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Abstract

Baphicacanthus cusia (Nees) Bremek is an herb widely used for the clinical treatment of

colds, fever, and influenza in Traditional Chinese Medicine. The roots, stems and leaves

can be used as natural medicine, in which indigo and indirubin are two main active ingredi-

ents. In this study, quantification of indigo, indirubin, indican and adenosine among various

tissues of B. cusia was conducted using HPLC-DAD. Leaves have significantly higher con-

tents than stems and roots (380.66, 315.15, 20,978.26, 4323.15 μg/g in leaves, 306.36,

71.71, 3,056.78, 139.45 μg/g in stems, and 9.31, 7.82, 170.45, 197.48 μg/g in roots, respec-

tively). De novo transcriptome sequencing of B. cusia was performed for the first time. The

sequencing yielded 137,216,248, 122,837,394 and 140,240,688 clean reads from leaves,

stems and roots respectively, which were assembled into 51,381 unique sequences. A total

of 33,317 unigenes could be annotated using the databases of Nr, Swiss-Prot, KEGG and

KOG. These analyses provided a detailed view of the enzymes involved in indican back-

bone biosynthesis, such as cytochrome P450, UDP-glycosyltransferase, glucosidase and

tryptophan synthase. Analysis results showed that tryptophan synthase was the candidate

gene involved in the tissue-specific biosynthesis of indican. We also detected sixteen types

of simple sequence repeats in RNA-Seq data for use in future molecular mark assisted

breeding studies. The results will be helpful in further analysis of B. cusia functional geno-

mics, especially in increasing biosynthesis of indican through biotechnological approaches

and metabolic regulation.

Introduction

Baphicacanthus cusia (Nees) Bremek (B. cusia) also named Strobilanthes cusia is a perennial

medicinal herb distributed broadly in Fujian, Zhejiang, Guangdong, Hainan, Guangxi, Hong
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Kong, Taiwan and other southern areas of China. It is also distributed across Bangladesh, India,

and Myanmar, from the Himalayas to Indo-China [1]. It has been cultivated in Fujian Province

for more than 1000 years since the Song Dynasty. Indigo Naturalis is the leaf and stem extract

of B. cusia, whose commercial name is “Qingdai” [2], and Baphicacanthus cusiae Rhizome et

Radix is derived from its root [3], with the commercial name of “Nanbanlangen”. Previous stud-

ies have shown that Qingdai as an active ingredient was used to treat dental ulcers [4], ulcerative

colitis [5–7], and psoriasis [8–10], and that Nanbanlangen has amany pharmacological applica-

tions, including antibacterial [11], antivirus [12], and anti-inflammatory effects [13, 14].

Chemical research has indicated that Qingdai and Nanbanlangen both contain many active

ingredients, such as indigo [15] and indirubin [16]. Indican has been known to be a precursor

of indigo and indirubin [17–19], the content of which was different in the leaf and root of B.

cusia [15, 20]. To better understand the biosynthesis of indigo, gene expression possibly

involved in indigo biosynthesis have been analysed by RNA-Seq in Indigofera tinctoria and

Polygonum tinctorium [21], species closely related to B. cusia. However, these organisms

belong to different genera and species classifications and differ in morphological traits.

The Qingdai produced in Fujian Province of China, named Jianqingdai, is a well-known

genuine regional drug in China because of its good quality, but its effective constituent biosyn-

thesis mechanism in vivo is still unclear. Until now, only nine proteins have been identified in

the B. cusia leaf [22, 23], and 98 nucleotide sequences are available for Baphicacanthus cusia,

but none of the nucleotide sequences of B. cusia can be found in NCBI GenBank, it is hard to

clarify its molecular mechanisms due to the lack of information of genomic sequences, espe-

cially sequences of indican biosynthesis and metabolism genes. Therefore, our primary work is

to obtain and characterize the transcriptome of B. cusia.

RNA-Seq next-generation sequencing (NGS) has been widely used in the analysis of tran-

scriptomes in crops or vegetables, such as rice [24], barley [25], Sorghum bicolor [26], Withania
somnifera [27], Brassica rapa [28] and Chinese cherry [29]. It has also been used to illustrate

active components of biosynthetic and metabolic pathways in traditional Chinese medicine or

identify differentially expressed genes (DEGs) between distinct sample groups such as Isatis
indigotica [30–34], Salvia miltiorrhiza [35, 36], Taxillus chinensis [37], Lonicera japonica [38],

Toona sinensis Roem [39], Pseudostellariae radix [40], Eucommia ulmoides Oliver [41], Cis-
tanche deserticola [42], Lycium chinense Mill [43] and Gentiana macrophylla [44].

In this study, we measured the amounts of indigo, indirubin, adenosine and indican in the

leaves, stems and roots of B. cusia. To understand the biosynthesis and metabolism pathways

of indican in root, stem and leaf tissues of B. cusia, we generated multi-tissue transcriptomic

data of B. cusia using RNA-Seq and annotated the multi-tissue transcriptome using publicly

available databases and tools; we then ascertained genes that may be related to indican biosyn-

thesis and metabolism pathways. Here, we report simple sequence repeats (SSR) in leaves,

stems and roots from B. cusia and a number of differentially expressed genes (DEGs), particu-

larly, cytochrome P450 (CYP450), UDP-glycosyltransferase (UGT), glucosidase and trypto-

phan synthase, that may be related to differential expression in indican biosynthesis and

metabolism among leaves, stems and roots. Based on our results, the functional characteriza-

tion of the B. cusia genes mentioned above should be further investigated.

Results

Quantitative analysis with HPLC

The calibration curves of indigo, indirubin, adenosine and indican were formulated with five

different concentration references. The regression equation was Y = aX + b, in which X and Y

are the concentration and peak area, respectively. The regression equations and correlation
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coefficients (r2) of indigo, indirubin, adenosine and indican were as follows: Y = 25561X

+ 283.01(lineat range from 0.188 to 23.5μg�ml-1), r2 = 1.0000 for indigo; Y = 39667X - 1296.9

(linear range from 0.092 to 11.5 μg�ml-1), r2 = 1.0000 for indirubin, Y = 15817X + 28642(linear

range from 1.1 to 275μg�ml-1), r2 = 0.9993 for adenosine, and Y = 6020.5X - 5001(linear range

from 1.08 to 270 μg�ml-1), r2 = 1.0000 for indican. The relative quantity of four ingredients in

the leaf, stem and root samples (μg/g) was calculated using the above equations (Fig 1).

RNA sequencing and de novo assembly

After total RNA was extracted, mRNA isolated from leaves, stems and roots of B. cusia (three-

year-old plants cultivated) was enriched by oligo (dT) beads in order to acquire a general set of

B. cusia transcripts. After removing reads containing adaptors or low-quality paired-end

reads, clean and high-quality reads were analysed. A total of 140,240,688 high quality reads

were obtained for root, 137,216,248 for leaf and 122,837,394 for stem. Contig and unigene de

novo assembly was carried out with the short read assembling program Trinity using the high-

quality reads. 63,327,716 bases, 51,381 unigenes and 1,932 bp N50, and average length 1,232

bp were assembled. The GC percentage was 42.4176.

Annotation of the unigenes

51,381 unigenes were widely searched against various databases in order to determine the

potential functions of the assembled unigenes. To annotate the unigenes, we used the BLASTx

program with an E-value threshold of 10−5 and a k-mer of 25 with the NCBI non-redundant

protein (Nr) database, the Swiss-Prot protein database, the Kyoto Encyclopaedia of Genes and

Genomes (KEGG) database, and the COG/KOG database. Unigene functional annotations

were obtained according to the best alignment results. The results showed that 32,898, 25,809,

20,751 and 13,232 unigenes matched with the Nr, SwissProt, KOG and KEGG databases,

respectively. 33,317 unigenes matched with one of the above databases (Fig 2).

GO functional annotations of B.cusia unigenes were obtained from Nr annotation results.

Based on their GO terms, the unigenes could be categorized into three main GO groups and

Fig 1. Contents of four ingredients in leaves, stems and roots of B. cusia. The experiment was repeated three times.

The amounts of indigo, indirubin, indican and adenosine in leaf tissue (380.66μg/g, 315.15 μg/g, 20,978.26 μg/g and

1224.12 μg/g, respectively) were higher than those in the stem tissue (306.36 μg/g, 71.71μg/g, 3056.78 μg/g and

139.45 μg/g, respectively, p = 0.000), the amounts of indigo, indirubin and indican in stem tissue were higher than

those in the root tissue (9.31 μg/g, 7.82 μg/g and 170.45 μg/g, respectively, p = 0.000), and the amount of adenosine in

stem tissue was lower than that in root tissue (197.48 μg/g), but the difference was not significant (p = 0.350).

https://doi.org/10.1371/journal.pone.0199788.g001
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47 functional sub-groups (Fig 3). The three most frequent GO terms in biological process were

metabolic processes (11,803 unigenes), cellular processes (10,998 unigenes), and single-organ-

ism processes (8,797 unigenes). The three most frequent GO terms in cellular components

were cells (8,107 unigenes), cell parts (8,106 unigenes), and organelles (6,236 unigenes). The

three most frequent GO terms in molecular function groups were catalytic activity (11,075 uni-

genes), binding (9,963 unigenes), and transporter activity (1,076 unigenes).

35,671 of the total 51,381 B. cusia unigenes from analysis of EuKaryotic Orthologous

Groups (KOG) could be classified into 25 clusters. Among the classified unigenes, the most

part of the cluster was “general function prediction” (6,624; 18.57%), which was followed by

clusters of “signal transduction mechanisms” (4,143; 11.61%), “posttranslational modification,

protein turnover, chaperones” (4,042; 11.33%), “transcription” (2,009; 5.43%), “RNA process-

ing and modification” (1,830; 5.13%) and intracellular trafficking, secretion, and vesicular

transport (1,791; 5.02%). The cluster of the least number was “cell motility” (14; 0.04%) (Fig 4).

KEGG pathway mapping

To better understand the biological functions and pathways represented by the unigenes

assembled in this study, 7,350 unigenes were classified into 127 pathways. The pathways

included metabolism, genetic information processing, cellular processes, environmental

Fig 2. Venn diagram of unigene number annotated by BLASTx with the Nr, SwissProt, KOG and KEGG databases.

https://doi.org/10.1371/journal.pone.0199788.g002
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information processing, and organismal systems. The top 20 pathways, which have predomi-

nant sequences, are indicated in Fig 5 (S1–S3 Tables), and the most represented pathways

which were enriched in the DEG sets compared to the total transcriptome were plant hormone

signal transduction and phenylpropanoid biosynthesis. Rich factors were 0.57, 0.40, 0.41 for

plant hormone signal transduction (Q-value 3.36E-10, 3.92E-03, 7.03E-13) and 0.61, 0.49, 0.52

for phenylpropanoid biosynthesis (Q-value 1.20E-9, 3.66E-06, 3.70E-18) between root and

leaf, root and stem, and stem and leaf, respectively. The main purpose of cultivating B. cusia
has been to obtain the Indigo Naturalis, which has active ingredients of indole alkaloids and

their derivatives. In this study, the annotated results suggest 63 unigenes related to nitrogen

metabolism (S4 Table) and 58 unigenes connected to phenylalanine, tyrosine and tryptophan

biosynthesis (biosynthesis of indole and its derivatives) (S5 Table).

Identification of simple sequence repeats

To find SSR markers, MISA software was employed for microsatellite mining in the whole B.

cusia transcriptome. Based on the MISA results, three pairs of PCR primers have been designed

by Primer 3 in the flanking regions of SSRs (S6 Table). Within the 51,381 examined unigenes,

6,782 unigenes were identified containing 8,471 SSR markers, and 1,350 unigenes contained

more than one SSR. Tri-nucleotides were the most abundant SSR (3,046; 35.96%), followed by di-

nucleotides (3,021; 35.66%), tetra-nucleotides (1,065; 12.57%), hexa-nucleotides (861; 10.16%),

and penta-nucleotides (478; 5.64%) were the least frequent SSR (S7 Table). Among the confirmed

SSRs, 547 showed a compound formation. There were 16 types of SSR identified in B. cusia (Fig

6). Until now, there have been no publicly available SSRs in B. cusia, and thus the SSRs identified

in this study will be extremely helpful for research on genotyping applications in B. cusia.

Fig 3. Histogram of level 2 GO terms of the B. cusia unigenes.

https://doi.org/10.1371/journal.pone.0199788.g003
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Analysis of differentially expressed genes

There were 13,836 genes expressed differentially between roots and stems. Among these differ-

entially expressed unigenes, 6,633 were up-regulated and 7,203 were down-regulated in roots

compared to stems. There were 20,083 unigenes differentially expressed between roots and

leaves; among these differentially expressed unigenes, 5,383 were up-regulated and 14,700

were down-regulated in roots compared to leaves. There were 11,532 unigenes differentially

expressed between stems and leaves; among these differentially expressed unigenes, 2,491 were

up-regulated and 9,041 were down-regulated in stems compared to leaves.

In light of the putative biosynthetic pathways of indole derivatives in Isatis indigotica [34],

analyse of the differentially expressed genes among various tissues were carried out for biosyn-

thesis of indican, cytochrome P450 (CYP450) [34], UDP-glycosyltransferase (UGT) [34], glu-

cosidase [45] and tryptophan synthase; these were chosen to be analysed after annotation.

There were 121 CYP450, 34 UGT, 57 glucosidase, and three tryptophan synthase DEGs that

were differentially expressed between roots and stems (S8 Table). There were 154 CYP450, 52

UGTs, 71 glucosidase, four tryptophan synthase DEGs between roots and leaves (S9 Table).

Fig 4. Histogram of KOG function classification of B. cusia unigenes.

https://doi.org/10.1371/journal.pone.0199788.g004
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There were 75 CYP450, 39 UGT, 58 glucosidase, and one tryptophan synthase DEG between

stems and leaves (S10 Table and Fig 7); the DEGs of stems were more similar to leaves than

those of roots.

Validation of DEG data by qRT-PCR

We performed qRT-PCR on 16 representative unigenes related to the biosynthesis and

metabolism of indican to verify the DEGs acquired by Illumina RNA-Seq. We found that

Fig 5. Top 20 pathways enriched among various tissues of B. cusia. (A) The top 20 pathways enriched between root and leaf; (B) the top 20 pathways enriched between

root and stem; (C) the top 20 pathways enriched between stem and leaf. The top 20 pathways enriched from top to bottom are arranged by decreasing Q-value. Data over

the dots show the actual gene number.

https://doi.org/10.1371/journal.pone.0199788.g005

Fig 6. Distribution of various types of SSRs identified in B. cusia unigenes.

https://doi.org/10.1371/journal.pone.0199788.g006
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while three DEGs (two CYP450 unigenes and one glucosidase unigene) did not show con-

sistent expression between qRT-PCR and RNA-Seq data sets, most of the DEGs from

qRT-PCR exhibited similariry to RNA-Seq samples using qRT-PCR (Fig 8 and S11 Table).

Compared with leaves, tryptophan synthase expression was down-regulated in roots and

stems, which agreed with the results of quantitative determination of indican among vari-

ous tissues of B. cusia.

Discussion

In this study, the amounts of four active ingredients, such as indigo, indirubin, indican and

adenosine, were found to differ substantially in root, stem and leaf tissues from B. cusia. The

amounts of indigo, indirubin, indican and adenosine in leaf tissue were 380.66μg/g, 315.15 μg/

g, 20,978.26 μg/g and 1224.12 μg/g; these components in stem tissue were 306.36 μg/g,

71.71μg/g, 3056.78 μg/g and 139.45 μg/g, in root tissue were 9.31 μg/g, 7.82 μg/g, 170.45 μg/g

Fig 7. Annotated CYP450, UGT, glucosidase, and tryptophan synthase DEG numbers among various tissues of B. cusia. The data in green bars show the down-

regulated gene number and the data in red bars show the up-regulated gene number.

https://doi.org/10.1371/journal.pone.0199788.g007
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Fig 8. qRT-PCR validation of DEGs identified by RNA-Seq. Sixteen DEGs involved in the biosynthesis and metabolism of indican were randomly selected for qRT-PCR

confirmation. The blue bars and red lines represent RNA-Seq RPKM data and qRT-PCR relative expression levels, respectively. The beta-actin gene was used as an

internal control, and every experiment was repeated with three biological samples. All the values shown are the means ± SE.

https://doi.org/10.1371/journal.pone.0199788.g008
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and 197.48 μg/g respectively. The amounts of indigo and indirubin in leaf tissue were higher

than those in the root tissue (p<0.01), which was consistent with a previous report [20]. This is

the first study of the amounts of adenosine and indican simultaneously in the leaf and root tis-

sues of B.cusia. Our work provides novel information with respect to the mechanism of differ-

ent tissues of B. cusia used as natural medicine, since this may be related to the distribution of

indican and the metabolites indigo and indirubin.

A total of 63 unigenes related to nitrogen metabolism pathways and 58 unigenes involved

in the biosynthesis pathway of indole and its derivatives were found. Further studies of these

unigenes will help to understand regulation of secondary metabolism in B. cusia. In addition,

154 CYP450, 52 UGT, 71 glucosidase and four tryptophan synthase genes were differentially

expressed between leaves and roots, 75 CYP450, 39 UGT, 58 glucosidase and one tryptophan

synthase gene were differentially expressed between leaves and stems, 121 CYP450, 34 UGT,

57 glucosidase and three tryptophan synthase gened were differentially expressed between

stems and roots. Tryptophan synthase DEGs may be the candidate genes contributing to the

production of indigo and indirubin in B. cusia leaves.

In addition, there were 125 DEGs involved in phenylpropanoid biosynthesis, 30 in flavo-

noid biosynthesis, and 35 in the terpenoid backbone biosynthesis pathway between roots and

leaves; there were 106 DEGs involved in phenylpropanoid biosynthesis, 22 in flavonoid bio-

synthesis, and 23 in the terpenoid backbone biosynthesis pathway between stems and leaves,

and there were 100 DEGs involved in phenylpropanoid biosynthesis, 27 in flavonoid biosyn-

thesis, and 25 in the terpenoid backbone biosynthesis pathway between roots and stems. The

investigation of these unigenes may shed light on the molecular mechanisms of secondary

metabolism in B. cusia.

In summary, there were 51,381 unigenes from the leaf, stem and root transcriptomes of

B. cusia using RNA sequencing in this study, but only 64.84% of the unigenes could be

annotated by the Nr, SwissProt, KOG or KEGG databases. There were a great many unan-

notated unigenes and their biological pathways remain to be identified. Util now, this has

been the first report of the transcriptome of B. cusia; these unigenes could be useful for fur-

ther investigating genes related to abiotic stress in B. cusia, accelerating the research on the

molecular mechanisms of secondary metabolism in stress responses and differential meta-

bolic patterns of compounds such as indican, indigo and indirubin in different components

of B. cusia.

Materials and methods

Ethics statement

All necessary permits were acquired for these studies. Samples were collected from our medici-

nal garden for scientific research at the Fujian Agricultural and Forestry University. We con-

firm that endangered or protected species were not contained in the species collections.

Plant materials and RNA sequencing

Three batches of root, stem and leaf samples were collected from three-year-old plants culti-

vated in our medicinal garden, frozen in liquid nitrogen for 15 min immediately, and then

stored at −80˚C refrigerator for future use. The EASYspin plant RNA kit (Aidlab Biotechnolo-

gies Co.Ltd, Beijing, China) was used to isolate total RNA, and contaminated DNA was

removed by DNase I. An Agilent Bioanalyzer 2100 (Agilent Technologies) was used to analyse

the quality and integrity of RNA. cDNA fragments were purified using the QiaQuick PCR

extraction kit, end repaired, poly (A) was added, and then the fragments were ligated to

Baphicacanthus cusia(Nees) Bremek transcriptome
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Illumina sequencing adapters. Sequenced were obtained using the Illumina HiSeqTM 4000 by

Gene Denovo Biotechnology Co. (Guangzhou, China).

Analysis with high performance liquid chromatography

Reverse-phase high performance liquid chromatography was performed on an LC-20AT

HPLC system (Shimadzu, Japan), which included a LC-20AT pump, DGU-20A degasser,

SIL-20A autosampler, SPD-20A detector and CBM-20A central controller, using a C18

reverse phase chromatographic column (Inertsil ODS-SP, 4.6×250 mm, 5 μm) at 25˚C,

with wavelengths monitored at 292 nm for indigo and indirubin and 260 nm for adeno-

sine and indican. The mobile phase included methanol and water, with a volume ratio of

70: 30 for both indigo and indirubin and volume ratio of 15: 85 for adenosine and indican

with a mobile phase flow rate of 1.0 ml/min. To prepare the sample and reference solu-

tions, three batches of leaf, stem and root samples were extracted twice by a Soxhlet

extractor. Indigo and indirubin mixed reference solutions, in triplicate, were dissolved in

N, N-dimethyl formamide, and adenosine and indican mixed reference solutions, in trip-

licate, were dissolved in 30% methanol. After filtration through a 0.45 μm filter mem-

brane, 10 μl of each sample and reference solution was injected in duplicate. The

chromatographic peak retention times of indigo and indirubin and adenosine and indican

were approximately 15 min and 20 min, respectively.

Transcriptome de novo assembly and bioinformatic analysis

Raw reads generated from HiSeq 4000 were further filtered to remove adapters and low-

quality sequences. The de novo assembling program Trinity consists of three components:

Inchworm, Chrysalis and Butterfly; de novo assembly was generated with the clean reads. In

brief, we first removed the wrong k-mers, constructed a k-mer library from the clean reads

and then generated a collection of linear contigs by a greedy extension based on (k-1)-mer

overlaps. Next, we clustered related contigs into components and built a de Bruijn graph for

each cluster of related contigs. Finally, we simplified the de Bruijn graph, then unlinked the

de Bruijn graph using real reads and reconstructed the transcript sequences.

All assembled unigenes were annotated by BLASTx with the NCBI non-redundant

(Nr) protein database, Swiss-Prot, the Kyoto Encyclopaedia of Genes and Genomes

(KEGG) database and EuKaryotic Orthologous Groups (KOG). Sequences with BLASTx

hits were determined according to Gene Ontology (GO) terms by Blast2GO software. The

functional classification of unigenes was performed by WEGO software. SSRs were

scanned by MISA (MIcroSAtellite identification tool) software (http://pgrc.ipk-

gatersleben.de/misa/) with the default software parameter settings. To study the differen-

tially expressed genes, the log2-converted values of each contig were subjected to a Benja-

mini-Hochberg program. The differential expression of genes was counted with the FDR

value and FDR fold change (fc). If the FDR value < 0.05 and |log2fc| > 1, then the gene

was considered differential. Unigene expression was counted and normalized to RPKM

(reads per kb per million reads) [46]. The formula is as follows: RPKM = (1000000 � C)/(N
� L / 1000), given RPKM (A) as the expression of Unigene A, C is the number of reads

mapped to Unigene A uniquely, N is the total number of reads mapped to all unigenes

uniquely, L is the base number length of Unigene A.

Pathway enrichment analysis identified significantly enriched metabolic pathways or signal

transduction pathways in DEGs compared to the whole genome background. The formula to
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calculate the P-value is:

P ¼ 1�
Xm� 1

i¼0

M

i

 !
N � M

n � i

 !

N

n

 ! ð1Þ

Here, N is the number of all genes with KEGG annotation, n is the number of DEGs in N,

M is the number of all genes annotated to specific pathways, and m is the number of DEGs in

M. The calculated p-value was determined through FDR correction, taking FDR� 0.05 as a

threshold. Pathways meeting this condition were defined as significantly enriched pathways in

DEGs. Rich factor refers to the ratio of the number of genes located in the pathway entry in

the differentially expressed genes to the total number of genes located in the pathway entry in

all genes. Q-value is the P-value after multi-hypothese test correction. The value range is 0 to 1.
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