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Abstract: The particle shape, size and distribution of active pharmaceutical ingredients (API) are
relevant quality indicators of pharmaceutical tablets due to their high impact on the manufacturing
process. Furthermore, the bioavailability of the APIs from the dosage form depends largely on these
characteristics. Routinely, particle size and shape are only analyzed in the powder form, without
regard to the effect of the formulation procedure on the particle characteristics. The monitoring of these
parameters improves the understanding of the process; therefore, higher quality and better control
over the biopharmaceutical profile can be ensured. A new fiber-array-based Raman hyperspectral
imaging technique is presented for direct simultaneous in-situ monitoring of three different active
pharmaceutical ingredients- acetylsalicylic acid, acetaminophen and caffeine- in analgesic tablets.
This novel method enables a chemically selective, noninvasive assessment of the distribution of the
active ingredients down to 1 µm spatial resolution. The occurrence of spherical and needle-like
particles, as well as agglomerations and the respective particle size ranges, were rapidly determined
for two commercially available analgesic tablet types. Subtle differences were observed in comparison
between these two tablets. Higher amounts of acetaminophen were visible, more needle-shaped and
bigger acetylsalicylic acid particles, and a higher incidence of bigger agglomerations were found in
one of the analgesic tablets.

Keywords: Raman spectroscopy; fiber-array; hyperspectral imaging; chemical imaging; fiber
sensing; acetylsalicylic acid; acetaminophen; caffeine; particle size; particle shape; API distribution;
pharmaceutical spectroscopy

1. Introduction

The primary goal of the pharmaceutical industry is the achievement of an economic production
of high-quality products with efficient and safe therapeutic effects for patients who rely on medical
treatment. The particle size and shape are quality indicators to a great extent due to their high
influence on the flow, mixing, and compaction properties, and thus on the production processes and
the distribution of the active pharmaceutical ingredients (APIs) in the final product [1] Larger, more
spherical particles have better flow properties than smaller or high aspect ratio particles (particle
length >> particle width), ensuring a better dose-accuracy. Mixing of active agents and excipients with
different shapes and sizes can cause de-mixing phenomena. Needle-like particles, such as the ones of
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acetylsalicylic acid, can associate better. They can form a network, in which smaller particles like the
ones of caffeine can eventually be embedded, enabling a more stable mixture of these two APIs. A
homogenous mixture is challenging to achieve when the particle sizes of the acetylsalicylic acid–caffeine
complexes are not in the same size range as the acetaminophen particles. Hence, the homogeneous
distribution of the three APIs in a volume-dosed product would not be ensured. The dosage form, such
as the tablet, is the form that comes into direct physiological contact with the patient. The knowledge
regarding the ingredient parameters in the end product is of high relevance, because the size, shape,
and distribution of the API particles also have direct biopharmaceutical, (patho-)physiological and
pharmacological consequences. Small particles are solved quickly, and the absorption of the active
ingredient takes place in a short time after ingestion. Thus, the bioavailability is enhanced, but
eventually the toxicity is too. Bigger, needle-like particles of acetylsalicylic acid irritate the stomach
mucosa and facilitate the occurrence of gastric ulcer and gastrointestinal bleeding [2]. However, the
high absorption rate of small particles in high doses promotes interactions with other medications at
the plasma protein binding level [3]. A homogenous distribution and hence simultaneous dissolution
of the APIs in the tablet is desired for its enhanced pharmacological effect of the combined medicinal
products. In our study the synergistic analgesic effect of acetylsalicylic acid and acetaminophen
combined with caffeine [4] is targeted in the two commercial tablets, Thomapyrin Intensiv® (T) and
Neuranidal® N (N).

The monitoring of the particle shape and size of the different ingredients simultaneously and
in-situ after every process-step would be beneficial for better control of the quality. This would also
help to fulfill the requirements of the authorities, for example on uniformity of content and dosage
units [5]. Determining the particle size, shape and distribution of the APIs in the product would help
to ensure the safety and therapeutic effects of the tablets.

As for now, particle size and shape are routinely measured in raw powder material. Numerous
methods are available. Sieve analysis and sedimentation analysis [6] are used for the determination
of the amounts of the different particle types, whereas laser diffraction, coulter counter or
photonic-correlation-spectroscopy [7] and various techniques of light-, electro- and atomic force
microscopy are applied as counting-methods of the different particle sizes [6]. None of these methods
can chemically differentiate the ingredients of the powder mixture and they are not suitable for chemical
selective characterization of the particles in a tablet. Furthermore, due to high shear forces during
powder homogenization, the particles can reduce their dimensions and round-shaped particles become
dominant. On the other hand, very small particles tend to agglomerate, due to their enlarged active
surface. At the compaction step, larger, needle shaped particles can break, whereas small particles can
be packed together. Therefore, in the tablet, the particle size and shape of an API does not necessarily
equal the properties of the API in the powder state anymore.

To receive chemical and spatial information at once, chemical imaging techniques have been
developed, combining spectroscopy with spatially resolved information. The goal is to generate
data cubes that contain the intensity values in dependence of the spectral and spatial variables
I(x, y, λ). By choosing characteristic spectral peaks, specific images for various substances in the
sample can be created. To extract the relevant information, multivariate chemometric methods
can be applied [8–10]. Several chemical imaging techniques have been developed, based on
mass spectrometric imaging (MSI) [11,12], terahertz pulse imaging (TPI) [13–15] and vibrational
spectroscopic imaging techniques [16,17] such as near infrared (NIR)-imaging, attenuated total reflection
Fourier-transform infrared imaging (ATR-FT-IR) [18–22] and Raman spectroscopic imaging [11,23–28].
Raman spectroscopy is a powerful analytical technique [29–37] that can also be applied in the
pharmaceutical industry [17,38] It requires little or no sample preparation [39–44], is performed
in a non-destructive way [45–50] and is also suitable for the chemically selective investigation
of heterogeneous formulations. Pharmaceutical applications of Raman spectroscopy range from
investigations regarding sample homogeneity [51], particle size [23], polymorphic forms [52], the
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analysis of incoming raw materials [53], counterfeit drugs [12,28], and even through containers and
bags [54] to analyze pharmaceutical formulations [23,51,55,56].

The advantage of Raman imaging in comparison to mass spectrometry (MS)-based chemical
imaging techniques is that it can easily be applied as a non-destructive in-process control tool. Compared
with near infrared and mid-infrared spectroscopic techniques, Raman spectroscopy provides better
spectral resolution [57], which helps to distinguish substances of multicomponent formulations in a
highly specific way [58]. In addition, in comparison to TPI and ATR-FT-IR-imaging techniques, Raman
chemical imaging provides a better spatial resolution down to approx. 1 µm [59], whereas the average
resolution of the TPI systems is about 200 µm [14], and the best performance of micro-ATR-FT-IR
imaging using a germanium ATR crystal is around 2–4 µm [16]. Better spatial resolution is important
to resolve particle sizes and shapes within pharmaceutical dosage forms.

Raman spectroscopy is mostly applied as a mapping technique [60], using a motorized stage
for precise sample movement. The most common mapping approaches for the characterization
of pharmaceutical formulations are point mapping [61] or line scanning [10,62] modes. Mapping
procedures are time-consuming and can last from several hours up to over a whole day, depending
on the area, acquisition time/spot and step-size applied. In this work, we present the application of
wide-field Raman imaging, based on a fiber-array bundle, with high spatial resolution of 1.25 µm. By
use of an 8 × 8-array we acquired 64 spectra of different spots in one single acquisition. By gaining
thorough chemical information across a defined sample area in a rapid way, the requirements can
be met for chemically selective in-process monitoring of the size, shape and distribution of different
ingredients, simultaneously, in commercially available analgesic tablets with three active ingredients.

2. Results and Discussion

Raman imaging was applied to visualize the size, shape and distribution of particles of acetylsalicylic
acid, acetaminophen and caffeine chemically selective in two analgesic tablets. The Raman hyperspectral
images (Figures 1–6) are color-coded images with corresponding Raman intensity scale bars. The intensity
scale bars range from purple (0) to red (maximum). At every tablet surface, hyperspectral images were
acquired in seven regions distributed over the whole tablet surface (Region 7: center part; Regions 1–6:
outer parts). The hyperspectral images were generated for the single APIs in every region (1–7) and
the particles were counted and given as a sum value over the two imaged tablet surfaces of the two
tablet types T and N as histograms (Figures 2, 3 and 5). Needle-like particles were defined as particles
with significant differences in length and width, whereas round particles were more isotropic in their
dimensions. Agglomerated particles were defined as regions with an area of at least 10 µm2 with a
corresponding intensity of at least 2/3 of the maximum intensity (yellow to red in the intensity scale bar).
The agglomeration classes were defined, based on the dimension of the covered area.
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Figure 1. Raman hyperspectral images of acetylsalicylic acid particles in two different tablet regions.
(A) Area with clear and distinct particle shapes and sizes (source: tablet T, Region 4). (B) Area with
agglomerated particles (source: tablet N, Region 3).
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Figure 2. Histograms of the counted needle-like (left parts in the graphs) and spherical (right parts in 
the graphs) particle shapes of the active ingredients acetylsalicylic acid (A1, A2), acetaminophen (B1, 
B2) and caffeine (C1, C2), which were detected across seven different regions (see the sampling pattern 
at A1) in the two commercial tablets T (left column: A1, B1, C1) and N (right column: A2, B2, C2). 

Figure 2. Histograms of the counted needle-like (left parts in the graphs) and spherical (right parts in
the graphs) particle shapes of the active ingredients acetylsalicylic acid (A1, A2), acetaminophen (B1,
B2) and caffeine (C1, C2), which were detected across seven different regions (see the sampling pattern
at A1) in the two commercial tablets T (left column: A1, B1, C1) and N (right column: A2, B2, C2).
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Small particles have an enlarged surface area, enabling pronounced electrostatic and van-der-
Waals interactions, and more possibilities for hydrogen bonding. Therefore, they present a high 
tendency for agglomeration, as can be observed for acetylsalicylic acid (Figures 4A and 5A1,A2) and 
for acetaminophen (Figures 4B and 5B1,B2). 

Figure 3. Histograms of the detected particle sizes of the active ingredients acetylsalicylic acid (A1, A2),
acetaminophen (B1, B2) and caffeine (C1, C2), which were detected across seven different regions (see
the sampling pattern at A1) in the commercial tablets T (left column: A1, B1, C1) and N (right column:
A2, B2, C2).
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Figure 4. Raman hyperspectral images of agglomerated particles of (A) acetylsalicylic acid (source:
tablet T, region 1) and (B) acetaminophen (source: tablet N, region 1) in two different tablet regions.
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Figure 5. Histograms of the detected agglomerations of the API particles and their respective area sizes
of acetylsalicylic acid (A1, A2), acetaminophen (B1, B2), which were detected across seven different
regions (see the sampling pattern at A1) in the two tablets T (left column: A1, B1) and N (right column:
A2, B2).
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Figure 6. Representative Raman hyperspectral images of the distributions and particle shapes of the
individual APIs, for acetylsalicylic acid (left column A1, A2, A3), acetaminophen (middle column B1,
B2, B3), and caffeine (right column C1, C2, C3), in three different regions of a tablet.

2.1. Particle Size and Shape

In certain sample areas (for example Region 4 of tablet T) one could clearly distinguish the size
and shape of individual acetylsalicylic acid particles (Figure 1A), while in other areas (for example in
tablet N, Region 3) particle agglomeration was seen (Figure 1B).

As the different parts of the same tablet were very heterogeneous in their composition, it was
necessary to analyze various regions time efficiently, to gain an overview of the distribution and the
particle sizes and shapes of the APIs in the formulation. Seven different areas of the two tablets T and
N were analyzed for a better overview and are summarized in histograms (Figures 2 and 3).

It could be observed that acetylsalicylic acid particles exist in both spherical (71.19%) and
needle-like (28.81%) shapes (Figure 2A1,A2). The smaller, round forms dominated in both tablets
from different manufacturers (Figures 2 and 3). The particles of acetaminophen were predominantly
spherical. Needle-like particles of acetaminophen were rare (15.3%) (Figure 2B1,B2). The particles
of caffeine were round at all analyzed sample spots (Figure 2C1,C2). Overall, spherical particles
predominate for all APIs. No inclusion of caffeine particles between the acetylsalicylic acid particles
was observed, as the acetylsalicylic acid particles were fine [1] themselves, with lengths ranging
between 1.25 and 7 µm (Figure 3A1,A2). It is expected that acetylsalicylic acid is well tolerated by the
application of the analyzed tablets with reduced risk for gastrointestinal-mucosa-lesions. The particle
size for acetaminophen ranged between 2 and 5 µm (Figure 3B1,B2), whereas caffeine particle sizes
were found predominantly between 1.25 and 3 µm (Figure 3C1,C2). In total, the average particle size
was 2.20 ± 1.17 µm for acetylsalicylic acid, 1.71 ± 0.68 µm for acetaminophen, and 1.90 ± 0.74 µm for
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caffeine in tablet T, and 1.96 ± 0.40 µm for acetylsalicylic acid, 2.36 ± 0.90 µm for acetaminophen, and
1.99 ± 0.23 µm for caffeine in tablet N.

Small particles have an enlarged surface area, enabling pronounced electrostatic and van-der-Waals
interactions, and more possibilities for hydrogen bonding. Therefore, they present a high tendency
for agglomeration, as can be observed for acetylsalicylic acid (Figures 4A and 5A1,A2) and for
acetaminophen (Figures 4B and 5B1,B2).

2.2. Distribution of the APIs

The distribution of the APIs, acetaminophen, acetylsalicylic acid and caffeine, was analyzed in
seven different areas, 10 × 10 µm2 each, in two different tablets. Representative Raman hyperspectral
images of the individual APIs in three tablet regions are shown in Figure 6. In Region 1, acetylsalicylic
acid (Figure 6A1) dominates and a few needle-like particles are visible. In Region 2, all three APIs
can be seen (Figure 6A2,B2,C2). The acetylsalicylic acid particles are mostly needle like (Figure 6A2).
Acetaminophen provides the strongest signals and shows mostly spherical particle shapes (Figure 6B2).
Only a few spherical caffeine particles are detected (Figure 6C2). In Region 3, both acetylsalicylic
acid and acetaminophen are present, and some acetaminophen agglomerations can be observed. In
most cases, only acetaminophen or/and acetylsalicylic acid were observed in the images (e.g., Figure 6,
Regions 1 and 3), because their amount was four to five times larger than the amount of caffeine and
the caffeine particles were often smaller than 1 µm so that they could not be clearly resolved (e.g.,
Figure 6C3).

In some representative areas (e.g., T: Region 6 or N: Region 3 and Region 5), all three APIs
were observed in one field of view (Figure 7A–C). The red-colored particles represent acetylsalicylic
acid, the green-colored ones are acetaminophen, and the blue ones represent caffeine (Figure 7). The
Raman scattering intensities of the excipients’ signals were about four to five times lower than the
ones from the APIs and are presented as a grey background area without a clear particle shape. This
result demonstrated the capability of fiber-array-based Raman spectroscopic imaging to visualize the
API distribution, and to analyze different morphological characteristics simultaneously with high
spatial resolution in just one measurement (Figure 7). This ability has high potential for in-process
quality assessment.
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Figure 7. Combined distribution of acetylsalicylic acid, acetaminophen and caffeine in three different
areas (A, B, C) of one tablet. The red-colored parts represent acetylsalicylic acid, the green-colored
parts represent acetaminophen, and the blue-colored parts represent caffeine. The dark-grey areas are
the excipients’ areas.

2.3. Comparison of Two Analgesic Tablets

In general, very fine and round particles dominated in both tablets, including the acetylsalicylic
acid particles. By comparison of the two commercial analgesic tablets, only minor differences could be
recognized between T and N. First, there were about three times more needle-shaped acetylsalicylic
acid particles in the T tablet (39.05%) (Figure 2A1) compared to the N tablet (13.89%) (Figure 2A2). Ten
percent more spherical particles of acetaminophen were found in T (88.46%, Figure 2B1), in comparison
to N (77.97%, Figure 2B2). Furthermore, a higher number of acetaminophen particles could be observed
in T (27.61% more particles than in N), which was also expected due to the 20% higher acetaminophen
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content in comparison to N. Second, the sizes of acetylsalicylic acid particles were slightly smaller in
N (76.71% < 2 µm; 19.18% 2–3 µm; 4.1% 4–5 µm, Figure 3A2) compared to T (61.6% < 2 µm; 29.46%
2–3 µm; 8.0% 4–5 µm, (Figure 3A1)), whereas for acetaminophen (Figure 3B1,B2) and for caffeine
(Figure 3C1,C2), there were no significant differences observed between the two tablets. A subtle
distinction in the agglomeration profile was visible. A higher incidence of bigger agglomerations could
be observed in T for acetylsalicylic acid (Figure 5A1 vs. Figure 5A2).

Thus, Raman imaging allowed us to analyze chemical and spatial information from multiple APIs
simultaneously, on a µm-scale, and to gain a first impression regarding the quality of the analyzed
tablets in comparison to each other in a time-efficient way.

The presented method allows one to access relevant information for quality assurance of multiple
active agents directly, non-invasively, and with high spatial resolution in a time efficient way. This
means, that the technique could be applied online, and at different stages of development and
manufacturing of multicomponent tablets. This could include for example the monitoring of the
particle distribution before and after compaction, to understand the effect of different parameters of
the pressing process on the API morphologies. For other settings, the FOV dimensions can be easily
adjusted, simply by proper choice of the magnification of the objective lens (in contrast to ATR imaging
where the FOV is given by the lens dimensions [63]). It could be also applied for monitoring (unwanted)
crystallization processes at different physical conditions, e.g., during hot-melt extrusion processes, or
for testing the effect of different storage conditions on the APIs in the formulation. Gaining thorough
information about the API characteristics could facilitate efficient drug formulation development and
could help avoid late stage quality failures and thus save resources.

3. Materials and Methods

3.1. Instrumentation of Fiber-Array-Based Raman Spectroscopic Imaging

The experimental setup is the following (Figure 8): a laser with a wavelength of 532 nm (LASER1)
is coupled by a lens (L1) into a step-index-multimode fiber (MF) with a squared core cross section to
illuminate the sample homogeneously with a top hat intensity profile. The light from the fiber output
passes through a lens (L2) and is reflected into an objective lens (OL) by a dichroitic beam splitter
(BS). The objective lens focuses the light onto a square-shaped field of view (FOV) on the sample. It
is used in combination with a tube lens. The FOV depends on the ratio of the focal lengths of lens 2
(L2) and the objective lens (OL). Within the scope of this study for a high spatial resolution, the most
suitable magnification was 100×, resulting in a FOV area of 10 × 10 µm2 in the sample plane. The
back-scattered light is collected by the objective lens (OL) with an NA of 0.9, defining the collection
depth of about 1.6 µm with a 532 nm excitation wavelength. A notch filter (NF) reflects the laser
excitation and Rayleigh-scattered light. Having passed the beam splitter (BS) and the tube lens (TL),
the light can be directed by a flip mirror (M1) to a camera (C) to observe a microscopic image and
choose an appropriate sample region. For the Raman spectroscopic measurements, the chosen sample
region is imaged onto the entrance face of a fiber-array (FAS) with an 8 × 8-configuration. Sixty-four
spectra can be collected simultaneously. The spatial resolution is 1.25 µm per image point. To realize a
high fill factor, the cores of the fibers are square-shaped. The spectral information captured by the
8 × 8-fiber-array is transferred by a fiber bundle to the spectrometer (IsoPlane, Princeton Instruments)
and the fibers are arranged in a line (FAL) in the plane of the entrance slit. A second laser with a
wavelength of 633 nm (LASER 2) in combination with three mirrors (M2, M3, M4) are included in the
setup. The 633 nm laser generates a spot with a diameter around 3 µm on the sample; it is used to
identify the chosen sample area and for adjusting the fiber-array.
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Figure 8. The experimental setup for fiber-array-based Raman hyperspectral imaging is divided by a
beam splitter (BS) into an illumination and an imaging part. The Raman signals of the sample areas are
collected with the help of a specially designed 8 × 8-fiber-array bundle (FB), transferred into a linear
fiber-array (FAL) at the distal end, and positioned in the slit plane of the spectrometer (SPEC).

3.2. Measurement and Data Analysis

Two commercially available tablets were purchased from a local pharmacy: Thomapyrin Intensiv®

(tablet T) from Boehringer Ingelheim GmbH & Co. KG and Neuranidal® N (tablet N) from STADA
GmbH. Both tablets contain the same active ingredients: acetylsalicylic acid (aspirin), acetaminophen
(paracetamol) and caffeine. For the full composition of the tablets please refer to the Supporting
Information, Table S1. The coating of the tablets was carefully removed to ensure reliable detection
of the APIs. The two commercial tablets T and N were used as easily-available samples with known
API content and were suitable to demonstrate the applicability of the fiber-array imaging method to
gain information about the API’s distribution, as well as the particle shape and size in pharmaceutical
tablets with several APIs (such as the two investigated commercial tablet types) in one shot.

One characteristic spectral band of each API was selected. The strong Raman bands at
wavenumbers 1192 cm−1 for acetylsalicylic acid (νO-CH-CH3-vibration), 858 cm−1 for acetaminophen
(νC-H-vibration) and 1677 cm−1 for caffeine (νC=O in phase-vibration) were proven the most suitable
bands as they showed minimal spectral overlap among the APIs themselves (Figure 9) and with the
excipients (Figure S1), respectively. In order to generate the hyperspectral images of the three APIs,
the relative wavenumber range 835 to 873 cm−1 was used for acetaminophen, 1171 to 1202 cm−1

for acetylsalicylic acid and 1670 to 1705 cm−1 for caffeine (Figure 9). Vibrational modes depicted
in Figure 9A1–C1 were calculated with the help of density functional theory (DFT) with Gaussian
09 [64]. The hybrid exchange-correlation functional with Becke’s three-parameter exchange functional
(B3) [65] slightly modified by Stephens et al. [66] coupled with the correlation part of the functional
from Lee, Yang, and Parr (B3LYP) [67] and Dunning’s triple (cc-pVTZ) correlation consistent basis sets
of contracted Gaussian functions with polarized and diffuse functions [68] at standard conditions were
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applied. First, an intensity calibration was carried out on the fiber-array, using a piece of a silicon wafer
as a homogeneous sample. The measurements of the tablets were carried out with an acquisition time
of 5 s per fiber-array position and a laser power of 12 mW on the sample surface.
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The intensity arrays corresponding to the different sample spots were superimposed and converted
into color-coded images. In this study, the excipients were summed up as background.

A sample pattern consisting of squares with known dimensions (edge length of one square was
1 µm) acted as a size standard.

4. Conclusions

The potential of fiber-array based Raman spectroscopic imaging was presented as in-process
control for rapid, chemically selective, and simultaneous analysis of particle shape, size and distribution
of different active ingredients in tablets with high spatial resolution. Wide-field Raman imaging has
several advantages in comparison to other elaborated chemical imaging techniques. Compared to
mass-spectrometric imaging techniques, Raman imaging is performed in a non-destructive way and
has high potential for cost efficient miniaturization. Spatial information is accessible down to 1 µm
resolution, by using a high magnification.

The particle size, shape and distribution of the three active pharmaceutical ingredients,
acetylsalicylic acid, acetaminophen and caffeine were analyzed in two different commercially available
tablets, Thomapyrin® Intensiv (T) and Neuranidal® N (N). Different particle shapes were recognized
for each API: needle-like and round ones for acetylsalicylic acid, as well as round particles for
acetaminophen and caffeine. Different particle sizes were found for each API. The caffeine particles
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were the smallest ones. The distribution of the active ingredients was assessed in seven areas of the
tablets respectively, presenting distinct patterns: in some areas clear particle shapes were recognized
from all three APIs, whereas in other parts only acetylsalicylic acid and/or acetaminophen were
dominant. Agglomerations of different dimensions of acetylsalicylic acid and acetaminophen could be
clearly identified. Small differences were observed when comparing the two different commercially
available tablets, T and N. A higher amount in acetaminophen was visible in T. More needle-shaped and
bigger acetylsalicylic acid particles were found in the analyzed T tablets alongside a higher incidence
of bigger agglomerations, in comparison to the N tablets. This gives an exemplary demonstration of
the capabilities of the presented method.

Altogether, the potential of fiber-array-based Raman spectroscopic imaging was demonstrated for
online quality control of pharmaceutical formulations, such as tablets.

Supplementary Materials: The following are available online. Figure S1: Comparison of the Raman spectra of
the active ingredients and the most important excipients in the tablets. Table S1: Composition of the commercial
tablets T and N.
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