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Abstract: Fe–Al energetic material releases a large amount of energy under impact loading; there-
fore, it can replace traditional materials and be used in new weapons. This paper introduces the
macroscopic experiment and microscopic molecular-dynamics simulation research on the energy
release characteristics of Fe–Al energetic jets under impact loading. A macroscopic dynamic energy
acquisition test system was established to quantitatively obtain the composition of Fe–Al energetic
jet reaction products. A momentum mirror impacting the Fe–Al particle molecular model was
established and the microstructure evolution and impact thermodynamic response of Fe–Al particles
under impact loading were analyzed. The mechanism of multi-scale shock-induced chemical reaction
of Fe–Al energetic jets is discussed. The results show that the difference in velocity between Fe and Al
atoms at the shock wave fronts is the cause of the shock-induced reaction; when the impact strength
is low, the Al particles are disordered and amorphous, while the Fe particles remain in their original
state and only the oxidation reaction of Al and a small amount intermetallic compound reaction occur.
With the increase of impact strength, Al particles and Fe particles are completely disordered and
amorphized in a high-temperature and high-pressure environment, fully mixed and penetrated. The
temperature of the system rises rapidly, due to a violent thermite reaction, and the energy released by
the jet shows an increasing trend; there is an impact intensity threshold, so that the jet release energy
reaches the upper limit.

Keywords: energetic jets; impact loading; energy release; molecular dynamics; multi-scale

1. Introduction

The large amounts of energy released by energetic materials enables the replacement
of conventional materials in new types of weapons [1–3]. Among them, the rapid reaction
phenomenon and high exothermicity between the shock-induced chemical reaction (SICR)
of the Fe–Al composite energetic material attract an increasing number of researchers [4–7].
The material is insensitive to friction, combustion and explosion under normal conditions.
However, under a strong impact load, the impact energy drives the Fe phase and the active
Al phase to react violently, releasing a large amount of energy. Therefore, applying this
energetic material to the liner can form an energetic jet and greatly increase the damage
power [8].

Recently, substantial progress had been made in the field of preparation and impact
deformation of Fe–Al energetic composite materials. Du et al. [9] coated nano Al powder
based on the chemical liquid deposition method and chemical vapor deposition method
and prepared a new type of metal Fe/Alp composite powder, which improved the stability
and energy release efficiency of nano Al powder. Airiskallio et al. [10] experimentally
determined that Fe–Al intermetallic compounds have outstanding antioxidant properties.
Wang et al. [11] prepared Fe–Al micro/nanocomposite particles with core-shell structures
and found that the thermal reactivity of the Fe–Al micro/nanocomposite powder was
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significantly higher than that of the raw Al powder by differential scanning calorimetry
(DSC) analysis. Wang et al. [12] studied the influence of composition ratio on the reaction
heat of Fe–Al energetic materials through DSC scanning and SEM microstructure and
optimized the Fe–Al composition scheme based on the highest energy release efficiency.
Andryushchehko et al. [13] applied a pulsed laser to the surface of an Fe–Al–C alloy
containing diamond crystals to form spherical graphite particles with a size of 100–300 µm
and obtained the law of the effect of pulsed laser on the surface of Fe–Al–C alloy samples
containing diamond crystals. Zamanzade et al. [14] used nanoindentation technology to
evaluate the contribution of single vacancy, double vacancy and triple defects of FeAl
intermetallics to investigate the transformation of mechanical properties. The study found
that, in samples with double vacancies, compared with single vacancies, the increase in
hardness was more obvious.

Understanding the mechanism of the energy released by the Fe–Al energetic jet under
impact loading is a key link to promote its application. However, limited by testing con-
ditions, observing the macroscopic experimental phenomena is obviously not enough to
reveal the mechanism of the material at the micro level. The impact compression experi-
ment has significant limitations in detecting the deformation in the particle mixture and the
microscopic details of the large-scale mixing flow. In order to make up for the deficiency
of experimental observation methods, scholars try to use molecular-dynamics simulation
methods to study the physical phase transition process of Fe-based materials after impact
loading. Guo et al. [15] used molecular-dynamics methods to study the structural phase
transition of Fe–Al materials under high-rate compression loading conditions and analyzed
the changes in pressure and temperature with strain during the material loading process.
Wang et al. [16] studied the plasticity and phase transition of Fe under high pressure based
on the embedded atom model. For the first time, the impact plastic behavior of Fe was
observed on the atomic scale. Based on the first principles, Lu et al. [17] conducted a
non-equilibrium molecular-dynamics simulation of polycrystalline Fe and obtained the
phase transition mechanism of Fe under impact compression. Huang et al. [18] used the
non-equilibrium molecular-dynamics method to simulate the shock compression response
of a single crystal Fe model with multiple dislocation structures. It is found that under
high-intensity impact, plastic deformation in local areas is beneficial to the occurrence of
phase transformation. Gunkelmann et al. [19] used the improved potential function of Fe
to study the plastic deformation and phase transformation of Fe under impact loading. It
was found that plastic changes such as dislocations occurred. Yang et al. [20] analyzed
the dependence of the incident energy of deposited atoms on the growth configuration
of Fe–Al nanoparticles. The impact deposition of Al (or Fe) atoms on the rhombohedron
of Fe (or the truncated octahedron of Al) nanoparticles was investigated by performing a
molecular-dynamics simulation using the embedded atom method.

The current research on the SICR of Fe–Al energetic materials is mainly focused on
observing the physical microstructure of the static initial and final states of the powder
mixture, but the mechanism of the chemical reaction process of the energy release under
high strain rate loading is still not clear. This study aims to fill the gap in research on the
energy release mechanism of Fe–Al energetic materials when applied to jets.

In this paper, by designing energy-harvesting experiments, the impact energy-release
characteristics of Fe–Al energetic jets under different impact intensities are discussed.
Molecular-dynamics simulation methods are used to analyze the impact compression
response process and SICR mechanism of Fe–Al composites. The research reveals the
impact energy-release mechanism of Fe–Al energetic jets from the macro–micro multi-scale.

2. Methods of Simulation
2.1. Experimental Design and Scheme

The Fe–Al energetic jet-dynamic energy-acquisition test system was designed and the
impact energy release characteristics of the Fe–Al energetic jet were studied by experimental
means. By adjusting the thickness of the target plate, the jet was loaded with different
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impact energy. The XRD analysis method was used to observe and test the composition of
the residual substance in the container. The field experimental device is shown in Figure 1
and the experimental system is shown in Figure 2. The specific experimental devices and
methods of data processing have been elaborated in my previous articles [21] and are not
repeated here.
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Figure 2. Schematic diagram of the energy acquisition system.

2.2. Molecular-Dynamics Simulation Method

To further reveal the mechanism of the macroscopic impact energy-release phe-
nomenon of Fe–Al energetic jets, the molecular-dynamics simulation was carried out.
The embedded atom method (EAM) proposed by Mendelev et al. and the potential func-
tion between Al and Fe proposed by Eunkoo et al. [22] are used to describe the interaction
between Fe–Al metal atoms. The LAMMPS molecular-dynamics software is used to simu-
late the relaxation and shock response process of Fe–Al particles. In order to facilitate the
homogeneously mixing of Fe–Al particles, spherical Fe particles and spherical Al particles
are arranged and stacked according to the cubic crystal structure. In order to facilitate
the alternating and uniform mixing of Fe–Al particles, the initial unit is established by
arranging and stacking spherical Fe particles and spherical Al particles according to the
cubic crystal structure [23]. Each unit contains 4 Fe particles and 4 Al particles. The lattice
points in the two kinds of particles create single Fe atoms and Al atoms, respectively, as
shown in Figure 3. The initial diameters of Fe particles and Al particles are both 6 nm, the
distance between adjacent particles is 0.25 nm and the unit size is 12.5 × 12.5 × 12.5 nm. It
is expanded 1 time along the x-axis direction, 1 time along the y-axis direction and 10 times
along the z-axis direction, constructing a particle mixing system containing 1.04 million
atoms.
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Figure 3. The model of the initial unit (Fe atoms are colored in red and Al atoms are colored in blue)
(a) Front view (b) Oblique view.

According to previous studies, the energetic-type cover produces an impact temper-
ature rise and a plastic temperature rise during the process of forming an energetic jet
after undergoing a process of crushing and stretching and the final temperature can reach
700 K [24]. In order to simulate the state of the energetic jet accurately before it hits the tar-
get plate, the initial case is relaxed at 700 K. First, the model is relaxed under the conjugate
gradient method to minimize the energy, then the temperature is maintained at 700 K under
the isothermal–isobaric ensemble (NPT) and, finally, under the microcanonical ensemble
(NVE), for 300 ps. The relaxed model is used as the initial state of impact simulation. The
method of “momentum mirror” is used to create an infinite mass piston, which moves
to the Z axis at a speed of Up and applies impact loading on the Fe–Al mixed particle
model. As shown in Figure 4, the loading speed range is 400–4000 m/s. The particles
obtain different impact energy by changing the impact velocity and the simulation results
obtained are compared with the macroscopic experiment of the corresponding impact
energy. The entire impact process is carried out in the NVE with a time step of 100 ps. A
free boundary is applied on the Z axis and periodic boundary conditions are applied in the
other directions. The software OVITO (Version 3.4.4) is used to visualize and analyze the
simulation results.
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3. Results and Discussion
3.1. Impact Reaction Product Composition

Figure 5 shows the XRD patterns of the recovered products. The XRD detection
method refers to the paper by Gorji N.E. [25].
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(b) 5-mm target. This picture is taken from “Li, Q.; Du, Y. Experimental Study on the Energy-Release
Characteristics of Fine-Grained Fe/Al Energetic Jets under Impact Loading. Materials 2019, 12,
3317” [21].

It can be seen, from Figure 5, that, in the low-impact strength-recovered products,
the elemental Al content is the highest. Additionally, small amounts of intermetallic
composites are found and no substantial amount of Fe3O4 is formed, indicating that the
Al oxidation and Fe–Al intercalation reactions occur mainly under low-impact strength
conditions. A high-impact strength results in the recovery of only a small amount of
metallic elements and composites, most of which are Al2O3 and Fe3O4, indicating a great
quantity of oxidative reactions and thermite reaction of energetic substances in Fe–Al jet
is induced by high-impact strength, as shown in Equations (1)–(3). The results shown in
Figure 5 explain the phenomenon of more energy released by a Fe–Al energetic jet under
high-impact strength from mesoscopic scale.

Al + 3/4O2 = 1/2 Al2O3 (1)

Fe + 2/3O2 = 1/3 Fe3O4 (2)

Al + 3/8Fe3O4 = 9/8Fe + 1/2Al2O3 (3)

3.2. Evolution of Particle Microstructure

The regular pattern of temperature change obtained by the unit model with 700 K
temperature relaxation is shown in Figure 6. The temperature increased slightly by 25 K
within 200 ps. It shows that the Fe–Al energetic material is in a metastable state after
forming a jet and the spontaneous reaction occurs slowly.

The atoms are colored with local von Mises stress and the stress distribution during
the relaxation process is shown in Figure 7. It is found that when the relaxation lasts
for 30 ps, as the temperature increases, the kinetic energy of the particles increases and
the particles of the two elements squeeze and collide at the interface, with a stress value
of 15 GPa. In contrast, little change occurs for the stress in the center of particle. When
the relaxation lasts for 200 ps, the boundary between the particles of the two elements is
severely deformed and the gap between the particles is significantly reduced or it even
disappears. The atoms in the inner regions of the particles also begin to squeeze each other,
forming a GPa-level stress, and the interpenetration of atoms of different elements appears
at the boundary. It is speculated that, during the jet-formation stage, an intermetallic
compound reaction occurs between Fe and Al atoms, but most of the material activity is
still maintained. Due to the low-yield strength of Al particles, they can no longer maintain
a spherical shape under extrusion and collision, so the internal stress of the particles is not
uniformly distributed.
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The microstructure of the unit after relaxation is shown in Figure 8. Obvious strip
defects can be found inside the Fe particles, but no metastable phase of FCC. A small
amount of HCP phase transition can be found inside the Al particles, forming several
asymmetric slip surfaces, as indicated by the arrows in Figure 8. The relaxed configuration
is similar to the state of the porous material after impact compression. It shows that, even if
there is no external force, when the high-temperature jet is formed, the Al and Fe particles
form uneven local stress during the extrusion process, resulting in a large number of lattice
defects.

Figure 9 shows the morphology of Fe–Al particles under different impact strengths.
When the impact velocity is less than 800 m/s, as the shock wave propagates in the model,
the Al particles are severely deformed and fill the pores with the increasing density of
the overall particle. This is because, at a low-impact velocity, the relaxation temperature
(725 K) plus the impact temperature rise exceeds the melting point of Al, forcing the Al
particles in a molten state. The pre-existing gap defects between particles accelerate the
flow and deformation of Al particles. The melting point of iron particles is higher than that
of Al, so they do not deform much at low-impact speeds. In contrast, little change occurs
in the morphology of Fe particles. When the impact velocity is greater than 1200 m/s,
the shape of Fe and Al particles changes from a sphere to an ellipsoid at the front of the
shock wave. The greater the impact velocity, the more serious the deformation. As the
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impact velocity increases behind the wave front, the Al particles and Fe particles become
increasingly disordered with drastic plastic deformation, permeating and fusing with each
other.
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In order to compare the deformation behaviors of particles during impact compression,
the deformation states of the two particles are extracted separately along the Z axis, as
shown in Figure 10. When the impact velocity is 800 m/s, the deformation extent of Al
particles is greater than that of Fe particles. Al particles show a morphology compressed
by shock waves, but still remain an ordered arrangement. The morphology of Fe particles
is changed from sphere to ellipsoid. When the impact velocity is 2000 m/s, the Al particles
are driven by high stress to form obvious high-speed jets on both sides, forming local
area deformation. The ejected Al atoms penetrate through the Fe particles and reach the
adjacent Al particles, which induces the activation of the Al/Fe interface, which is more
conducive to the occurrence of chemical reactions. The Fe particles do not form an obvious
jet, but there is still a considerable amount of Fe atoms peeled off the surface of the particles
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and fused with the adjacent Al particles, showing that the morphology of Fe particles
is obviously loose. When the impact velocity is 4000 m/s, both Al and Fe are severely
disordered and amorphized and the original morphology cannot be identified. The moving
distance of the atoms increases significantly and the two kinds of atoms are deeply fused,
which are the conditions to induce chemical reactions.
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Figure 11 shows the microstructure of wave fronts at different impact velocities. It can
be found that, when the impact velocity is less than 400 m/s, except for a small part of
the Al particles in the impacted area which maintain the FCC structure, the rest become
amorphous. The slip planes that appeared during relaxation basically disappear and the
transition from slip to twinning does not occur. A certain number of disordered atoms
appears inside Fe particles, but most of them maintain the BCC structure. This is because
the particle temperature is lower than 1200 K, as shown in Figure 18 (mentioned below),
which does not meet the conditions for forming the γ-Fe FCC structure. As the impact
velocity increases to 1400 m/s, the Al particles are further disordered and the FCC structure
basically disappears. A large number of defects appears in the Fe particles and only about
half of the BCC structure remains. When the impact velocity is greater than 2000 m/s,
the amorphous transformation of Fe is completed in the narrow area of the shock-wave
front and the impact area is basically completely amorphous. Comparing the particle
morphology under different impact strengths (as shown in Figure 9), it can be found that,
when the impact velocity is greater than 1400 m/s, first, the Al particles melt because the
temperature exceeds the melting point and the liquid Al quickly fills the defect spaces
between the particles. Next, part of the Fe particles transforms into an amorphous state (the
number of transformations is proportional to the impact speed), which is further refined
and mixed with liquid Al atoms. The mixing process is different from the atomic second-
level slow diffusion under static conditions, but, when the shock wave front is loaded, the
two elements are mixed at an ultra-fast ps level. It shows that the amorphization of Fe
particles under impact loading can greatly increase the reaction rate, which verifies the
rationality of the hypothesis of high diffusion rate in SICR [26].
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3.3. Impact Response

Figure 12 shows the particle velocity waveforms at different moments when the impact
velocity is 1400 m/s. Since there are differences in the types and speed of motion of atoms
in the same sub-regions, this figure refers to the average speed in the sub-regions. It can
be seen that the particle velocity in the impact loading area presents periodic oscillations.
Under the same impact velocity, the particle velocity of the shock-wave front passing
through different areas has basically the same changing rule. The particle velocity increases
rapidly where the wave front reaches and the particle velocity at a certain distance behind
the wavefront is higher than when the front passes by. It shows that the Al–Fe mixed
particles induce a reaction after being loaded by shock, release energy and accelerate the
movement of the particles. As the impact loading speed increases, the particle velocity
shows an increasing trend, as shown in Figure 13.

Since the particle velocity dispersion (PVD) is a possible mechanism to explain the
SICR, it is necessary to extract the particle velocities of Al particles and Fe particles sep-
arately for comparison. As shown in Figure 14, at a certain distance behind the wave
front, the particle velocities of the two elements are basically the same, but at the front
of the shock wave, there is a difference in velocity. The particle velocity of Al particles is
much higher than that of Fe particles. As shown in the black circle in Figure 14b, under
high-impact strength, Al atoms are ejected from the particles to form high-speed moving
particles, passing through the Fe particles, so that part of the Fe atoms are peeled off the
surface, the particles are refined and a new contact area is formed at the same time, which
realizes recombination and admixture of two kinds of atoms and creates the conditions of
SICR.



Materials 2021, 14, 5249 10 of 16Materials 2021, 14, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 12. Distribution of particle velocity at different moments of impact velocity (1400 m/s). 

 
Figure 13. Comparison of particle velocities with different impact velocities. 

The particles in the impact compression area collide with each other to form the av-
erage stress in the Z-axis direction, as shown in Figures 15 and 16. Compared with the 
particle velocity waveform diagram, the periodic oscillation of the stress waveform is 
weakened due to the randomness of the collision. Similar to the particle velocity wave-
form, as the impact velocity increases, the Z-axis stress shows a nonlinear increasing 
trend. The greater the impact velocity, the greater the stress increase. When the impact 
velocity is 4000 m/s, the instantaneous particle stress can reach 300 GPa, which has far 
exceeded the yield limit of the two elements. 

Figure 12. Distribution of particle velocity at different moments of impact velocity (1400 m/s).

Materials 2021, 14, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 12. Distribution of particle velocity at different moments of impact velocity (1400 m/s). 

 
Figure 13. Comparison of particle velocities with different impact velocities. 

The particles in the impact compression area collide with each other to form the av-
erage stress in the Z-axis direction, as shown in Figures 15 and 16. Compared with the 
particle velocity waveform diagram, the periodic oscillation of the stress waveform is 
weakened due to the randomness of the collision. Similar to the particle velocity wave-
form, as the impact velocity increases, the Z-axis stress shows a nonlinear increasing 
trend. The greater the impact velocity, the greater the stress increase. When the impact 
velocity is 4000 m/s, the instantaneous particle stress can reach 300 GPa, which has far 
exceeded the yield limit of the two elements. 
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The particles in the impact compression area collide with each other to form the
average stress in the Z-axis direction, as shown in Figures 15 and 16. Compared with
the particle velocity waveform diagram, the periodic oscillation of the stress waveform is
weakened due to the randomness of the collision. Similar to the particle velocity waveform,
as the impact velocity increases, the Z-axis stress shows a nonlinear increasing trend. The
greater the impact velocity, the greater the stress increase. When the impact velocity is
4000 m/s, the instantaneous particle stress can reach 300 GPa, which has far exceeded the
yield limit of the two elements.
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3.4. Thermal Effect

When the material is subjected to impact loading, the temperature rise caused by
the impact, the plastic deformation and the chemical reaction occur and the three cause
the temperature rise of the system. It can be seen from Figures 17 and 18 that, when the
impact velocity is 400 and 800 m/s, as the shock wave propagates in the Z-axis direction,
the temperature distribution remains straight, basically unchanged. It shows that, under
the condition of impact strength below 800 m/s, the particles in the impacted area repeat
the same plastic deformation temperature rise only due to impact compression and no
chemical reaction is induced. When the impact velocity is 1400 and 2000 m/s, the tempera-
ture distribution fluctuates violently, which indicates that the temperature of the system
rises rapidly due to the exothermic reaction of the impact model, showing obvious SICR
characteristics.
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3.5. Analysis of Impact Energy-Release Mechanism

Comparing the phenomenon of the Fe–Al energetic jet macroscopic impact energy-
release experiment and the microscopic molecular-dynamics simulation results, it can be
found that, as the impact strength increases, the impact induced reactivity of the Fe–Al
energetic jet increases, but there is an impact strength threshold, which makes the energy
released by the energetic jet reach the upper limit. According to the XRD analysis of the
recovered product, it is speculated that the oxidation reaction of Al and the compound
reaction between Al and Fe mainly occur under low-impact strength and the oxidation
reaction of Fe and thermite reaction occur under high-impact strength. Through micro-
molecular-dynamics simulation, it is found that only Al particles are disordered and
amorphized under low-impact strength. The ejecta of Al fills the gaps between the particles
and increases the contact area. Therefore, Al takes the lead in the oxidation reaction. The
Fe particles maintain the original BCC structure and are surrounded by molten Al particles,
resulting in a small amount of intermetallic reaction. When the Fe–Al energetic jet is loaded
with high-impact strength, Al particles and Fe particles are completely disordered and
amorphized in a high temperature and high-pressure environment and fully mixed and
penetrated, which greatly improves the reaction rate. At the same time, the Fe particles are
further refined (the surface oxide layer may be broken), exposing a new surface and being
oxidized again. Due to the full contact with Al atoms, the temperature exceeds 1500 K,
which induces a violent thermite reaction. Through the above analysis, it can be found
that the conclusions obtained by the microscopic simulation are completely consistent
with the results of the macroscopic phenomenon and meso-component analysis, revealing
the mechanism of the Fe–Al energetic jet impact-induced reaction from a multi-scale
perspective, as shown in Figure 19.
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4. Conclusions

In this paper, macroscopic experiments and microscopic molecular-dynamics simu-
lation studies on the energy-release characteristics of Fe–Al energetic jets under impact
loading were carried out. A macroscopic dynamic energy acquisition test system was
established to quantitatively acquire the overpressure formed by the energy released by
the Fe–Al energetic jet. A molecular impact model of Fe–Al particles was established and
the microstructure evolution and impact thermodynamic response of Fe–Al particles under
impact loading were analysed. Comparing with the results of macroscopic experiments,
microstructure analysis and microscopic simulation, the mechanism of the Fe–Al energetic
jet multi-scale impact-induced reaction was discussed. The following specific conclusions
can be drawn:

(1) The reactivity of the Fe–Al energetic jet is related to the impact strength. As the impact
strength increases, the energy release of the jet increases. There is an impact strength
threshold, which makes the energy released by the jet reach the upper limit, and the
maximum response rate is 95.3%.

(2) When the high-temperature jet forms and does not touch the target plate, the Al and
Fe particles are squeezed and deformed and atom penetration of different elements
appears at the boundary, forming uneven local stress at the GPa level and a large
number of lattice defects are generated at the same time.

(3) The speed difference between Fe and Al atoms is formed at the shock wave front.
High-speed Al atoms are ejected from the particles and pass through the Fe particles,
causing part of the Fe atoms to peel off from the surface. The particles are refined and
a new contact area is formed at the same time. The alternate recombination of the two
kinds of atom creates conditions for impact-induced reactions.

(4) When the impact strength is low, the temperature distribution along the Z-axis of the
model remains a straight line, indicating that the particles in the impact area only
repeat the same plastic deformation temperature rise due to impact compression.
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When the impact strength is high, the temperature distribution fluctuates violently,
which indicates that the temperature of the system rises rapidly due to the exothermic
reaction of the impact model, showing obvious SICR characteristics.

(5) The mechanism of the Fe–Al energetic jet impact-induced reaction is as follows: Under
low-impact strength, only Al particles become disordered and amorphous, which
increases the contact area, and Al undergoes an oxidation reaction. By comparison,
the Fe particles maintain the original BCC structure and are surrounded by molten
Al particles, resulting in a small amount of intermetallic chemical reaction. With
high-impact strength, Al particles and Fe particles are completely disordered and
amorphized in a high temperature and high-pressure environment and fully mixed
and penetrated. The temperature of the particles exceeds 1500K, which induces a
violent thermite reaction.
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