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Abstract: COVID-19, occurring due to SARS-COV-2 infection, is the most recent pandemic disease
that has led to three million deaths at the time of writing. A great deal of effort has been directed
towards altering the virus trajectory and/or managing the interactions of the virus with its subsequent
targets in the human body; these interactions can lead to a chain reaction-like state manifested
by a cytokine storm and progress to multiple organ failure. During cytokine storms the ratio of
pro-inflammatory to anti-inflammatory mediators is generally increased, which contributes to the
instigation of hyper-inflammation and confers advantages to the virus. Because cytokine expression
patterns fluctuate from one person to another and even within the same person from one time to
another, we suggest a road map of COVID-19 management using an individual approach instead of
focusing on the blockbuster process (one treatment for most people, if not all). Here, we highlight
the biology of the virus, study the interaction between the virus and humans, and present potential
pharmacological and non-pharmacological modulators that might contribute to the global war
against SARS-COV-2. We suggest an algorithmic roadmap to manage COVID-19.

Keywords: COVID-19; SARS-COV-2; virus; cytokine storm; pharmacology

1. Introduction

Deaths due to SARS-COV-2 infection have officially surpassed 3 million, with the
probable number of victims being much higher. The latest surges of contagion are perhaps
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stronger than the original wave and seem to be unstoppable. While vaccination is consid-
ered the best solution to eradicating the virus and halting the pandemic, the number of
people vaccinated worldwide is very small, especially in the nations currently hardest hit,
and probably will proceed very slowly. This leaves the health services that must save the
lives of people already infected with few options at their disposal. The need is particularly
critical given that the available evidence suggests the current treatment modalities have
only a minimal impact on survival. Indeed, the significant variability in the clinical picture
and outcomes in COVID-19 patients means that any single, comprehensive approach to
treatment is a dead-end road. Further, our perceptions of COVID-19 and what we know of
the virus, diagnosis, disease symptoms, course, treatment, and aftermath of its infection
have changed with time.

If patients are to be treated with new possible therapeutic options, the basic biology
of the infection process, especially the proteins and physiological conditions associated
with the phases of the development of the disease, must be delineated to understand
the challenges and tailor treatment to each individual. In this review, we highlight the
biology of the virus, discuss the interaction between the virus and humans, and present an
algorithmic roadmap of potential pharmacological and non-pharmacological modulators
that might reduce the clinical effects of SARS-COV-2 infection. Adopting individualized
medicine and pharmacodiagnostics might represent a more effective rationale, at least in
severely ill patients.

2. Historical Preface

In 1930, a newly isolated virus strain caused acute respiratory infection in chickens,
termed infectious bronchitis virus (IBV) [1,2]. Then, two additional animal viruses were iso-
lated: In 1946, transmissible gastroenteritis virus (TGEV) affected pigs, and in 1949, mouse
hepatitis virus (MHV) affected mice [3,4]. In the 1960s, the era of human coronaviruses
started when David Tyrrell and ML Bynoe isolated a viral strain, called virus B814, from
respiratory samples from a schoolboy with a common cold [5,6]. In the same decade, two
additional species were isolated including human coronavirus 229E and human coron-
avirus organ culture 43 (HCoV-OC43) [7,8]. Almeida et al. called this group of viruses
“coronavirus” as they resemble the “solar corona” or they are “in a crown” [9]. Feline infec-
tious peritonitis virus in was isolated in 1963 [10], canine virus was isolated in 1971 [11,12],
and porcine epidemic diarrhea virus (PEDV) was isolated in 1978 [13,14]. Finally, at the
end of December 2019, three patients from the seafood and wet animal wholesale market
in Wuhan, China were admitted to the hospital with pneumonia of unknown causes [15].
Later, Zhu et al. reported a novel beta-coronavirus, “CoV (2019-nCoV),” as the cause of this
pneumonia. This novel virus was named “novel coronavirus-infected pneumonia” (NCIP),
later known as SARS-COV-2, [15], and has evolved, consequently, into ten subtypes thus
far [16] (See Figure 1).
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3. Virus Biology

The entry process depends on several factors, including virus-related factors (e.g.,
binding proteins) and host-related factors (e.g., tissue tropism or the tissue’s ability to
receive and accommodate the virus) [17]. The process of virus fusion and entry is more
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complex, but, in general, it depends on acidification and/or proteolytic activation [18,19];
therefore, it is not surprising if systemic alkalization would be a rational approach to disrupt
virus entry [20]. The fusion process occurs between the interaction of virus proteins and
host receptor proteins. There are many viral proteins, one example being the S protein. The
S protein is one of four structural proteins encoded by the CoV single-stranded, positive-
sense RNA genome. In the viral membrane, the S protein functions to (i) interact with the
cellular receptor and (ii) induce viral fusion with the cell via the plasma membrane protein
angiotensin-converting enzyme 2 (ACE2) [21–24].

The S protein needs to be primed by an appropriate protease at the S1 and S2 interface
(S1/S2) to catalyze the membrane fusion reaction and trigger the FPs immediately upstream
(S2′). What is interesting about this triggering event is that several proteases can trigger it
and it is the protease requirements that drive viral tropism.

Both SARS-CoV and MERS-CoV S can be triggered to fuse at either the plasma
membrane or the endosomal membrane, and their route of access is determined by protease
availability while being governed by the attachment of the surface unit, S1, of the S protein
to a cellular receptor, facilitating viral attachment to a target cells’ surface. Additionally,
access involves S protein priming by cellular proteases, which involves S protein cleavage
at the S1/S2 and the S2′ site and allows fusion of viral and cellular membranes, a process
driven by the S2 subunit [25]. The SARS-COV-2 engages ACE2 as the entry receptor and
employs the cellular serine protease TMPRSS2 for S protein priming [25].

Angiotensin-converting enzyme 2 (ACE2) receptors were shown to be the SARS-CoV-2
gateway to the cell [20–22]. ACE2 is an enzyme affixed to the plasma membrane (outer
membrane) and is widely expressed among various human tissues. Expression levels differ
from higher expression (small intestine, testis, kidneys, heart, thyroid, and adipose tissue),
to medium expression (lungs, colon, liver, bladder, and adrenal gland), and to the lowest
expression (blood, spleen, bone marrow, brain, blood vessels, and muscle) [26]. While
lungs show medium expression compared to other tissues, SARS-COV-2 initially infects
the lung [27]. However, we do not know whether the virus is disseminated to other parts of
the body or not [21]. If yes, it will be of significant progress to know whether the multiple
organ failure is associated with the side effect of drugs, ARDS, or with virus entry to that
tissue [28–32].

After viral fusion with the plasma membrane, virus internalization can occur through
various routes (Figure 2) [33–35]:

Non-endocytic pathway: This pathway could also be termed a “proteases-directed
internalization pathway.” After S protein binding to the receptor (not before), host pro-
teases mediate virus–cell fusion [21,35,36]. Some of these proteases are trans-plasma
membrane proteins. They play a crucial role in COVID-19. Some of these proteases include
the following:

- Neutrophil elastase (NE): Elastase is a serine protease that also hydrolyzes amides.
Neutrophil elastase is one of eight elastases found in the body. That NE could me-
diate entry is clinically vital since elastase is produced by neutrophils in the lungs
during SARS-CoV-2 infection and could promote the progression of SARS-CoV-2
infection [16]. Therefore, as the hallmark of COVID-19, further neutrophils recruit-
ment supports the release of a massive amount of NE and, subsequently, further
virus entry [37–39] in a positive feedback cycle. Sivelestat is a NE inhibitor [40,41]
and, so, might limit SARS-COV-2 entry. In this respect, we are not sure if the med-
ications that decrease neutrophil counts will represent a potential treatment or not.
Some of these medications include Carbimazole, Clozapine, Dapsone, Dipyrone, Me-
thimazole, Penicillin G, Procainamide, Propylthiouracil, Rituximab, Sulfasalazine,
and Ticlopidine;

- Type II transmembrane serine proteases, including transmembrane protease/serine
subfamily member 2 (TMPRSS2) [42], also known as human epitheliasin [43]. Hu-
man TMPRSS2 mRNA is expressed in several tissues, including the prostate, ovary,
breast, lung, kidney, pancreas, bile duct, salivary gland, stomach, small intestine, and
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colon [43–45]. Transient expression of TMPRSS2 enhances SARS-CoV-2 S-mediated
cell–cell fusion [21]. S protein is primed by TMPRSS2 and, therefore, TMPRSS2
supports virus entry, viral fusion, and spread and further increases the virus [46].
Nafamostat and Camostat are transmembrane protease inhibitors; serine 2 acts as a
TMPRSS2 inhibitor [25,47–49]. Further, Nafamostast acts as an anticoagulant drug,
which might shed light on how the virus induces thrombosis. Camostast is used
for the treatment of pancreatitis. TMPRSS2 expression is subjected to population
variability, e.g., TMPRSS2 expression is relatively lower in darker skin than in the
white populations, suggesting that the probability of TMPRSS2-dependent virus inter-
nalization might be higher in a white population [50]. In addition, the expression of
TMPRSS2 increases with aging [49], and TMPRSS2 expression is positively correlated
with androgen levels, i.e., the male population [50].
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Although TMPRSS2 inhibition could be presented as a promising approach in manag-
ing SARS-COV-2 [25], we are not sure if blocking of TMPRSS2 will stop the viral infectivity
or if the virus will adapt to such inhibition and undergo cellular internalization through
another endocytic pathway, because if the plasma membrane-route proteases are available,
the virus can fuse via an “early pathway” at the plasma membrane and, if not, the virus
can fuse via a “late pathway” at the endosomal membrane [25].

The Endocytic pathway also could be termed as a receptor-mediated endocytosis
pathway. The endocytosis pathway can be carried out through different routes, e.g.,
clathrin-mediated endocytosis, caveolin-mediated endocytosis, flotillin-dependent endocy-
tosis, macropinocytosis, and clathrin-independent carrier/glycosylphosphatidylinositol-
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anchored protein-enriched endosomal compartment endocytosis [33,51–55]. An acidic
environment activates endosomal proteases such as cathepsin B and cathepsin L, which are
known activators of other CoV family members, that become active in the early and late
endosomes. To rationally target each approach, it will be wise to determine which route
the virus follows to enter the cell endocytotically and then target it as follows.

- Clathrin-mediated endocytosis, the endosomal/lysosomal pathway, is the uptake of
material (e.g., ferritin, LDL particles) into the cell from its surface using clathrin-coated
vesicles [56], and the clathrin-coated vesicle changes its geometry to accommodate
endocytosis [57,58]. Clathrin-mediated endocytosis can be inhibited by Pentami-
dine [20], dynasore [59], monodansylcadaverine (MDC) [20], depletion of intracellular
potassium [20], phenylarside oxide (PAO) [60], cytosolic acidification (ammonium
chloride (NH4Cl)) [61], hypertonic shock (sucrose) [62], and chlorpromazine [63].
Importantly, in this respect, a group of French scientists observed a lower prevalence
of symptomatic and severe forms of COVID-19 infections in psychiatric patients
treated with the anti-psychotic drug chlorpromazine, and formulated the hypothesis
that chlorpromazine might be a preventive against COVID-19 [20]. Following this
observation, a clinical trial has been set-up [64].

- Caveolin-mediated endocytosis: Caveolae were described first in 1953 by Palade [65,66].
Caveolae and caveolin-containing membrane domains on the plasma membrane
have various curvatures and shapes [66]. When the clathrin vesicles fuse with en-
dosomes/lysosomes, the caveosome (multi-caveolar complexes) never fuses with lyso-
somes and, hence [67,68], it will not be surprising if SARS-COV-2 acts more through
caveolin-mediated endocytosis [33] as that represents a successful anti-predator strat-
egy. Vanadate, a tyrosine phosphatase inhibitor, stimulates caveolin-mediated endocy-
tosis, while Nystatin (anti-fungal drug) suppresses the caveolin-mediated endocytosis,
and chlorpromazine is non-specific [69]. Brefeldin A (antiviral drug) [70] and Nocoda-
zole (anti-neoplastic drug) [71] also inhibit the caveolin pathway [72].

- Cathepsin B (catB): Cathepsin B is a lysosomal cysteine protease that belongs
to the papain family [20,73]. Cathepsin B plays a vital role in intracellular pro-
teolysis. In normal physiological conditions, active cathepsin B is localized to
the endosomal/lysosomal compartment and is primarily involved in the normal
turnover of intracellular and extracellular proteins, thus maintaining homeostatic
metabolic activity within cells [71]. Beyond its effect in the mitochondrial com-
plex I, metformin acts as a catB-inhibitor [73,74]. However, inhibition of catB
will result in thyroid dysfunction, as catB is necessary for thyroxin production.
Therefore, the targeting of catB should be cautiously monitored.

- Cathepsin L (catL): Cathepsin L can degrade nearly all proteins, including en-
zymes, receptors, and transcription factors [75]. The physiological function of
catL depends on its subcellular localization as follows:

o In endosomes/lysosomes: As it degrades the proteins in lysosomes, catL
plays a crucial role in maintaining the lysosome–endosome compartment
of the cardiac myocyte. Therefore, any alteration of catL might induce a
progressive dilated cardiomyopathy [76–79]. In addition, disruption of
catL might decrease CD+ T cells.

o In the nucleus: Cathepsin L is a double-edged sword, it can either acceler-
ate or inhibit the proliferation based on a couple of factors [75].

o In the cytoplasm: Cathepsin L initiates the lysosomal pathways of apop-
tosis [80–82].

o In the extracellular space: In the inflammatory environment, pro-inflamm-
atory cytokines induce catL expression in endothelial cells, macrophages,
and smooth muscle, then the released catL degrades elastin and colla-
gen [75] and so might disrupt the matrix.
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Cathepsin L has been identified as a highly effectual enzyme to degrade the viruses’
outermost capsid and underlying proteins as a criterion to initiate an infection. The viruses
access the endosomal–lysosomal compartment and thereafter disassemble by endocytosis.
The subvirion particles penetrate to the cytoplasm to replicate [75,83]. Therefore, catL
plays a critical role in the entry of the SARS-COV-2 virus [84]. Cathepsin L inhibitors such
as CTLA-2α [85], the selective N-(benzyloxycarbonyl)-L-phenylalanyl-L-tyrosinal [86],
MDL28170 [87], and even slight alkalization show a gradual reduction in fusion due to
catL activity [87].

4. Cytokine Storm

It seems that the first introduction of the term cytokine storm was used in early 1993
to describe the role of interleukin 1 on graft-versus-host disease [88]. Cytokine storm
might be a synonym to immune attack or massive immune response against foreign
bodies, e.g., bacteria [89] and viruses [90–92], where SARS-COV-2 is one of those viruses.
However, the cytokine storm in COVID-19 surely does not develop directly as an immune
response to the virus [93,94] nor as a result of the multiple organ failure [95] due to
COVID-19 [93]. A cytokine profile resembling systemic lupus erythematosus (SLE) and/or
secondary hemophagocytic lymphohistiocytosis (sHLH), is associated with COVID-19
disease severity and is characterized by an increase in the following:

Interleukin 1 beta (IL-1β), also termed lymphocyte activating factor, leukocytic pyro-
gen, leukocytic endogenous mediator, or mononuclear cell factor is a pro-protein converted
to mature IL-1β by cytosolic caspase 1 [96] and produced by activated macrophages [97].
IL-1β plays a crucial role in mediating autoimmunity [98]. The monoclonal anti-IL-1β
antibody, canakinumab, is a suggested inhibitor [99,100]. In this regard, Novartis started a
clinical trial to show the effect of Canakinumab against COVID-19 [101]. Curcumin also
shows an inhibitory effect on IL-1 [102].

Granulocyte-colony stimulating factor (G-CSF) is a secreted glycoprotein produced
by macrophages, endothelial cells, stromal cells, natural killer cells, and T cells [103].
There are four types of CSF: granulocyte-colony stimulating factor, macrophage-colony
stimulating factor, granulocyte-macrophage-colony stimulating factor, and multi-colony
stimulating factor (interleukin-3) [104]. G-CSF supports production and differentiation
of white blood cells. G-CSF supports neutrophil proliferation, and GM-CSF supports
macrophages and eosinophils proliferation [105]. Administration of G-CSF is associated
with increased lactate dehydrogenase, uric acid, isoenzymes, alkaline phosphatase, and
the increase in soluble IL-2 receptors [104], which are found at higher levels in serum of
COVID-19 patients [106–109]. G-CSF plasma levels were also correlated with the severity
of COVID-19 (higher in patients in the intensive care unit) [110–112]. Therefore, targeting
the G-CSF/G-CSF receptor axis to manage COVID-19 should be considered.

Interferon-gamma-inducible protein-10 (IP-10)/CXCL10, also called IP-10, is a small
protein chemokine (10kDa) induced by IFN- γ and produced by many cell types, e.g.,
neutrophils, monocytes, endothelial cells, fibroblasts, and keratinocytes. Physiologically,
CXCL10 recruits natural killer cells (NK cells), eosinophils, and leukocytes and increases
the Th1/Th2 ratio [113–115]. CXCL10 also increases the level of several inflammatory
mediators, including TNF-α that promotes inflammation. Therefore, CXCL10 is considered
an inflammatory chemokine that contributes to many autoimmune diseases [113,116,117].
The CXCL levels increase 10-fold in COVID-19 and they play a paramount role in its
immunopathology [118,119]. CXCL10 inhibition might represent a rational approach to
the target, and its inhibitors include Vitamin D [120], Thiazolidinediones [121], Gano-
dermycin [120], and artemether combined with atorvastatin [120,122,123], although the
earlier data about the last example suggested the reverse effect.

Macrophage inflammatory protein 1-α (MIP 1-α) belongs to the family of chemokines,
also known as MIP-1alpha chemokine (C-C motif) ligand 3 (CCL3) [124]. Upon activa-
tion, they can be expressed by hematopoietic cells and a variety of tissue cells such as
fibroblasts, epithelial cells, vascular smooth muscle cells, or platelets [125,126]. MCP 1-α
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are best known for their chemotactic and pro-inflammatory effects and are crucial for im-
mune responses towards infection and inflammation and are produced by countless cells,
particularly macrophages, dendritic cells, and lymphocytes [127]. MIP 1-α is associated
with COVID-19 [128,129] and, therefore, targeting MIP 1-α directly or altering it at the
receptor level (CCL3 blocker) represents a wise approach to managing COVID-19 [130].
IL-10 inhibits MIP 1-α expression [131].

Monocyte chemoattractant protein 1(MCP-1/CCL2) is also known as the small in-
ducible cytokine A2. Although monocyte/macrophages are the primary sources of CCL2,
many cells also produce MCP1, such as endothelial, epithelial, smooth muscle, fibroblasts,
mesangial, astrocytic, monocytic, and microglial cells [132–135]. Those cells are responsible
for antiviral immunity. Many factors stimulate MCP-1 production, such as oxidative stress,
growth factors, and cytokines. MCP-1 is the critical regulator of migration and infiltration
of monocytes and macrophages [132]. MCP1 recruits monocytes, dendritic cells, and T-cells
(memory) to the inflammation site because of inflammation and infection [136]. MCP-1 is
subject to population variability as it is higher in whiter skin than in darker skin popula-
tions [137,138]. MCP-1 is associated with COVID-19 [139–141]; therefore, targeting MCP-1
could also be considered in managing SARS-2 infection [130]. Melatonin inhibits MCP-1
expression [142]. Bindarit decreases MCP-1 synthesis [143]. Spiegelmer (L-enantiomeric
RNA oligonucleotide mNOX-E36), also called L-ribonucleic acid aptamer, inhibits MCP-1
activity [144]. Furthermore, MCP-1 could be blocked at the receptor level (CCR2 block-
age) [143] using compounds such as 747 (a natural combination related in structure to
kaempferol) [145] and 15a (an orthostatic CCR2, a small molecule antagonist) [146].

Tumor necrosis factor-α (TNF-α) is also called cachexin or cachectin. TNF-α is a cell-
signaling protein produced mainly by macrophages in response to stimuli and mediates the
inflammatory response [147–149]. A great deal of data showed that TNF-α has a receptor
association with COVID-19 and higher TNF-α expression is correlated with disease severity
and higher mortality [150–153]. It is not surprising that anti-TNF-α drugs (adalimumab (A),
certolizumab pegol (C), etanercept (E), golimumab (G), and infliximab (I)) are considered
anti-COVID-19 treatments [152–157] (Table 1).

Table 1. Cytokines/chemokines that mediate the cytokine storm, with their antagonists.

The Cytokine/Chemokine Possible Antagonist

Interleukin 1 beta (IL-1β) Canakinumab [99,100]
Interferon-γ inducible protein 10 (CXCL10) Vitamin D, Thiazolidinediones, Ganodermycin [120,121]

Monocyte chemoattractant protein 1(MCP-1/CCL2) Bindarit, Spiegelmer, compounds such as 747, 15a [143–146]
Macrophage inflammatory protein 1-α (MIP 1-α) CCL3 blocker, IL-10 [130,131]

Tumor necrosis factor-α (TNF-α) Adalimumab (A), certolizumab pegol (C), etanercept (E),
golimumab (G), and infliximab (I) [154]

5. Notes on Some Currently Administered Pharmacological Modulating Agents

Administration off-label of certain drugs (drug repurposing) that target the virus
and/or the cytokine storm has become a promising approach in managing COVID-19 [158];
some of these agents include:

Macrolide antibiotics: These antibiotics inhibit bacterial protein synthesis. Therefore,
they are clinically used to fight infections by atypical bacterial (bacteria that lack cell walls).
Evidence shows their promising activity in the management of COVID-19 [159].

-Azithromycin exerts its immunomodulatory role via the following:

(i) Suppression of LPS-induced MDC and IP-10 expression through the MAPK–JNK and
the NFκB–p65 pathways [160];

(ii) Inhibition of the cytoplasmic phospholipase A2, so it might be equivalent to steroids
that suppress the release of eicosanoids (prostaglandins, thromboxane, leukotrienes,
and HEPTE) [161].



J. Xenobiot. 2021, 11 84

-Clarithromycin is another macrolide antibiotic that is useful in the management of
COVID-19 due to its following properties:

- Influence on two steps in the influenza virus entry process. The drug was found
to reduce the expression of sialic acid residues on the surface of airway epithelial
cells, reduce virus binding, and reduce the number of acidic endosomes in the cell,
inhibiting endosomal escape [34];

- Alteration of endosomal pH. Clarithromycin also inhibits the release of NF-κB (nuclear
factor kappa-light-chain-enhancer of activated B cells) [162] and might support the
mortality rate due to SARS-COV-2 [163]. The massive release of cytokines in such
conditions raises another possible question: Does the cytokine storm support the viral
entry and dissemination across the body or is the cytokine storm just a consequence
of massive uncontrolled cell death?

- Stabilization of the mast cells [164]. Mast cells secret both histamine and heparin.
Therefore, clarithromycin might prevent the massive release of histamine and prevent
anaphylaxis and perhaps the blood coagulation that might result from activation of
factor XII through the bradykinin activation. However, the prevailing medical dogma
is that heparin is an anticoagulant.

Although macrolides have proven useful in their administration as anti-COVID-19
drugs by attenuating the cytokine storm, they exert additional benefits in the management
of patients with COVID-19 by reducing the incidence of bacterial co-infection [165].

Amiloride: Amiloride is a well-known potassium-sparing diuretic. It has been shown
to inhibit micropinocytosis [69], which might alter this viral entry pathway. It also inhibits
the E protein, which is crucial for viral replication [166].

Sodium bicarbonate: Spike proteins of SARS-COV-2 become more disordered at
alkaline pH values while becoming more well-formed at more acidic pH values. There-
fore, increasing extracellular pH most probably alters the ACE2–SARS-COV-2 interaction
dynamics [167]. Hence, sodium bicarbonate used as a buffer has been suggested as it
attenuates the hyper-inflammatory environment [168]. In this respect, potassium citrate as
a buffer might also be beneficial in COVID-19 treatment [169].

6. Food Supplements That Might Prevent COVID-19 Complications

There are some food supplements that might prevent or decrease the severity of
COVID-19 infection; some of these food supplements include:

N-Acetyl Cysteine (NAC): NAC is a precursor of glutathione used to treat paracetamol
overdoses and is a mucolytic (loosens thick mucus in the lungs). NAC is an immune booster
and an anti-inflammatory and antiviral agent. Therefore, it is a suitable agent for COVD-
19 [170], significantly reducing the cytokine storm [171]. NAC has also been used in the
management of critically ill septic patients [170].

Vitamin E has a lysosomal membrane stabilization function [172,173] and has an in-
hibitory effect on the production of several pro-inflammatory cytokines, including IL-1, IL-6,
TNF, and the chemokine IL-8, by monocytes and macrophages. Vitamin E can also stimulate
the intracellular type I IFN system, which exercises antiviral activities [174]. Therefore, it
might be beneficial in prevention and/or management of COVID-19 complications.

Desferrioxamine is an iron-chelating agent. A higher level of transferrin indicates a
higher level of iron, which is toxic in humans. Blocking receptor-mediated endocytosis
reduced the internalization of some infectious viruses similarly to the reduction of en-
docytosis by transferrin [175], suggesting that transferrin might be an indicator of how
viruses enter the cells and how some possible inhibitors could function by inducing paral-
ysis of receptor-mediated endocytosis, e.g., amiloride and NH4Cl [176]. In this respect,
desferrioxamine might show potential activity as an anti-COVID-19 treatment [177].

Zinc is an essential trace element found in humans, plants, and microorganisms. Nearly
10% of human proteins (enzymes, transcriptional factors, etc.) bind with zinc. In plasma, 60%
of zinc is bound with albumin and around 10% with transferrin (iron transporter, see above).
Thus, if iron is increased, free zinc is reduced (hypozincemia) [178,179]. In COVID-19, the
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level of iron is increased significantly, and, therefore, the level of free zinc is reduced, and this
is associated with poor outcomes [180–182]. Thus, a zinc supplement is a wise choice in the
management of COVID-19 [183].

Vitamin C is a known antioxidant and its role in treating sepsis has been reported [184,
185], which supports the notion that vitamin C could be considered in COVID-19 treat-
ment [186]. A clinical trial involving 140 patients will be conducted in Wuhan, China. The
scientists will be assessing the need for the ventilator, vasopressors, organ failure, the length
of ICU stay, and the mortality in response to high doses of vitamin C [187].

Vitamin K With the increasing evidence that microthrombi formation is linked to
COVID 19 infection [188,189], low molecular weight heparin, Fondaparinux, oral antico-
agulants, or vitamin K antagonists have been recommended to all patients with an active
infection unless they have a relevant contraindication [190–193], therefore, the level of
vitamin K should be closely adjusted.

Vitamin D (calcitriol), although it is one of the fat-soluble vitamins, it is considered
to be a hormone [194,195]. As a hormone, vitamin D activates innate immunity and
suppresses adaptive immunity [196,197]. Vitamin D deficiency is also associated with viral
infection and is accompanied by acute respiratory distress syndrome [197,198]. Therefore,
many trials have been carried to test it against COVID-19.

Melatonin is a hormone mainly secreted from the pineal gland [199]. Melatonin is
an enormously powerful antioxidant hormone. Melatonin inhibits the activation of the
primary inflammasome NLRP3, which leads to cytokine storms [200]. Besides its activity in
the antioxidant cascade [201–204], melatonin supports the expression of many antioxidant
cellular enzymes, including glutathione reductase, glutathione peroxidase, superoxide
dismutase, and catalase [205,206]. As some of these enzymes are mitochondrial enzymes,
melatonin is also a mitochondrial antioxidant [207,208] and, thus, it can be used to manage
COVID-19 [209,210].

7. Roadmap to Manage COVID-19 and Concluding Remarks

COVID-19 is an emerging pandemic disease threatening human life. COVID-19 manifests
as hyper-inflammation and heterogenous increases or decreases in cytokines, chemokines,
electrolytes imbalance, etc. The significant variability in the clinical picture and outcomes in
COVID-19 patients means that any blockbuster approach to treatment is a dead-end road.
Adopting individualized medicine and pharmacodiagnostics (predictive medicine) might
represent a more effective rationale, at least in severely ill patients [211,212].

Prevention by implementing facemask usage is important; some public health practi-
tioners and theoreticians are raising the possibility of herd immunity, but that comes at
a high cost of more deaths [213]. This roadmap for optimizing decision making to tailor
and fine-tune therapy to the characteristics of the disease and specific needs of the patient
includes (i) managing the infection via its signs and symptoms (e.g., cytokine, hyper-
inflammation) and prevention of co-infection by targeting the virus and/or the cytokine
storm to avoid co-infection, whether bacterial, viral, or by other microorganisms; and (ii)
delaying the post-infection toxicity, e.g., thromboembolism. Moreover, the administration
of pharmacological and/or nutraceutical compounds that support the repairing of the
injured lung epithelium, especially among older people, will represent a promising strategy
in the war against COVID-19.
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