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Abstract
Myasthenia gravis is an autoimmune disease of the neuromuscular junction
(NMJ) caused by antibodies that attack components of the postsynaptic
membrane, impair neuromuscular transmission, and lead to weakness and
fatigue of skeletal muscle. This can be generalised or localised to certain
muscle groups, and involvement of the bulbar and respiratory muscles can be
life threatening. The pathogenesis of myasthenia gravis depends upon the
target and isotype of the autoantibodies. Most cases are caused by
immunoglobulin (Ig)G1 and IgG3 antibodies to the acetylcholine receptor
(AChR). They produce complement-mediated damage and increase the rate of
AChR turnover, both mechanisms causing loss of AChR from the postsynaptic
membrane. The thymus gland is involved in many patients, and there are
experimental and genetic approaches to understand the failure of immune
tolerance to the AChR. In a proportion of those patients without AChR
antibodies, antibodies to muscle-specific kinase (MuSK), or related proteins
such as agrin and low-density lipoprotein receptor-related protein 4 (LRP4), are
present. MuSK antibodies are predominantly IgG4 and cause disassembly of
the neuromuscular junction by disrupting the physiological function of MuSK in
synapse maintenance and adaptation. Here we discuss how knowledge of
neuromuscular junction structure and function has fed into understanding the
mechanisms of AChR and MuSK antibodies. Myasthenia gravis remains a
paradigm for autoantibody-mediated conditions and these observations show
how much there is still to learn about synaptic function and pathological
mechanisms.
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Introduction
Myasthenia gravis (MG) is a paradigm autoantibody-mediated 
disease. Antibodies to the acetylcholine receptor (AChR) are found 
in 85% of patients with generalised muscle weakness and in 50% 
of those with purely ocular involvement1. There is ample evidence 
from in vitro and in vivo approaches that these antibodies are patho-
genic. AChR antibodies are typically of the immunoglobulin (Ig)G1 
and IgG3 (human) subclasses, can lead to complement-mediated 
attack, and, being able to bind divalently to adjacent AChRs on 
the muscle surface, can also increase the rate of AChR internali-
sation (for a review of the earlier history of MG research, see 2). 
The resulting loss of AChRs at the neuromuscular junction (NMJ) 
impairs neuromuscular transmission (see Figure 1). This becomes 
clinically evident as fatigue and muscle weakness. In a minority 
of patients, however, the autoantibodies instead bind to muscle- 
specific kinase (MuSK). MuSK is a transmembrane tyrosine recep-
tor kinase that is crucial for the development and maintenance of 

AChR clusters at the NMJ. These antibodies are clearly pathogenic, 
but the mechanisms are only recently beginning to be unravelled3.

The pathogenic actions of autoantibodies at the level of the NMJ 
can be studied by a variety of techniques. Experiments on cul-
tured muscle-like cells (TE671, C2C12 myotubes; outlined in 4) 
help define post-synaptic mechanisms in both AChR and MuSK 
antibody forms of the disease, but in vivo models are required to 
study the effects of the antibodies on the electrophysiology of neu-
romuscular transmission. A microelectrode can be used to record 
the membrane electrical potential of the muscle fibre near the NMJ. 
When the nerve is electrically stimulated, neuromuscular transmis-
sion can be detected as a brief rise in membrane potential, called the 
endplate potential (EPP5). Spontaneous miniature EPPs (mEPPs), 
which are much smaller in amplitude than the (evoked) EPP, 
provide a measure of the response of the postsynaptic AChRs to 
release of a single synaptic vesicle-load (quantum) of acetylcholine. 

Figure 1. Assessing neuromuscular transmission. (A) Healthy neuromuscular transmission. The nerve terminal can release the contents 
of each vesicle (quanta) of acetylcholine by exocytosis. Spontaneous release of single quanta of acetylcholine activates the intrinsic cation 
channels of acetylcholine receptors (AChRs) in the postsynaptic membrane to produce a small, transient depolarisation called a miniature 
endplate potential (mEPP). The nerve action potential opens voltage-gated calcium channels (VGCCs) and triggers exocytosis of many 
quanta of acetylcholine, simultaneously producing the (much larger) EPP. In healthy individuals, the amplitude of the EPP is more than 
enough to reach the threshold required to activate the postsynaptic voltage-gated sodium channels (VGNaCs) and generate a muscle 
action potential. (B) The myasthenia gravis neuromuscular junction. AChR antibodies (mainly immunoglobulin [Ig]G1) activate complement, 
resulting in membrane attack complex-mediated damage to the post-junctional membrane architecture. The postsynaptic AChR numbers are 
depleted by divalent antibodies inducing AChR internalisation. The loss of AChRs results in smaller mEPP and EPP amplitudes. The EPP may 
not reach threshold, especially when the nerve is repetitively activated. Abbreviations: AChE, acetylcholinesterase

AChR antibody
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The quantal content refers to the number of vesicle-loads of ace-
tylcholine released by the nerve terminal for each nerve impulse. 
Thus, the EPP amplitude is roughly equal to the mEPP amplitude 
multiplied by the quantal content.

Active immunisation of experimental animals against the affinity- 
purified AChR, passive transfer with rat- or mouse-derived 
mono-clonal antibodies specific for the AChR, or passive transfer 
of purified MG immunoglobulins containing high levels of AChR 
antibodies have all been informative6–8. Both passive transfer and 
active immunisation animal models result in a reduced postsynap-
tic response to acetylcholine (the neurotransmitter) measured as a 
reduction in the amplitude of the EPP and mEPPs (Figure 1, normal 
on left and MG on right). As an animal becomes more severely 
affected, the EPP naturally becomes smaller and may not reach 
threshold for generation of the muscle action potential. A progres-
sive failure of the action potential in a subset of myasthenic mus-
cle fibres can be detected as a decrement in the compound muscle 
action potential (CMAP) amplitude during repetitive stimulation of 
the nerve5.

Below, we provide an update and brief summary of the current 
understanding of these synaptic diseases including the pathogenic 
effects of AChR antibodies upon the motor endplate, and some less 
well-known aspects that have recently been reviewed in detail3,9–11. 
This will be followed by recent approaches to begin to unravel the 
factors responsible for the failure of immune tolerance that leads to 
autoreactivity in MG. Finally, recent progress in our understanding 
of how MuSK autoantibodies cause NMJ failure will be discussed 
in detail.

Mechanisms of AChR antibodies
AChR autoantibodies are mainly of the IgG1 and 3 subtypes, and 
so they are divalent and complement activating2. Binding of these 
antibodies to AChRs results in activation of the classical comple-
ment pathway with assembly of the membrane attack complex 
(MAC). Calcium influx through the MAC causes local damage to 
the membrane, with release of AChR-containing membrane debris 
into the synaptic cleft11. The damaged postsynaptic membrane 
shows a diminished response to acetylcholine, as measured elec-
trophysiologically (Figure 1) by reduced amplitudes of EPPs and 
mEPPs. Importantly, and not widely appreciated, the complement 
damage also causes a loss of voltage-gated sodium channels, which 
are located in the secondary folds, raising the threshold that the 
EPP must reach to trigger the muscle action potential12. Bivalent 
AChR IgG can also cross-link adjacent AChRs, increasing the nor-
mally slow rate of internalisation and lysosomal degradation of the 
AChRs (normal half-life around 10 days in mice) and resulting in a  
loss of AChRs even in the absence of complement attack  
(Figure 1)13. Surprisingly, perhaps, most of the antibodies do not 
cause direct block of AChR function, although AChR block has 
been shown with a few individual patient sera14.

There are many questions concerning the variability of muscle 
weakness between patients, and even within a patient. Some fac-
tors that could, in theory, contribute to this variability are the rate 
of diffusion of AChR antibodies from the serum into the very small 
synaptic cleft of each NMJ, the high number of the AChRs within 

this space that have to be targeted before a deficit in transmission 
occurs, and synaptic compensatory mechanisms that can be dem-
onstrated in animal models. Regarding the latter, an increase in 
muscle AChR synthesis was found in passive IgG transfer experi-
ments, and, similarly, increased mRNA for AChR subunits in biop-
sies from MG patients2, and an increase in the quantal content of 
acetylcholine released from the nerve terminal during each nerve 
impulse15. These adaptive responses would each tend to protect 
neuromuscular transmission from the pathogenic effects. The level 
of expression of tissue complement regulators could also influ-
ence the extent of NMJ damage11. This is particularly important 
given that complement attack damages both the AChR-containing 
membrane (reducing sensitivity to acetylcholine) and the number of 
voltage-gated sodium channels (raising the threshold for the muscle 
action potential), as mentioned above12. It seems likely that each 
of these modulating factors might differ between individuals and 
between muscles within an individual, explaining to some extent 
the variation in weakness and fatigue that is characteristic of all 
forms of MG.

Recent approaches to investigating the failure of 
tolerance to AChR in MG
Most work in this area uses experimental models of MG, usually 
terminal experimental autoimmune MG (EAMG). This can be 
induced by active immunisation against purified AChR from electric 
organs of the marine ray, Torpedo, or electric eel, with adjuvants6,16. 
Torpedo AChR can be purified at high concentrations and in large 
amounts, making it highly suitable for EAMG induction. Unfortu-
nately, only a proportion of the Torpedo AChR antibodies cross-
react with mouse AChR to induce disease, and adjuvants are 
considered necessary to break tolerance. Thus, although EAMG 
results have helped to throw light on NMJ defects, the relevance 
of any immunological findings must be considered carefully. In a 
recent series of experiments, transgenic interleukin (IL)-17-null 
mice confirmed previous findings of the importance of T-helper 
cells that express the pro-inflammatory cytokine IL-1717. Since  
IL-17 is also expressed by other types of immune cells, the authors 
used adoptive transfer of CD4+ T cells from either wild-type or 
IL-17-null mice to repopulate IL-17-deficient mice before trying 
to induce EAMG. Host mice that were repopulated with wild-type 
CD4+ T cells developed antibodies against the injected Torpedo 
AChR and subsequently also developed autoantibodies against 
murine AChR. This was accompanied by myasthenic weakness. 
Host mice populated with IL-17-/- CD4+ T cells developed similar 
levels of anti-Torpedo AChR but little anti-murine AChR and were 
resistant to EAMG17. The authors could not detect any CD4+ T cells 
autoreactive for the murine AChR α-subunit. The findings therefore 
suggest that Th-17 cells do not play a role in the immune response 
to xenogeneic AChR but that they may facilitate the breaking of 
self-tolerance to the mouse (self) AChR. The cellular mechanisms 
involved remain to be defined.

Patients with AChR MG fall into three main categories: early onset 
MG (predominantly women <50), late onset MG (more frequently 
men over 50), and MG associated with thymoma. Since these early 
and late onset groups differ in their human leukocyte antigen (HLA) 
associations, and in their thymic pathology, but not their IgG AChR 
antibody characteristics18, the distinctive clinical and aetiological 
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characteristics suggest that the autoantibodies may arise via distinct 
pathogenic mechanisms operating within these different patient 
groupings19,20. The breaking of tolerance in early onset MG appears 
to involve the thymus, either primarily or secondarily, but human 
cellular studies have so far failed to identify the defects involved in 
antibody production.

Recent genome-wide association studies (GWAS) are making it 
possible to begin to dissect genetic predisposing factors for spe-
cific patient groups in MG. A GWAS of 649 early onset AChR MG 
patients from Northern Europe confirmed associations of AChR 
MG with the HLA class 1 region (specifically HLA-B*08) and 
with the ‘Protein Tyrosine Phosphatase, Non-Receptor Type 22’ 
(PTPN22) gene21. The same study identified a novel association with 
the ‘TNFAIP3-interacting protein 1’ (TNIP1) gene. A more recent 
GWAS of 1032 white North American AChR patients revealed both 
similarities and differences between the early onset and late onset 
AChR MG patient groups22. Both groups were associated with 
the HLA class 2 locus (albeit with distinct haplotypes) and with 
the ‘cytotoxic T-lymphocyte–associated protein 4’ gene (CTLA4, 
a T cell membrane protein previously implicated in autoimmune 
diseases). The late onset MG group specifically showed a strong 
association with ‘tumour necrosis factor receptor 4 superfamily, 
member 11a, NF-κB activator’ (TNFRSF11A), which encodes 
a protein involved in interactions between dendritic cells and  
T cells22. These studies have begun to identify factors that might 
help to explain the early and late onset aetiologies. Additional, 
larger GWASs might allow dissection of distinct genes, alleles, and 
pathogenic mechanisms for different subsets of MG patients and 
could be particularly interesting with respect to the late onset MG 
patients who now represent a much higher proportion of the total23.

Mechanisms of MuSK antibodies
AChR MG is an immune-mediated disease with most of the effects 
dependent on the particular characteristics of the IgG antibodies. By 
contrast, MuSK MG appears to be principally a ‘pharmacological’ 
disease, where antibodies act to interfere directly with physiologi-
cal mechanisms.

MuSK IgG4 blocks MuSK signalling
Animal experiments show that MuSK IgG can cause MG. Mice that 
received repeated daily injections of patient IgG showed impaired 
neuromuscular transmission, with reductions in endplate AChR 
and in EPP amplitudes24–30. Similar changes to endplates were 
reported in mice, rats, and rabbits that were actively immunised 
with MuSK29,31–36. Most of the MuSK in MG patient plasma is of 
the IgG4 subtype, with relatively low titres for IgG1-337,38. This 
is interesting because the IgG4 subclass lacks the complement- 
activating properties of IgG1 and is considered functionally  
monovalent39, eliminating the two main pathogenic mechanisms of 
AChR MG. When the IgG4 and IgG1-3 fractions of MuSK patient 
IgG were separately injected into mice, the IgG4 fraction caused 
MG27, while the IgG1-3 (but not with an equivalent amount of  
MuSK antibodies) did not. In the active immunisation model, com-
plement-deficient mice that were immunised against MuSK devel-
oped MG that was even more severe than complement-sufficient  
strains35. Thus, endplate damage by MuSK antibody does not 
appear to rely upon the classical immunopathology nor, because of 

lack of cross-linking, antigenic modulation mechanisms that drive 
AChR MG pathology. Furthermore, in the active and passive mouse 
models of AChR and MuSK MG, postsynaptic AChRs and the 
mEPPs were reduced to a similar extent but in the MuSK MG 
models there was no adaptive increase in the number of quanta 
of acetylcholine released by the nerve terminal27–29,35,36. Perhaps 
failure of presynaptic compensation explains why MuSK MG 
mice were weaker and MuSK MG patients are often more severely 
affected compared to AChR MG patients. The proposed effect 
of MuSK autoantibodies upon the mechanisms of postsynaptic 
differentiation and synaptic function is illustrated in Figure 2.

MuSK is found in the postsynaptic membrane of the NMJ, together 
with AChR40. The protein tyrosine kinase function of MuSK is acti-
vated when agrin, a proteoglycan from the nerve terminal, binds 
to MuSK via the co-receptor ‘low-density lipoprotein receptor-
related protein 4’ (LRP4)41–44. MG patient MuSK antibodies mainly 
bind the Ig-like regions in the MuSK ectodomain, thereby block-
ing assembly and activation of the agrin-LRP4-MuSK complex. 
This explains why agrin-induced AChR clustering in the C2C12 
cell model was inhibited by incubation in MuSK MG sera and IgG 
preparations45–47. In mice injected with MuSK MG IgG, a reduc-
tion in postsynaptic tyrosine phosphorylation was associated with 
accelerated loss of AChRs from the postsynaptic AChR cluster30,48, 
culminating in failure of neuromuscular transmission28. Thus, a 
combination of cell culture and mouse studies suggests that MuSK 
autoantibodies, which are mainly of the IgG4 type, block the natu-
ral activation of MuSK, leading to progressive loss of AChRs from 
the motor endplate and synaptic failure.

However, this may not be the whole story. Both the IgG4 and IgG1-3 
fractions of MuSK MG plasma were able to inhibit agrin-induced 
AChR clustering when added to C2C12 muscle cell cultures. The 
intracellular protein Dok7 binds and stabilises the MuSK dimer, 
thereby enhancing MuSK’s tyrosine kinase activity49. In a modified 
C2C12 model, AChR clustering was artificially induced by overex-
pressing Dok7. Despite the absence of agrin from this experimental 
system, both the IgG4 and IgG1-3 fractions still caused dispersal 
of the AChR clusters, suggesting that both IgG4 and IgG1-3 may 
affect MuSK independent of the interaction with LRP445. Since 
IgG1-3 MuSK antibodies might also activate complement, it is too 
early to say that this IgG subclass plays no role. Conceivably, MuSK 
IgG1-3 antibodies might selectively affect certain muscle groups, 
for example those with especially high expression of MuSK50, or 
where tissue complement regulators are deficient.

At healthy NMJs, there is a balance between clustering and cluster 
dispersal mechanisms. During embryonic development, and sub-
sequently in mature muscle, MuSK functions to aggregate AChRs 
under the incoming motor nerve but, at the same time, acetyl-
choline released from the motor nerve terminal and acting upon 
these AChRs tends to dismantle AChR clusters51,52. It is thought 
that calcium influx through the AChR channel may be ampli-
fied by subsynaptic IP3 receptors53, activating calcium-depend-
ent proteases that then trigger the internalisation and degradation 
of AChRs, reducing AChR clusters. At healthy NMJs, synapse 
formation and synapse disassembly are balanced54,55. Impaired 
MuSK signalling in MuSK MG would disrupt this balance. This 
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has clinical implications. Cholinesterase inhibitors, such as pyri-
dostigmine, are a first-line treatment for MG. They prolong the acti-
vation of endplate AChRs and thereby restore the EPP amplitude.  
However, in MuSK MG patients, they are often not helpful or not 
tolerated56. In the mouse passive IgG transfer model of MuSK MG 
(where MuSK signalling is inhibited), pyridostigmine was found 
to exacerbate endplate AChR loss and NMJ failure57, probably by  
increasing and prolonging the dismantling action of acetylcholine 
on AChRs.

Whittling down the ‘seronegative’ cases
A substantial fraction of MG patients reveal no detectable 
AChR or MuSK antibodies using the standard clinical radio- 
immunoprecipitation assays. Sensitive cell-based assays (CBAs) 
have recently shown that many of these ‘seronegative’ patients 
do indeed possess autoantibodies. These CBAs use fluorescently 
conjugated anti-human IgG to probe for patient antibodies binding 

to closely packed synaptic membrane proteins expressed on trans-
fected cells. The CBAs can detect antibodies that recognise AChRs 
only when closely packed together, mimicking the close AChR 
packing at the endplate58,59. Close AChR packing may allow these  
antibodies to form stable divalent binding interactions, which 
are not possible in solution owing to the low concentration of 
AChRs. The AChR antibodies detected by CBA were mainly of the  
complement-fixing IgG1 subtype, similar to other AChR MG  
antibodies, and were able to passively transfer electrophysiological 
evidence of MG to mice58,60.

Other studies found that some double seronegative MG patients 
possessed LRP4 antibodies (mainly IgG1 and IgG2)61–65. Clearly 
antibodies to LRP4 could be pathogenic, and animals immu-
nised against LRP4 demonstrate myasthenic weakness with impair-
ment of neuromuscular transmission in mice66, but the frequency 
of LRP4 antibodies has been variable. Antibodies to the secreted 

Figure 2. Disruption of postsynaptic differentiation pathway by muscle-specific kinase (MuSK) autoantibodies. (A) Healthy MuSK-
mediated postsynaptic differentiation pathway at the neuromuscular junction (NMJ). Neural agrin secreted by the motor nerve terminal 
binds to LRP4, low-density lipoprotein receptor-related protein 4 (LRP4), which causes the dimerisation of MuSK. MuSK dimerisation causes 
phosphorylation of MuSK and associated proteins of the MuSK pathway, including Dok7 and the acetylcholine receptor (AChR) β-subunit. 
Rapsyn is recruited to the phosphorylated AChRs, stabilising postsynaptic clusters of AChRs. (B) Impaired postsynaptic differentiation in 
animal models of MuSK myasthenia gravis. MuSK autoantibodies are mainly of the immunoglobulin (Ig)G4 subclass. They block the assembly 
of the agrin-LRP4-MuSK complex. Interruption of MuSK kinase signalling leads to slow disassembly of the postsynaptic AChR clusters. 
A resultant decline in miniature endplate potential (mEPP) and EPP amplitude (not shown) results in failure of the muscle action potential and 
fatiguing weakness. Co-existing IgG1-3 antibodies, although lower concentration, may contribute but their pathogenic roles are not yet well 
defined. The compensatory presynaptic upregulation of quantal release found in AChR MG does not occur in MuSK MG.
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protein agrin, which is responsible for activating the LRP4/MuSK  
pathway, have been detected in small numbers of MG patients. 
However, most of the cases reported so far (10/12) also had  
antibodies to MuSK, LRP4, and/or AChR, and only two patients 
had no other antibodies detected67,68. The clinical and pathogenic 
significance of both LRP4 and agrin autoantibodies requires  
further investigation.

Conclusions
Different subsets of MG patients develop autoantibodies with  
distinct target specificities, isotypes, and pathogenic mechanisms. 
Different pathogenic mechanisms then converge to cause loss of 
postsynaptic AChRs and increasing failure of neuromuscular trans-
mission. This raises the need to investigate the immunological 
abnormalities specific to each of these categories of MG (as well 
as any common factors or pathways that might offer parsimonious 
therapeutic targets). The relative rarity of MuSK MG patients may 
make GWAS difficult, but the intriguing variation in the number of 
patients affected at different latitudes in the northern hemisphere  
(A. Vincent, unpublished data) raises the possibility of environmental 
factors contributing to disease aetiology. Mice actively immunised 
with MuSK generated a response characterised by IgG1 (which 
has characteristics similar to human IgG4), IL-4, and IL-10, analo-
gous to the MuSK immunology found in MuSK MG patients32,35,69, 
suggesting that there is something about the antigen itself that  
determines the immunological characteristics. Perhaps this mouse 
model will be useful for studying how and why IgG4 antibodies to 
MuSK arise.

Recent studies in MuSK MG have also focused attention on the 
molecular defences of the target organ: the NMJ. Local comple-
ment regulator proteins help protect the motor endplate from 
MAC-mediated damage in AChR MG70,71. Agrin/MuSK signal-
ling provides a more general adaptive/protective response when-
ever there is a challenge to the function of the NMJ72. Overexpres-
sion of MuSK or the intracellular MuSK-activator protein DOK7  
protected muscles against NMJ impairment in transgenic mouse 
models of several neuromuscular diseases73,74. On the other hand, 
the NMJs of people carrying hypomorphic alleles for MuSK- 
pathway genes75 might be more susceptible to AChR autoan-
tibodies. Similarly, any hyper-activation of the postsynaptic 
IP3R1 receptor/calpain/caspase/CDK5 pathway52–55 conceivably 
might exacerbate the loss of postsynaptic AChR in AChR MG. 

These synapse-regulatory pathways offer potential targets for  
therapeutic interventions to ameliorate motor endplate damage in 
MG.

Some of the studies in animal models of MuSK MG reported 
changes in nerve terminal structure and/or presynaptic transmitter 
release24,33,35. The presynaptic changes appear less robust than the 
postsynaptic changes. Nevertheless, the adaptive increase in pre-
synaptic acetylcholine release that regularly occurs in models of 
AChR MG and in AChR MG patients15 failed in models of MuSK 
MG. These findings suggest that MuSK signalling may help to 
mediate the presynaptic adaptive response. Ideally, some of the 
findings should be confirmed in patient muscle biopsies, particu-
larly the most affected bulbar or facial muscles, but this remains a 
considerable challenge.
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