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In the last few decades, the pathogenesis of inflammatory bowel disease (IBD) in 
genetically predisposed subjects susceptible to specific environmental factors has 
been attributed to disturbance of both the immune and non-immune system and/or 
to the imbalanced interactions with microbes. However, increasing evidences support 
the idea that defects in pro-resolving pathways might strongly contribute to IBD onset. 
The resolution of inflammation is now recognized as a dynamic event coordinated by 
specialized pro-resolving lipid mediators (LMs), which dampen inflammation-sustaining 
events, such as angiogenesis, release of pro-inflammatory cytokines, clearance of apop-
totic cells, and microorganisms. Among these pro-resolving molecules, those derived 
from essential polyunsaturated fatty acids (PUFAs) have been shown to induce favorable 
effects on a plethora of human inflammatory disorders, including IBD. Here, we offer 
a summary of mechanisms involving both cellular and molecular components of the 
immune response and underlying the anti-inflammatory and pro-resolving properties of 
PUFAs and their derivatives in the gut, focusing on both ω-3 and ω-6 LMs. These fatty 
acids may influence IBD progression by: reducing neutrophil transmigration across the 
intestinal vasculature and the epithelium, preventing the release of pro-inflammatory 
cytokines and the up-regulation of adhesion molecules, and finally by promoting the 
production of other pro-resolving molecules. We also discuss the numerous attempts 
in using pro-resolving PUFAs to ameliorate intestinal inflammation, both in patients with 
IBD and mouse models. Although their effects in reducing inflammation is incontestable, 
results from previous works describing the effects of PUFA administration to prevent 
or treat IBD are controversial. Therefore, more efforts are needed not only to identify 
and explain the physiological functions of PUFAs in the gut, but also to unveil novel 
biosynthetic pathways of these pro-resolving LMs that may be dysregulated in these 
gut-related disorders. We suppose that either PUFAs or new medications specifically 
promoting resolution-regulating mediators and pathways will be much better tolerated 
by patients with IBD, with the advantage of avoiding immune suppression.

Keywords: resolution of inflammation, pro-resolving lipid mediators, inflammatory bowel disease, polyunsatured 
fatty acids, pathogenesis, mucosal inflammation, tissue homeostasis
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iNTRODUCTiON

Inflammatory bowel diseases (IBDs), encompassing ulcerative 
colitis (UC), and Crohn’s disease (CD) are immunologically 
mediated inflammatory disorders of the gut, whose prevalence 
and incidence are dramatically increasing worldwide. Although 
clinical manifestations of these diseases are different, they share 
common features. In fact, both UC and CD are characterized by 
epithelial barrier damage that allows commensal bacteria and 
microbial products to translocate into and colonize the intestinal 
wall. This event triggers the release of cytokines, chemokines, 
and eicosanoids which thanks to regulatory mechanisms, 
mediate the physiological self-limiting immune-response (1, 2). 
Furthermore, both immune and non-immune components of the 
intestinal mucosa have been shown to exert a key role in IBD 
pathogenesis (3). In terms of immune components, the innate 
and the adaptive immune system are essential to chronic intesti-
nal inflammation. In fact, innate immune cells (e.g., neutrophils, 
monocytes, and macrophages) hold the capability to remodel the 
response of adaptive T cells during the inflammatory process (4). 
Concomitantly, studies of the intestinal microbiota, environmen-
tal factors, and genetics have identified a significant contribution 
of non-immune components to the pathogenesis of IBD, which 
include: breach in the epithelial wall, that is, the first line of gut 
defense against bacteria and other microorganisms (5–7); defects 
in the biological activities of stromal cells, which hold immune-
modulatory actions and the capability to clear chemokines and 
cytokines from the inflammatory milieu to re-establish mucosal 
homeostasis (8, 9); defective endothelial cell functions, crucial 
for the angiogenic process but also for the regulation of leukocyte 
adhesion, and trafficking across the hematic and lymphatic bar-
riers (10–14). Activities of both immune and non-immune cells 
need to be finely modulated and constantly balanced, in order to 
avoid chronicity of inflammation and tissue damage.

Another key component of IBD pathogenesis is represented by 
the gut microbiota (15). In fact, the gastrointestinal tract hosts the 
largest microbial community of the organism that can be shaped 
by environmental factors, diet, and hygiene during childhood 
(16), whereas in adulthood this is more stable with a defined 
composition of bacteria (17, 18). In healthy subjects, homeostasis 
exists between the intestinal microbiome, mucosal barrier, and 
immune system. In IBD, this homeostasis is altered causing a 
“dysbiosis,” disrupted barrier function as well as immune system 
activation (15).

Although many efforts have been made to delineate the causes 
underlying the exact etiopathogenesis of IBD, so far our knowl-
edge does not fully clarify what causes its onset. It is currently well 
accepted that at the basis of IBD pathogenesis (19, 20) there is an 
imbalance between pro- and anti-inflammatory signals (1). This 
suggests that defects in the proper release of pro-resolving mol-
ecules during the acute phase of inflammation may characterize 
IBD onset. For decades, the resolution of inflammation has been 
considered a passive event, in which pro-inflammatory signals 
simply dilute over time. This concept was overturned when 
Serhan and colleagues discovered for the first time that a specific 
class of lipids, known as eicosanoids and docosanoids, promotes, 
and orchestrates the resolution process (21, 22).

This discovery gave rise to a new field of research studying 
the mechanisms and the factors involved in the resolution phase 
of the inflammatory response, which is finely and temporally 
regulated by specialized pro-resolving mediators, named lipoxins 
(LXs), resolvins (Rv), protectins, and maresins. These resolving 
bioactive lipids are synthesized from ω-6 and ω-3 polyunsaturated 
fatty acids (PUFAs) and have been demonstrated to exert potent 
immune-resolving effects (2). However, this line of research is 
still at its infancy in the IBD field.

In fact, the vast majority of therapies currently in use for IBD 
aims at blocking key inflammatory mediators that are triggered 
during the early stages of acute inflammation. However, targeting 
infiltrating immune cells does not always lead to remission or 
stable resolution. Indeed, conventional anti-inflammatory agents 
do not alter the course of IBD because the naturally occurring 
resolution programs are likely to be subverted. For this reason, 
promotion and maintenance of the resolving milieu may repre-
sent a good alternative therapeutic approach to dampen chronic 
inflammation in IBD. In addition, defects in the production of 
resolving molecules may strongly contribute to IBD onset, thus 
expanding our understanding of what triggers these gut-related 
diseases.

This review aims to describe how the resolution process plays 
a fundamental role in the gut both at the physiological and patho-
logical level. After a brief overview on IBD pathogenesis, we will 
emphasize which cellular and molecular components govern the 
resolving phase of intestinal inflammation and we will discuss 
the state of the art of preclinical and clinical studies employing 
PUFA-derived pro-resolving lipid mediators (LMs) in IBD.

ReSOLUTiON OF iNFLAMMATiON AND 
PRO-ReSOLviNG LMs: A BRieF 
OveRview

For decades, anti-inflammatory treatments have been used to 
treat chronic inflammatory conditions because of the concept 
that the chronically established inflammation was caused by 
an exaggerated immune response rather than a failure in the 
resolution of inflammation (23). Indeed, for years the resolution 
process has been considered a passive event where inflammatory 
signals progressively dissipate (2, 24). In contrast to this assump-
tion, during the last decade resolution of inflammation has been 
conclusively recognized as an active and tightly regulated process 
orchestrated by pro-resolving LMs, which have been found to 
dampen inflammation-sustaining events such as cell prolifera-
tion, migration, and clearance of apoptotic cells and microorgan-
isms (2, 25).

At tissue and cellular level, the key steps that characterize 
the resolution process are (i) clearance of the inciting stimuli, 
(ii) silencing of pro-inflammatory and local survival signals, 
including chemokine gradients, (iii) polymorphonuclear (PMN) 
efferocytosis and clearance by tissue and monocyte-derived 
macrophages, and (v) recirculation of macrophages via lymph 
flow. LMs represent the key signaling molecules in this process, 
which regulate the inflammatory profile and promote the return 
of affected tissues to homeostasis (26).
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FiGURe 1 | Metabolic route of ω-6- and ω-3-derived lipid mediators. (A) Essential fatty acid linoleic acid, classified as ω-6 polyunsaturated fatty acid, can be 
converted into arachidonic acid (AA). In turn, AA is metabolized in hydroxy-eicosatetraenoic acids (HETEs) and epoxy-eicosatrienoic acids (EETs) via cytochrome 
P450 (CYP450). Via lipoxygenase (LOX) pathway, AA is converted to lipoxins (LXs) and leukotriens (LTs), whereas via cyclooxygenase it is metabolized in 
prostaglandins (PGs) and tromboxanes (TBXs). HETEs, EETs, PGs, TBXs, and LTs are all pro-inflammatory, while LXs are considered pro-resolving mediators.  
(B) Essential fatty acid α-linolenic acid is converted to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). EPA and DHA may be substrate of CYP450, 
resulting into production of E-series resolvins (Rv) and epoxides, respectively. In addition, DHA is metabolized via LOX to D-series Rv, maresins, and protectins.  
All these EPA- and DHA-derived mediators are recognized to harbor pro-resolving properties.

3

Ungaro et al. Pro-Resolving LMs in IBDs

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1331

In this context, ω-3 and ω-6 PUFAs are specialized LMs that 
have the capability of influencing the inflammatory processes, 
such as those governing IBD. They are essential fatty acids that 
need to be obtained from the diet; in fact, since mammals lack of 
endogenous enzymes necessary for ω-3 PUFA desaturation, they 
cannot be synthesized by humans (27).

Polyunsaturated fatty acid metabolism is recognized as an 
important factor in immune regulation and disease control. In 
particular, the metabolic balance between ω-6 and ω-3 PUFAs 
is widely held to be important in human health and diseases 
(27–30). PUFA-derived bioactive metabolites are formed in vivo 
by enzymatic oxidation through the action of cyclooxygenases 
(COXs), lipoxygenases (LOXs), and cytochrome P450 (CYP450) 
monooxygenases. From ω-6 PUFAs, e.g., arachidonic acid (AA), 
the COX pathway leads to the formation of prostanoids, such 
as prostaglandins (PGs) and thromboxanes (TXs), the LOX 
pathway leads to leukotrienes (LTs) and LXs, and the CYP450 
pathway gives rise to hydroxy-eicosatetraenoic acids (HETEs) 
and epoxy-eicosatrienoic acids (Figure  1A) (2, 24, 31, 32). 
Except for LXs (33), ω-6 PUFAs are conventionally involved 
in the initiation of inflammatory responses. On the contrary, 
ω-3 PUFAs seem to promote resolution of inflammation (34). 
α-linolenic acid (ALA) is an ω-3 PUFA and is categorized with 
the ω-6 linoleic acid (LA) as an essential fatty acid. As ω-6 LA 
can be metabolized into AA, ALA can be converted into precur-
sors for long chain ω-3 PUFAs such as eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA). Both EPA and DHA, 
which can be found in some fish oils, are good substrates for 
LOX and CYP, thus being efficiently converted into bioactive 
metabolites such as E-series resolvins (RvEs), D-series resolvins 

(RvDs), protectins, and maresins that act as potent pro-resolving 
endogenous mediators in a wide range of human inflammatory 
disorders, including IBD (Figure 1B) (35–44). A large number 
of studies sustain the anti-inflammatory potential of EPA and 
DHA and their derivatives [for a recent review, see Ref. (35, 39)].  
Nevertheless, the molecular mechanisms by which these 
essential fatty acids exert their anti-inflammatory effects remain 
controversial, particularly in the gut.

Inflammatory bowel disease patients may display a deficiency 
in essential fatty acids and/or a defect in PUFA biosynthesis and 
metabolism. This is why the intake of ω-3 PUFAs may benefit 
patients with both UC and CD by a series of beneficial events 
such as inhibition of natural cytotoxicity, and improvement of 
oxidative stress (35, 45–47). This concept is strengthened by the 
fact that the intestinal mucosa seems to be highly responsive to 
ω-3 long-chain PUFAs (47–49).

ACTiONS OF PRO-ReSOLviNG PUFAs 
AND TARGeT CeLL TYPeS iN THe GUT

Active resolution of inflammation is characterized by a sequential 
series of events that starts from building an adequate inflamma-
tory response against inciting agents, to minimizing local tissue 
damage. In this context, pro-resolving PUFAs act with various 
signals and mechanisms to different cell compartments, with the 
final purpose to remodel and clear healed tissues of unnecessary 
immune cells, thus bringing the inflamed organ to the original 
homeostasis.

The intestinal epithelium is a key coordinator of both inflam-
mation and resolution. Thanks to tight junctions (TJs), intestinal 
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epithelial cells form a dynamic barrier protected by a thick mucus 
layer which controls what can reach the lamina propria from 
the lumen (50, 51). In IBD pathogenesis, altered intestinal bar-
rier functions, in terms of decreased mucous production (52) 
and reduced expression of TJs (53), have been associated with 
increased gut permeability, which facilitates the absorption of 
microbial products and triggers an excessive response, eventu-
ally leading to mucosa injury in both CD and UC (54, 55). In 
order to counteract pathogen infections, epithelial cells are able 
to produce and release in the luminal mucus antibacterial and 
endotoxin-neutralizing molecules called bactericidal permea-
bility-increasing protein (BPI). BPI damages the membranes of 
Gram-negative bacteria, neutralizes endotoxin, and opsonizes 
bacteria for neutrophil phagocytosis (56). BPI is transcriptionally 
up-regulated by LXs and resolvin E1 (RvE1) (57). In addition, it 
was observed that RvE1 significantly upregulates the expression 
of intestinal alkaline phosphatase (ALPI), an enzyme whose 
activity is critical for the maintenance of bacterial homeostasis 
(57): for its luminal location, ALPI has been demonstrated to 
block Gram-negative growth such as Escherichia coli and strongly 
neutralizes LPS through dephosphorylation of moiety in lipid A 
(58). This was confirmed in the mouse model of dextran sodium 
sulfate (DSS)-induced colitis, during which the in  vivo induc-
tion of ALPI by RvE1 positively correlated with the resolution  
process (57).

Lipoxins have also demonstrated to exert an ex vivo cytopro-
tective role on intestinal epithelial cells (59). Goh and colleagues 
showed that administration of LXs significantly ameliorates 
TNF-α-induced mucosal inflammation and reduces epithelial 
cell apoptosis. However, the mechanisms through which LXs 
exert these cytoprotective effects remain yet to be defined (33).

Polyunsaturated fatty acids have been shown to modulate 
other biological activities of intestinal epithelial cells. It is known 
that pro-resolving LMs exert their functions by binding with cell 
surface receptors, the majority of which belongs to G protein-
coupled receptors (GPRs) (60). Among these receptors, GPR120 
has been found to be the most abundantly expressed in the gut, 
particularly on epithelial cells and macrophages (59, 60). A study 
from Mobraten and colleagues shows that DHA, EPA, or AA are 
able to trigger GPR120 in Caco-2 cells, initiating multiple and 
independent signaling processes with different kinetics and inten-
sity; these are (i) the activation of MAP kinases, (ii) the inhibition 
of IL-1β induced NF-κB activation, and (iii) the cytosolic accu-
mulation of Ca2+ (61). Another group shows differential effects 
of activation of GPR120 by DHA in human intestinal Caco-2 
and murine STC-1 cells, two different cell lines representing 
the mammalian intestinal epithelial layer. In this study, GPR120 
stimulation by ω-3 PUFAs increased β-arrestin2 interaction 
with TAB 1 and attenuated TNFα-induced inflammatory effects 
by association of TAB 1 with TAK1, which resulted in reduced 
activation of NF-kB (59). Anti-inflammatory effects exerted by 
PUFAs through GPR120 were confirmed in vivo by Zhao et al., 
who demonstrated that triggering of GPR120 by DHA treatment 
ameliorate the experimental colitis in IL-10 deficient mice (62). 
Interestingly, transcription of GPR120 in intestinal epithelial cells 
was found tremendously increased by bacteria belonging to the 
Firmicutes, Bacteroides and Proteobacteria phyla (63), all classified 

as microorganisms harboring anti-inflammatory properties.  
This is intriguing, because the dysbiosis observed in patients with 
IBD is basically caused by a diminished diversity of Firmicutes 
(64). This suggests that reduced expression levels of GPR120 may 
be one of the causes underlining IBD pathogenesis, and that tar-
geting this receptor may represent a new therapeutic strategy in 
IBD; however, to date there are no studies that deeply characterize 
and quantify GPR120 in the inflamed mucosa of IBD patients and 
further studies to elucidate this aspect are needed. The effects of 
PUFAs on intestinal epithelial cells are schematically summarized 
in Figure 2A.

Neutrophils (PMN leukocyte) are the first cell type of the 
innate immune system to reach inflamed areas and hold the 
essential role of limiting the invasion of microorganisms (65). 
In fact, upon transmigration through activated endothelial cells, 
PMNs infiltrate the intestinal epithelium, and once reached the 
apical portion of epithelial cells, they come into contact with 
tons of bacterial stimuli, which further sustain PMN activa-
tion. PMN accumulation within the intestinal crypts has been 
associated with transepithelial resistance (66, 67) and epithelial 
barrier integrity (68), and in IBD the persistent and prolonged 
PMN flux across the epithelium has been shown to cause mucosal 
ulceration and barrier disruption, ultimately facilitating micro-
organism entry into the submucosa (69), and contributing to the 
clinical syndrome of malabsorption and diarrhea in these patients  
(31, 68). However, PMNs are also recognized as important players 
in the first stages of the resolution program. For example, they 
release pro-inflammatory LMs (e.g., PGI2 and LTB4) during early 
inflammation, before producing pro-resolving molecules, such as 
LXs, Rvs, and protectins at the onset of resolution (21). Due to 
this dual role, PMN activity needs to be finely regulated in order 
to reduce tissue damage and avoid chronicity of diseases (70, 71). 
LXs deriving from the metabolic route of AA, have been shown 
to inhibit PMN flux across the epithelial barrier (21, 72). In line 
with this, patients with severe UC display colonic deficiency in 
LX biosynthesis, which causes low to absent production of lipoxin 
A4 (LXA4) (73). Accordingly, LXA4 analogs dampen colitis 
induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) or DSS 
(74, 75). RvE1 has been also shown to inhibit PMN transepithe-
lial migration, and TNBS-induced colon damage (Figure  2B) 
(36, 57). These LMs, that include protectin D1, not only also 
support phagocytosis of apoptotic PMNs (76), but also mediate 
the overexpression of C–C chemokine receptor type 5 recep-
tors on apoptotic neutrophils, thus sequestering inflammatory 
chemokines such as chemokine (C–C motif) ligand 3 and CCL5, 
and promoting PMN clearance at sites of inflammation (77).

During intestinal inflammation, PMNs not only represent 
the target cell type of many pro-resolving PUFAs, but they are 
also the main producers of many molecules. In fact, a number of 
recent studies (78–81) clearly indicate that activated PMNs gen-
erate crucial anti-inflammatory and pro-resolving mediators that 
characterize the onset of resolution (82, 83). This aspect has been 
convincingly demonstrated in  vivo, by depletion of circulating 
PMNs with anti-Gr1 antibodies, which resulted in the exacerba-
tion of colitis in various mouse models of IBD, implicating PMNs 
as a key protective factor in ongoing intestinal inflammation (84). 
This may justify the controversial role exerted by neutrophils to 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 2 | Effects of pro-resolving polyunsaturated fatty acids (PUFAs) on immune and non-immune intestinal components. (A) Thanks to tight junctions, intestinal 
epithelial cells form a dynamic barrier protected by a thick mucus layer (inner and outer) which controls what can reach the lamina propria from the lumen. In order 
to counteract pathogen infections, epithelial cells are able to produce and release in the luminal mucus antibacterial and endotoxin-neutralizing molecules called 
bactericidal permeability-increasing protein (BPI). BPI is transcriptionally up-regulated by lipoxins (LXs) and resolvin (Rv) E1. In addition, it was observed that resolvin 
E1 (RvE1) significantly upregulates the expression of intestinal alkaline phosphatase. Moreover, LXs inhibit epithelial cells apoptosis. G protein-coupled receptor 
(GPR)120 activation by PUFAs [eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid] leads to accumulation of cytosolic Ca2+, activation 
of MAP kinase ERK1/2, inhibition of IL-1β-induced NF-κB activation, and TNFα-induced inflammation. Transcription of GPR120 is increased by bacteria belonging to 
the bacteroides, proteobacteria, and firmicutes phyla. (B) Neutrophils (polymorphonuclear) are the first immune cells recruited to the site of inflammation, but are 
also important players in the first stages of the resolution program. LXs reduce neutrophil recruitment to the inflamed tissue, transepithelial migration, and 
phagocytosis. Protectin D1 promotes neutrophil phagocytosis. Similar to LXs, RvE1 reduces neutrophil transepithelial migration and induces neutrophil 
phagocytosis. Moreover, both protectin D1 and RvD5 have been shown to reduce neutrophil–endothelial interaction. (C) Macrophages, important for the resolution 
of intestinal inflammation, express high level of GPR120. EPA- and DHA-dependent activation of GPR120 has been shown to repress Akt/JNK phosphorylation and 
NF-kB induction. LXs enhance non-phlogistic phagocytosis of apoptotic neutrophils by macrophages. Treatment with LXs may also polarize intestinal macrophages 
into a resolving phenotype, thus promoting resolution of inflammation. Maresins exert potent pro-resolution and anti-inflammatory activities, ultimately leading to 
reduced neutrophil migration and increase macrophage phagocytic activities. Maresins induces also the resolving phenotype of macrophages and inhibit reactive 
oxygen species production. (D) EPA and DHA (ω-3 PUFAs) inhibit T cell proliferation and reduce IL-2 production. (e) Pro-resolving lipid mediators (DHA, α-linolenic 
acid-derived) exert anti-inflammatory and anti-angiogenic effects on the gut endothelium. They reduce the production of IL-6, IL-8, GM-CSF PGE-2, and LTB-4 
(pro-inflammatory signals), decrease the levels of adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion protein 1), and vascular 
endothelial growth factor receptor 2, thus suppressing the angiogenic component of inflammation.
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the pathogenesis of IBD, and why their contribution may differ 
between CD and UC (85). In fact, while in patients with active 
UC it has been observed a correlation between the extent of PMN 
infiltration and the severity of the disease (86), several other stud-
ies have reported PMN dysfunction in patients with CD (87–89).

Resident macrophages, located in the sub-epithelial layers of 
the gut, are designated for protecting the host against pathogens 
and for regulating mucosal responses to commensal bacteria. 
For this reason, they are considered important players in the 
resolution of inflammation (90). These cells of the innate immune 
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system have the characteristic to express various GPRs, includ-
ing GPR120 (19, 91). EPA- and DHA-dependent activation of 
GPR120 has been shown to have anti-inflammatory activities in 
both RAW 264.7 monocytes and primary intraperitoneal mac-
rophages; these effects were abolished by GPR120 silencing (92). 
In another study, PUFA-dependent signaling cascade that follows 
GPR120 activation in the gut was observed also in macrophages, 
where the stimulation of this receptor led to the repression of Akt/
JNK phosphorylation and NF-kB-mediated cyclooxygenase-2 
(COX-2) induction (92–95). Blood-derived macrophages, that in 
chronic IBD are known to secrete inflammatory cytokines and 
tissue-degrading proteases (96, 97), and that well differentiate 
from resident macrophages, are recognized as either perpetua-
tor of inflammation or effectors of the resolution process (33). 
Treatment of monocyte-derived macrophages with LXA4 and its 
analogs induced a strong enhancement in phagocytosis of apop-
totic neutrophils (98), thus attributing to these PUFA derivatives 
an additional role in the resolution of intestinal inflammation.

Following studies on macrophages during the resolution 
process, a new pathway capable of producing potent mediators 
from DHA has been uncovered and the resulting metabolites have 
been coined maresins (MaR1 and MaR2), which exert potent pro-
resolution and anti-inflammatory activities, ultimately leading to 
reduced neutrophil migration and increased macrophage phago-
ytic activities (99–102). Marcon and colleagues recently showed 
that MaR1 may cause a switch in the macrophage phenotype 
from the pro-inflammatory “classically activated M1” to the pro-
resolving “alternatively activated M2,” as well as direct blockade 
of PMN transmigration and reactive oxygen species production, 
which could explain, at least in part, the beneficial actions of 
this LM in experimental colitis (103). The effects of PUFAs on 
macrophages are schematically summarized in Figure 2C.

Studies on the effects of PUFA derivatives on the adaptive 
immune system in the gut are still in their infancy. In general, both 
DHA and EPA were observed to reduce in vitro T cell prolifera-
tion and to decrease the expression of both Th1 and Th2 cytokine 
IL-2 (Figure 2D). Recent works have also unveiled the effects of 
ω-3 PUFAs on Th17 cells (104–106). However, only few in vivo 
studies have shown a real effect of pro-resolving LMs in T cell 
reactivity in the gut; these will be described in the paragraph on 
animal studies.

The excessive transfer of various immune cell types from the 
peripheral blood to the affected gastrointestinal tracts of IBD 
patients, depends not only on surface molecules expressed by 
activated leukocytes, but also on high levels of adhesion mol-
ecules expressed by endothelial cells (14). Endothelial cells are 
key regulators of the inflammatory response, not only providing 
in the steady state an anti-inflammatory and anti-coagulatory 
surface, but also controlling which cell type enters the site of 
inflammation (107). Thus, alterations of endothelial cells may 
cause an imbalance between initiation of pro-inflammatory 
mechanisms and those that promote resolution and restitution of 
tissue homeostasis, ultimately leading to chronic inflammatory 
disorders, such as IBD. Patients with IBD are indeed characterized 
by increased vascularization, and excessive release of angiogenic 
factors (108, 109). Resolving LMs were observed to exert anti-
inflammatory and anti-angiogenic effects on the gut endothelium. 

For example, Ibrahim and colleagues demonstrated that DHA 
is able to decrease vascular cell adhesion protein 1 (VCAM-1), 
TLR4, COX-2, and vascular endothelial growth factor receptor 2 
(VEGFR-2) expression and reduce the production of IL-6, IL-8, 
GM-CSF, and PGE-2 in intestinal microvascular endothelial cells 
(HIMEC) stimulated with IL-1β. Moreover, administration of 
ALA during the TNBS model resulted in the decrease of intercel-
lular adhesion molecule 1 (ICAM-1), VCAM-1, and VEGFR-2 
expression levels, thus leading to suppression of angiogenesis in 
the inflamed colon (Figure 2E) (110). Interestingly, Ungaro et al. 
demonstrated that the Major Facilitator Superfamily Domain 
containing 2A (MFSD2A) may act as a new player in the resolu-
tion of intestinal inflammation, likely promoting endothelial 
production of DHA-derived pro-resolving mediators (20). In this 
study, lentiviral induction of MFSD2A conferred anti-angiogenic 
properties to HIMEC, reducing in  vitro capillary formation 
and proliferation, and significantly inhibited TNFα-triggered 
inflammatory machinery of NF-kB signaling, via production of 
pro-resolving DHA-derived metabolites. These findings suggest 
that stimulating MFSD2A activity in intestinal endothelial cells 
could be a novel and powerful therapeutic approach to treat IBD.

Overall we have reported that the main modes of action of 
PUFAs in the inflamed gut are: (i) inhibition of leukocyte chemo-
taxis, reduced expression of adhesion molecules, and diminished 
leukocyte-endothelial adhesive interactions, (ii) modulation of 
epithelial biological functions and interactions with PMN, (iii) 
suppression of macrophage phagocytic activities, (iv) production 
of inflammatory cytokines, and (v) modulation of endothelial 
functions and T-lymphocyte reactivity. However, there are 
other mechanisms of action that have not been described in the 
intestine, but that may be crucial for further studies in IBD. For 
example, it has been demonstrated that resolving ω-3 PUFAs, 
such as EPA and DHA, can compete with the enzymes that 
convert AA into pro-inflammatory eicosanoids, thus inhibiting 
the release of inflammatory cytokines (e.g., TNF-α and IL1-β) 
(111). Furthermore, administration of ω-3 PUFA derivatives 
may benefit IBD patients by change in the lipid composition 
of intestinal cell membranes, activation of anti-inflammatory 
proteins such as the transcription peroxisome proliferator acti-
vated receptor γ (PPAR-γ), and reduction in the gut production 
of pro-inflammatory molecules, like NF-κB, LTs, and PGs (35, 
45–47, 112, 113).

ROLe OF PUFAs iN ANiMAL MODeLS  
OF iBD

One of the first studies unveiling the contribution of PUFAs in 
IBD progression was done by Hudert et al., who exploited a trans-
genic mouse carrying Caenorhabditis elegans fat-1 gene, encoding 
for a specific desaturase capable of producing ω-3 PUFAs from 
ω-6 PUFAs (114). As a consequence, this transgenic mouse is 
characterized by a low ratio of ω-6/ω-3 fatty acids in its tissues 
and organs (115). They showed that fat-1 transgenic mice sub-
jected to the DSS protocol of chemically induced experimental 
colitis, had significantly reduced signs of colon inflammation, 
in terms of both clinical manifestation and pathology, than 
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wild-type littermates. Such amelioration was positively correlated 
with the production of anti-inflammatory ω-3 PUFA derivatives, 
reduced levels of pro-inflammatory cytokines and a concomitant 
increase of mucus-specific factors in their colons. Moreover, 
beside a reduced number of Th17 cells in lymphoid tissues, they 
also observed a reduced expression of Th17  cell type-specific 
cytokines and chemokine receptors specifically in the colonic 
mucosa, indicating a role for ω-3 PUFAs on T cell reactivity. The 
reduced susceptibility to chemically induced colitis in fat-1 mice 
is likely to result from reduced activation of the NF-κB pathway 
and decreased expression of TNFα, IL-1β, and inducible NO syn-
thase. Conversely, the enhanced protection conferred by a thicker 
mucus layer in these mice was probably due to the concomitant 
up-regulation of trefoil factor 3, toll-interacting protein, and 
zonula occludens-1.

Initial studies on the efficacy of PUFAs in animal models of IBD 
considered the use of PUFA precursors instead of single metabo-
lites. One of the first fatty acid used in experimental colitis was 
conjugated LA (CLA), a mixture of 28 isomers of LA (116); this 
has been tested in pig models of colitis. Animal treated with CLA 
showed reduced signs of intestinal inflammation, accompanied 
by decreased serum levels of TNF-α and NF-κB, and increased 
amount of transforming growth factor β and PPAR-γ (117). These 
findings were confirmed in two different experimental mouse 
models of colitis, either chemically (DSS)- or CD4-induced (118).

Other studies have focused their attention on the ω-6/ω-3 
PUFA ratio. During the DSS-induced colitis model, mice 
administered with ALA-enriched diet, consequently resulting 
in a decreased uptake of LA, showed less severe colitis, with a 
markedly alleviated intestinal inflammation (119). The beneficial 
effects exerted by the ALA-enriched diet was probably due to 
the reduced PMN influx into the colonic mucosa, because of the 
decreased activity of both myeloperoxidase (MPO) and alkaline 
phosphatase. In addition, ALA supplementation blocked TNF-α 
and IL-1β up-regulation, by comparison with the control group.

Following studies were designed to use specific PUFA metabo-
lites rather than precursors, with ω-3 EPA- and DHA-derived 
LMs as main candidates for both animal and clinical trials.

The first work involving ω-3 PUFA derivatives and IBD were 
conducted by using both TNBS- and DSS-induced colitis. Arita 
and colleagues demonstrated that RvE1 exerts protective effects 
in TNBS-induced intestinal inflammation, in terms of reduced 
body weight loss, colon shortening, and tissue damage, by reduc-
ing PMN flux into the colonic mucosa, and, at the same time, by 
limiting either the production of TNFα and IL-12, or the expres-
sion of pro-inflammatory enzymes, like COX-2. The authors also 
showed that the expression of the RvE1 receptor ChemR23 was 
up-regulated in colonic mucosa of TNBS-treated animals (36).

Similar effects were observed in the DSS-induced model of 
colitis by Ishida et al., who demonstrated that repeated adminis-
trations of RvE1 were able to dampen colitis severity in terms of 
body weight loss, colon shortening, and histological score (41). 
Concomitantly, they observed a reduction in NF-kB phospho-
rylation, TNFα, IL-1β, and IL-6 levels in colonic tissues, along 
with higher levels of ChemR23 mRNA, supporting a possible 
role for this receptor in the pathogenesis of intestinal inflamma-
tion (41). Other groups confirmed these findings additionally 

indicating that an interplay might exist between ALPI and RvE1 
that ultimately leads to resolution of intestinal inflammation.

In 2011, Bento et al. showed that aspirin-triggered (AT)-RvD1 
and RvD2 protect mice against both TNBS- and DSS-induced 
colitis (47). In this study, the preventive administration of these 
resolvins significantly ameliorated clinical manifestations, such 
as body weight loss, disease activity index, colonic damage, and 
colon shortening. Beside these clinical findings, they showed these 
mice to produce reduced levels of pro-inflammatory cytokines, 
and diminished activation of NF-kB pathway and expression of 
VCAM-1, ICAM-1, and leukocyte function-associated antigen-1. 
Finally, the authors demonstrated that blockage of LXA4 receptor 
(ALX), reversed the (AT)-RvD1protective effects in DSS-induced 
colitis, concluding that (AT)-RvD1 action may depend on ALX 
activation.

Other DHA-derived pro-resolving mediators, such as mares-
ins, have also shown fundamental properties in experimental 
IBD. In fact, preventive or therapeutic administration of MaR1 
(103) demonstrated for the first time that this DHA metabolite 
protects mice against both acute and chronic DSS-induced colitis, 
reducing disease activity index, colon shortening, body weight 
loss, and MPO activity. In addition, the authors demonstrated that 
MaR1 inhibited the production of pro-inflammatory cytokines 
like IL1-β, IL-6, TNF-α, and IFN-γ in colon tissue, together with 
down-regulation of NFk-B activation and diminished neutrophil 
transmigration in the inflamed mucosa (103). Similar results 
were obtained with the TNBS-induced model of colitis.

A very recent work from Gobbetti et al. shows that exogenous 
administration of LMs derived from ω-3 docosapentaenoic acid 
(ω-3 DPA), an intermediary product between EPA and DHA, 
named protectin D1n−3 DPA (PD1n−3 DPA) and resolvin D5n−3 DPA 
(RvD5n−3 DPA), was effective in preventing the acute model of DSS-
induced colitis, in terms of reduced colon length, and microscopic 
damage score (120). These protective effects were partially linked 
to reduced granulocyte trafficking and PMN–endothelial interac-
tions, which may occur downstream adhesion molecule activa-
tion. The translational impact of these data was determined not 
only by the ability of PD1n−3 DPA and RvD5n−3 DPA to reduce human 
neutrophil adhesion onto TNF-α-activated human endothelial 
monolayers, but also to the identification of ω-3 DPA metabo-
lites in human colon biopsies. Using targeted LC-MS/MS-based 
LM metabololipidomics on colonic biopsies from controls and 
IBD patients they observed that LTB4, PGE2, and TX B2 were 
significantly increased in inflamed tissues in comparison with 
controls. Notably, they showed that RvD5n−3 DPA and PD1n−3 DPA 
were augmented in tissue biopsies from IBD patients compared 
with those from control. This finding on human IBD samples is in 
contrast with the fact that RvD5n−3 DPA and PD1n−3 DPA exert protec-
tive effects against chemically induced acute colitis, and warrants 
further investigation. There may be a dysfunctional susceptibility 
of cells targeted by these mediators in IBD. Moreover, it would be 
interesting to distinguish the effects of RvD5n−3 DPA and PD1n−3 DPA 
in patients with UC versus CD.

The last study that needs to be mentioned has been done by 
Meister and Ghosh, who treated IBD patient-derived biopsies 
with fish oil. They found reduced inflammation in terms of high 
IL-1a/IL-1b ratio in tissues derived from patients with UC, but 
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TABLe 1 | Polyunsaturated fatty acid (PUFA) administration in animal models of IBD.

Study reference Administered PUFA Model of colitis Outcomes

Viladomiu et al. (116) CLA DSS (pig) Reduction of: DAI, TNFα, increase of: TGFβ and PPARγ

Bassaganya-Riera et al. (118) CLA DSS, CD4+ transfer (mouse) Reduction of: inflammation, TNFα, increase of: TGFβ and PPARγ

Tyagi et al.(119) Decreased LA/ALA ratio DSS (rat) Reduction of: DAI, intestinal inflammation, TNFα, and IL1β levels

Arita et al. (36) RvE1 TNBS and DSS (mouse) Reduction of: weight loss, colon shortening and tissue damaging, PMN 
infiltration, IL-12, TNFα, and COX-2

Ishida et al. (41) RvE1 DSS (mouse) Reduction of: weight loss, colon shortening and tissue damaging, NFk-B 
activation, TNFα, IL-1β, and IL-6

Bento et al. (47) AT-RvD1, RvD2 TNBS and DSS (mouse) Reduction of: weight loss, DAI, colon damage and shortening, pro-
inflammatory cytokines, NFk-B activation, and adhesion molecules

Marcon et al. (103) MaR1 DSS (mouse) Reduction of: DAI, colon shortening, weight loss, myeloperoxidase activity, 
pro-inflammatory cytokines, NFk-B activation, and neutrophil transmigration

Gobbetti et al. (120) PD1 and RvD5 DSS (mouse) Reduction of: colon length and pro-inflammatory cytokines, leukocyte–
endothelial interaction
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not in tissues from patients with CD. These contrasting outcomes 
indicate that variations in diet composition may influence the 
success of a nutritional therapy for UC or CD patients (121). All 
mentioned animal studies are summarized in Table 1.

It is worth of note that although the majority of pre-clinical 
studies on animal model of IBD are promising and provide strong 
or mild anti-inflammatory properties of ω-3 PUFAs (122–131), 
other works revealed that an abundant intake of dietary ω-3 
PUFAs could even worsen the clinical signs of colitis (132–135). 
This discrepancy may be explained by different treatment and 
dose regimen, by different animal facility conditions, and dif-
ferent racemic mixture that could have been used to treat mice. 
In any case, this must be taken into consideration when animal 
studies need to be translated into clinical management of IBD.

CLiNiCAL APPLiCATiON

As for animal models, many attempts have been done to prove ω-3 
PUFA efficacy in human studies. The great therapeutic potential 
of ω-3 PUFAs has been also encouraged by some works reporting 
alterations in the production of pro-resolving LM. For example, 
Pearl and colleagues revealed the ω-6/ω-3 PUFA composition 
were altered in the inflamed gut mucosa of patients with active UC, 
in comparison with healthy samples (136). Additionally, Masoodi 
et al. reported that pro-inflammatory PUFA metabolites (PGD2, 
PGE2, TXB2, 5-HETE, 11-HETE, 12-HETE, and 15-HETE) not 
only were increased in the inflamed mucosa of patients with 
active UC, but their levels also correlated with the disease activ-
ity (137). Interestingly, our group recently characterized colonic 
biopsies isolated from patients with active UC showing that 
the production of pro-resolving DHA-derived metabolites was 
defective in inflamed mucosa in comparison with colon tissues 
from patients with UC in remission and healthy controls. This 
indicates that pro-resolving mechanisms are deficient in patients 
with active UC (20), suggesting that ω-3 PUFA administration 
can be exploited as a novel therapeutic approach to treat IBD.

The majority of studies that have been performed so far uses 
diet as way of delivery of ω-3 PUFAs, in combination or not with 

the conventional IBD therapies (138). John et al. found that the 
intake of dietary EPA and DHA was conversely correlated with 
the risk of developing incident UC (139). Similarly, in a cohort 
of patients with CD, the dietary DHA intake was conversely 
correlated with the development of incident CD, with statisti-
cal significance (140). Moreover, clinical trial for CD and UC 
revealed the beneficial effects of ω-3 enriched diet (141–151) 
in terms of clinical and histological parameters. Among these, 
Belluzzi et al. showed that in patients with CD in remission, fish-
oil enriched diet is effective in decreasing relapse frequency (146). 
In another multicenter, randomized, double-blind, clinical trial 
the beneficial role of fish-oil administration in patients with UC 
was demonstrated. The positive clinical outcome was expressed 
in terms of reduced rectal leukotriene B4 (LTB4) levels, improve-
ments in histological scores, and gain of weight.

Omega-3 PUFA administration may also be effective in 
pediatric patients. In children with CD treated with mesalazine, 
diet supplementation with ω-3 PUFAs significantly reduced the 
frequency of relapse within 1-year observation in comparison 
with patients receiving placebo, consisting in olive oil (145).

However, in a clinical trial (EPIC-1 and -2) conducted by 
Feagan et al. the efficacy of a mixture of ω-3 PUFA was revised; 
in fact, the treatment was not effective in preventing relapse and 
maintaining remission in CD patients (152). All clinical studies 
are summarized in Table 2.

The opportunity of clinical application for PUFAs has been 
evaluated by few systematic reviews and meta-analyses. For 
example, the study by Turner and colleagues found significant 
positive effects of ω-3 PUFA supplementation in CD patients. 
However, these conclusions derived from only six trials that 
are highly heterogeneous. Analysis of three clinical trials on 
ω-3 PUFA administration in patients with UC described no 
significant outcome. Thus, the authors concluded that data avail-
able were insufficient to prescribe the use of ω-3 PUFAs for the 
maintenance of remission in CD and UC (153, 154).

Overall, the studies conducted so far are elusive and displayed 
no real evidence of efficacy (138, 155–159). This might be due to dif-
ferent reasons: (a) the ω-3-based diet needs to be tightly controlled 
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TABLe 2 | Clinical studies with the use of polyunsaturated fatty acids (PUFAs) in inflammatory bowel disease.

Study reference Treatment Disease Outcome

Romano et al. (145) ω-3 CD Lower relapse than placebo

Belluzzi et al. (146) ω-3 CD Maintenance of remission compared with placebo

Feagan et al. (152) ω-3 CD No effects

Stenson et al. (142) ω-3 UC No changes compared with placebo

Barbosa et al. (141) ω-3 UC Decreased oxidative stress compared with placebo

Lorenz-Meyer et al. (157) ω-3 and low carbohydrate diet CD No amelioration compared with placebo

Nielsen et al. (158) ω-3 and ω-6, arginine and 
ribonucleic acids, and prednisolone

CD No significative reduction of Crohn’s disease activity index (CDAI) compared with placebo

Geerling et al. (147) ω-3 and antioxidant CD Increase of antioxidants; better resolving PUFA profiles in treated compared with placebo

Nielsen et al. (148) ω-3 CD Reduced pro-inflammatory cytokines and CDAI

Eivindson et al. (159) ω-3 and corticosteroids CD No difference between groups

Brunborg et al. (149) ω-3 UC/CD Reduced joint pain

Bjørkkjaer et al. (150) ω-3 UC/CD Reduced disease activity compared with placebo

Seidner et al. (151) ω-3, fiber, and antioxidant UC Reduced use of prednisone compared with placebo

Salomon et al. (143) ω-3 UC Improvement in seven patients
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in IBD patients; (b) the administration of ω-3 PUFA (DHA or 
EPA) through diet is not effective because of insufficient intestinal 
absorption due to ulcers or because of biochemical modification of 
PUFAs when they are in the systemic circulation; (c) EPA and DHA 
are general precursors of a plethora of specific pro-resolving lipids, 
that, by definition, are locally and timely regulated. Therefore, the 
administration through the diet does not help to finely control 
such metabolism; (d) patients may harbor genetic predisposition 
impeding the correct DHA or EPA metabolism, thus leading to 
insufficient production of bioactive pro-resolving LMs.

CONCLUDiNG ReMARKS

In IBD patients, diet and lifestyle changes, conventional or newly 
identified drugs, do not always resolve inflammation and relieve 
symptoms of the disease. One of theories formulated in the last 
few years is that anti-inflammatory agents do not alter the course 
of the disease, because naturally occurring resolution programs 
may have been subverted. Few studies, including findings from 
our group, showed that eventual dysfunctions in resolution path-
ways and/or deficits in precursors of pro-resolving mediators, such 
as ω-3 PUFAs, may lead to persistent inflammation and provoke 
alteration in gut mucosa homeostasis, thus being part of IBD 
pathogenesis. For this reason, the use of pro-resolving PUFAs, 
particularly the ω-3 ones, brings new possibilities to the treatment 
of IBD, and could be of great interest to pharmacological industry.

Although numerous pre-clinical and clinical studies employ-
ing the use of PUFAs, either as fatty acid precursors or single 
metabolites, showed controversial results, there is still much 
more to discover about the beneficial effects of these molecules, 
particularly in the IBD field. It would be important not only to 
uncover new cellular and molecular processes modulated by 
PUFAs under gut inflammatory conditions, but also to unveil 
novel biosynthetic pathways of these pro-resolving LMs that may 
likely be dysregulated in IBD. Ways of delivery, safety, dosage, 
and regimen treatment, and interaction with other drugs should 
also be further addressed in order to establish the most efficient 
replacement therapy. We suppose that either PUFAs or new medi-
cations specifically promoting resolution pathways will be much 
better tolerated by patients with IBD, mimicking the physiological 
processes through which inflammation naturally occurs in the 
organism, with the advantage of avoiding immune suppression.
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