
combinations of DB and 5-FU synergistically inhibited the cell viability of both HCT116 and DLD-1
(Figure 4A,B respectively). In support, our Western blot analysis indicated that DB treatment led to
the decrease in IGF downstream markers, including STAT3, mTOR, β-catenin, NF-kB, and c-Myc
expression, while there was an increase in Bax expression (Figure 4C). Numbers in bold and marked
by an * indicates the most effective combination.



Cancers 2018, 10, 353 8 of 14

Cancers 2018, 10, x FOR PEER REVIEW  8 of 14 

 

 
Figure 4. The combination of DB and 5-FU suppressed colon cancer viability. HCT116 (A) and DLD-1 
(B) colon cancer cells were subjected to different concentrations of DB and 5-FU treatment. The 
combination index (CI) defines synergism (CI < 1), the additive effect (CI = 1), and antagonism (CI > 
1). The asterisk depicts the most effective combination of DB and 5-FU. (C) Western blot analysis 
showed that the DB and 5-FU combination led to reduced expression of oncogenic markers (mTOR, 
STAT3), stemness markers (β-catenin, c-Myc), and an increased expression of the pro-apoptotic 
marker, Bax. 

3.5. In Vivo Demonstration of DB Treatment Enhanced 5-FU Efficacy 

Subsequently, we aimed to validate our in vitro data using the xenograft mouse colon-cancer 
model. IGF1-treated DLD-1 cancer cells were subcutaneously transplanted into NOD/SCID mice, and 
the tumor-bearing mice were then divided into four groups: sham control, DB (5 mg/kg, 5 
times/week), 5-FU (25 mg/kg, 2 times/week), and the combination of DB and 5-FU. Mice which 
received DB or 5-FU alone appeared to exhibit a similar tumor burden, whereas the tumor burden 
appeared to be lowest in the combination group (Figure 5A). We also monitored the body weight of 
the test subjects and did not find any significant difference among them (Figure 5B), suggesting no 
apparent systematic toxicity in all treatment regimens. A western blot analysis was performed on the 
tumor samples harvested. We found that DB-treated samples exhibited a markedly reduced 
expression of mTOR, c-Myc, and β-catenin, while there was an increase in Bcl2 (Figure 5C). A similar 
observation was made in the 5-FU group, but not as significant as that of the DB-treated group. 
Treatment using a combination of DB and 5-FU showed the lowest expression in the aforementioned 
oncogenic markers. 

Figure 4. The combination of DB and 5-FU suppressed colon cancer viability. HCT116 (A) and
DLD-1 (B) colon cancer cells were subjected to different concentrations of DB and 5-FU treatment.
The combination index (CI) defines synergism (CI < 1), the additive effect (CI = 1), and antagonism
(CI > 1). The asterisk depicts the most effective combination of DB and 5-FU. (C) Western blot analysis
showed that the DB and 5-FU combination led to reduced expression of oncogenic markers (mTOR,
STAT3), stemness markers (β-catenin, c-Myc), and an increased expression of the pro-apoptotic
marker, Bax.

3.5. In Vivo Demonstration of DB Treatment Enhanced 5-FU Efficacy

Subsequently, we aimed to validate our in vitro data using the xenograft mouse colon-cancer
model. IGF1-treated DLD-1 cancer cells were subcutaneously transplanted into NOD/SCID mice,
and the tumor-bearing mice were then divided into four groups: sham control, DB (5 mg/kg,
5 times/week), 5-FU (25 mg/kg, 2 times/week), and the combination of DB and 5-FU. Mice which
received DB or 5-FU alone appeared to exhibit a similar tumor burden, whereas the tumor burden
appeared to be lowest in the combination group (Figure 5A). We also monitored the body weight of
the test subjects and did not find any significant difference among them (Figure 5B), suggesting no
apparent systematic toxicity in all treatment regimens. A western blot analysis was performed on the
tumor samples harvested. We found that DB-treated samples exhibited a markedly reduced expression
of mTOR, c-Myc, and β-catenin, while there was an increase in Bcl2 (Figure 5C). A similar observation
was made in the 5-FU group, but not as significant as that of the DB-treated group. Treatment using a
combination of DB and 5-FU showed the lowest expression in the aforementioned oncogenic markers.
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Figure 5. The DB and 5-FU combination suppressed 5-FU resistant DLD-1 tumorigenesis in vivo.
(A) The tumor-size curve over time demonstrates that DB alone was more effective than delaying
IGF1-treated DLD-1 cells, while the combination of DB and 5-FU was the most effective. (B) The
body-weight curve over time shows that the average body weight of all the animals were not
significantly different. (C) Western blot analysis of tumor samples harvested. Oncogenic markers,
including mTOR, β-catenin, and c-Myc were all suppressed, while Bcl2 increased under DB treatment
and showed up more prominently in the combination treatment group.

3.6. An Increased MicroRNA-214 Level Was Associated with DB Treatment

Finally, we examined a small panel of microRNAs (miRs) as an attempt to explore the potential
underlying molecular mechanism associated with DB treatment. Among the different miRs examined,
the miR-214 level significantly increased post-DB treatment in both DLD-1 and HCT-116 cell lines
(Figure 6A). Phenotypically, increasing the level of miR-214 was associated with the decreased
ability of HCT-116 tumor sphere formation (Figure 6B), while the miR-214 inhibitor reversed the
miR-214-associated anti-tumor sphere-forming ability (Figure 6B). We identified a potential binding
site of miR-214 in the 3′UTR of CTNNB1 (β-catenin, Figure 6C). More importantly, DLD-1 cells treated
with miR-214 mimic molecules showed a concomitant decreased expression of several oncogenic and
stemness markers, including β-catenin, mTOR, EZH2, cyclin D1, and c-Myc, while the reverse was
true when cells were treated with the miR-214 inhibitor (Figure 6D).
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Figure 6. DB treatment was associated with an elevated miR-214. (A) Profiling of microRNA expression
pattern in DB-treated colon cancer cells. DB treatment led to a significantly increased miR-214 level in
both HCT116 and DLD-1 cells. (B) Increased miR-214 expression by miR-214 mimic was associated
with the suppression of the generation of HCT-116 tumor spheres, while the miR-214 inhibitor reversed
the suppressive effect. (C) The potential 3′UTR site of CTNNB1 for miR-214 binding was detected using
TargetScan software. Western blot analysis showed that miR-214 mimic treatment led to a decreased
expression of mTOR, β-catenin, EZH2, cyclin D1, and c-Myc, whereas an increased expression of these
markers was found in HCT-116 cells treated with the miR-214 inhibitor. (* p ≤ 0.05; ** p ≤ 0.01).

4. Discussion

The generation of cancer stem-like cells (CSCs) has shown to occur both experimentally and
clinically [29]. It is believed that treatment failure and disease progression have been closely
associated with the presence of CSCs. However, how CSCs are generated still remains unclear
and the development of an antagonist proves difficult. Accumulating evidence has pointed out that
de-regulation of the insulin growth factor (IGF)-signaling cascade not only plays an instrumental
role in cellular growth and metabolism, but also colon tumorigenesis [30,31]. Based on this unmet
medical need, we first examined the role of IGF signaling in its relationship with CSC generation.
We established 5-FU-resistant colon cancer cell lines by culturing these cells with exogenous IGF1.
The exogenous IGF1 promoted CSC phenotypic changes in colon cancer cells. More importantly,
we demonstrated that IGF1-cultured DLD-1 cells exhibited an enhanced tumor-initiating ability
in vivo as compared to their naïve counterparts. Our analyses using the public database also indicated
that an increased IGF1 mRNA was identified in patients with colon cancer as well as a shorter
survival time, as compared to patients with a lower IGF1 mRNA level; HT29 colon cancer cells
resistant to methotrexate expressed a significantly higher level of IGF1 mRNA as compared to their
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sensitive counterparts. A recent study corroborates with our view that IGF-signaling promotes the
epithelial-to-mesenchymal transition (EMT) and stemness in colon cancer [32].

Fluorouracil (5-FU) is a standard chemotherapeutic drug for treating different types of cancer,
including colon cancer. Unfortunately, tumor cells often develop resistance against it, resulting in
relatively low efficacy (approximately 40%). Our observations where IGF1 promoted the phenotypic
manifestation of colon CSCs, namely resistance against 5-FU, presents an important consideration
when developing novel therapeutics.

Statistically, in the area of cancer research, over the period of 1940 to 2014, of the 175 small
molecules approved, 131 (75%) were either natural products or directly derived therefrom [33]. Thus,
natural resources still remain as a valuable pool for anti-cancer drug discovery. Destruxin B (DB) is a
cyclic depsipeptide produced by various species of fungi, and has been previously shown to inhibit
proliferation and induce apoptosis in different cancer cells [12–14], making it a drug candidate for
further development. Here, we showed that DB treatment not only suppressed colon tumorigenesis,
but also CSC phenotypes. DB-medicated CSC-inhibitory effects were associated with the decreased
expression of the IGF downstream oncogenic marker, mTOR/STAT3, as well as the stemness marker,
β-catenin, both of which have been reported to contribute to treatment failure and the recurrence of
colon cancer [23,34,35].

More importantly, we provided two lines of in vivo support for treating colon cancer with DB,
either alone or in combination with 5-FU. DB alone could significantly delay DLD-1 tumorigenesis
in the xenograft mouse model; when combined with 5-FU, the anti-cancer effect was even more
pronounced, corroborating with the in vitro data where the combination of 5-FU and DB (at a lower
dosage) could synergistically suppress the viability of colon cancer cells. Clinically, reduced dosage of
5-FU could prevent the development of side-effects and improve patient compliance.

In another experiment, we showed that a single DB pre-treatment (below IC50) could significantly
reduce the tumor-initiating ability of IGF1-cultured DLD-1 colon CSC-like cells in vivo. Mechanistically,
DB treatment was associated with the decreased expression of a key CSC marker, β-catenin, which has
been shown to be aberrantly increased in malignant colon cancer cells and associated with the
generation of drug-resistance [36,37]. DB-mediated suppression of β-catenin was also accompanied
with an increased miR-214 level, which has a potential binding site at β-catenin’s 3′UTR. These findings
implied that DB pre-treatment led to the reduced stemness of the CSCs, thereby reducing its
tumor-initiating ability via suppressing the CSC-associated marker, β-catenin. On this point, DB may
be used to prevent the development of colon cancer in high-risk individuals or for prolonging
progression-free time for patients with colon cancer.

5. Conclusions

We provided evidence for the functional roles of DB as not only a therapeutic candidate drug
for colon cancer, but also a CSC inhibitor. DB-mediated functions were attributed to its ability to
suppress several major oncogenic pathways, namely mTOR/Akt, c-Myc, NF-kB, and the stemness
maker, β-catenin. Further investigation is warranted in order for DB to be repurposed for treating
drug-resistant colon cancer.
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