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Introduction

Glioma is the most common primary intracranial malignancy. 
The average survival rate is approximately 15 months even 
if the patient undergoes surgical resection combined with 
chemotherapy and radiotherapy, and an average of 15,944 
deaths per year are caused by malignant brain and other 
central nervous system tumors (1). Although there has 

been important progress in understanding the molecular 
pathogenesis and biology of glioblastoma, this has not 
translated into significantly improved outcomes for patients (2).  
How to address tumor heterogeneity, blood-brain barrier, 
stem cells, immune suppression, and DNA damage repair 
mechanisms in glioma is an obstacle in the process of 
transferring basic medical research to clinical practice (3). 

Mitochondria are key organelles critical for fulfilling 
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the bioenergetic and biosynthetic needs of the cellular 
system. The relationship between mitochondria and 
diseases has also been studied for a long time. Generally, 
nuclear-mitochondrial disease can be classified into four 
distinct groups: (I) disorders resulting from a reduction 
in mitochondrial DNA (mtDNA) stability; (II) disorders 
resulting from mutations in nuclear-encoded components 
or assembly factors of the oxidative phosphorylation 
(OXPHOS) system; (III) disorders resulting from mutations 
affecting mitochondrial translation and (IV) disorders due 
to defects in genes controlling mitochondrial network 
dynamics (4). In view of the complex consequences of 
mitochondrial dysfunction, attention is also turning to the 
study of the relationship between mitochondria and tumor, 
and mitochondrial metabolism is also a potential target for 
cancer therapy (5). Many by-products of mitochondrial 
metabolism due to mutations in enzyme genes, such as (R)-2-
hydroxyglutarate (2-HG), succinate, and fumarate have been 
proved as promoters of tumor growth and progression (6).  
Besides, inadequate energy supply to immune cells and 
abnormal internal signal transduction due to mitochondrial 
dysfunction have also been shown to be mechanisms of 
tumor immune escape (7). Therefore, therapeutic strategies 
with mechanisms of action that target mitochondria could 
be candidates for use in the treatment of difficult-to-treat 
cancers like glioma (8). Selt et al. utilized BH3 mimetics 
to reduce metabolic activity and induce mitochondrial 
apoptosis in senescent pilocytic astrocytoma cells at 
only nano-molar concentrations (9). The inhibition 

of mitochondrial biogenesis has been proved as one of 
antitumor mechanisms in glioma for gamitrinib (10). 

Currently, the prognostic role of mitochondrial-related 
genes (MRGs) in patients with glioma and their biological 
effects are still unclear. Therefore, we identified some 
MRGs and evaluated their prognostic effects based on 
publicly accessible glioma datasets. Then we constructed 
a prognostic model with these genes and validated it in 
The Cancer Genome Atlas (TCGA) and Chinese Glioma 
Genome Atlas (CGGA) datasets. On this basis, we further 
explored the clinical features and biological functions 
associated with these genes. We hope that our study could 
better predict patient prognosis and inspire further research 
on mitochondria-related functions in glioma. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-2072/rc).

Methods

The workflow of data collection and analysis in this study is 
shown in Figure 1. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Data acquisition and processing

All gene expression profile and relevant clinical information 
(when available) in this study were obtained from three 
public databases: the Genotype-Tissue Expression project 
(GTEx, https://www.gtexportal.org/), TCGA (https://
portal.gdc.cancer.gov/), and CGGA (http://www.cgga.
org.cn). The comprehensive list of 147 mitochondrial 
genes was downloaded from the Human Mitochondrial 
Genome Database (MITOMAP, https://www.mitomap.
org/MITOMAP) (table available at https://cdn.amegroups.
cn/static/public/tcr-23-2072-1.xlsx). We filtered five sub-
datasets for further analysis, including normal brain cortex 
data (n=255) from GTEx, TCGA-low grade glioma (LGG) 
(n=514) and TCGA-glioblastoma multiforme (GBM) 
(n=161) from TCGA, CGGA_325 (11-13) (n=325) and 
CGGA_693 (11,14,15) (n=693) from CGGA. Among 
these sub-datasets, TCGA was selected as training cohort 
to analyze differentially expressed MRGs (DEMRGs) and 
construct prognostic model; CGGA sub-datasets were 
chosen as validation cohort. In addition, an extended clinical 
information of TCGA patients based on bioinformatics 
analysis provided by Ceccarelli et al. (16) was selected to 
cross-validate the clinicopathological characteristics of 
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patients in the TCGA and CGGA datasets (table available 
at https://cdn.amegroups.cn/static/public/tcr-23-2072-2.
xlsx). The expression data from TCGA and GTEx were 
in the form of read counts when analyzing differentially 
expressed genes (DEGs) while all other analysis involving 
RNA-seq were in the form of transcripts per kilobase 
million (TPM). 

Identification of DEGs

The expression data from TCGA-LGG and TCGA-GBM 
were integrated to compare with the normal tissue data 
from GTEx. After normalizing with the “limma” R package, 
Wilcoxon signed rank test was used for large samples 
differential expression analysis to obtain more accurate 
results (17). DEGs were identified with adjusted P<0.05 and 
|log2fold change (FC)| >1. After taking the intersection of 
DEGs and 147 mitochondrial genes, DEMRGs were then 
identified. These genes, categories and log2FC value were 
presented via “circlize” R package.

For further exhibiting the association between 
DEMRGs, spearman correlation was conducted and 
visualized by “reshape2” and “corrplot” R package 
respectively. Additionally, protein-protein interaction (PPI) 
analysis was also performed based on STRING database 
and visualized by “Cytoscape” software on Windows. 
Proteins were ranked in Cytoscape using cytoHubba with 
the Matthews correlation coefficient (MCC) algorithm.

Construction of prognostic model

To evaluate the prognostic value of different DEMRGs, 
the expression data of DEMRGs and associated survival 
information of patients from TCGA training cohort were 
combined for various Cox regression. Univariate Cox 
regression was utilized to screen prognostic related genes. 
Those genes with P<0.05 were chosen for applying the 
Least Absolute Shrinkage and Selection Operator (LASSO) 
Cox regression model provided from the “glmnet” R 
package. Next, to construct more precise prognostic model, 
multivariate Cox regression on the genes screened by 
LASSO were then performed. Finally, those genes with 
P<0.05 and non-zero coefficients were decided as gene 
signature to construct prognostic model with the following 
formula:

( )Risk Score
n

i i
i

C E= ×∑ 	 [1]

In this formula,  n  means all  screened genes by 
multivariate Cox regression, and Ci and Ei mean the 
coefficient value and expression level of gene I, respectively. 

Validation of prognostic model

The risk scores of patients from training cohort were 
calculated, and patients were divided into high-risk and 
low-risk groups using the median risk scores as the cutoff 
value. The principal components analysis (PCA) and the 

Figure 1 Workflow of this study. GTEx, the Genotype-Tissue Expression project; TCGA, The Cancer Genome Atlas; LGG, low grade 
glioma; GBM, glioblastoma multiforme; DEGs, differentially expressed genes; MITOMAP, the Human Mitochondrial Genome Database; 
MRGs, mitochondrial-related genes; DEMRGs, differentially expressed mitochondrial-related genes; LASSO, Least Absolute Shrinkage 
and Selection Operator; CGGA, Chinese Glioma Genome Atlas; ROC, receiver operating characteristic; GSEA, Gene Set Enrichment 
Analysis.
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t-distributed stochastic neighbor embedding (t-SNE) for 
two groups were performed via the “ggpolt2” and the 
“Rtsne” R packages to ensure that the two groups were 
differentiated. The Kaplan-Meier curve was generated 
using the R package “survminer” to compare the overall 
survival (OS) between the high- and low-risk groups. If OS 
were statistically significant, the time-dependent receiver 
operating characteristic (ROC) curve was utilized to 
evaluate the prediction accuracy of prognostic model via the 
“timeROC” R package. The validation method above was 
applied to the validation cohorts as well.

Development and validation of nomogram

The clinicopathological characteristics of patients were 
combined with risk scores for univariate and multivariate 
regression analyses, just like the way of genes screening 
above, and plotted the nomogram from the multivariate 
regression results using the “RMS” package in R. The 
prediction performance of monogram for 1-, 3-, and 5-year 
survival was assessed by calibration plots.

Gene Set Enrichment Analysis (GSEA)

GSEA was conducted on the TCGA cohort for exploring 
differences in biological functions and pathways between 
the two groups. Similarly, the two groups of patients 
in TCGA were analyzed for DEGs using the method 
described above. Patients in the low-risk group were 
considered as the control group. Gene symbols and log2FC 
values were analyzed via “clusterProfiler” package. The 
“gmt” files were downloaded in GSEA website (http://www.
gsea-msigdb.org/gsea/msigdb/collections.jsp), including 
hallmark gene sets and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) subset of canonical pathways. Results 
were visualized via “ggplot2” package.

Analysis of tumor immune status

In this section, we investigate the association of prognostic 
models with the tumor immune microenvironment (TIME) 
of glioma in TCGA and CGGA cohorts. ESTIMATE 
package in R was used to calculate parameters related to the 
tumor microenvironment (18). “CIBERSORT” R script (19)  
was used to assess the level of immune cell infiltration. 
“GSVA” package was used to analyze the enrichment degree 
of immune-related pathways. The gene set of immune-

related pathways was cited from a review by Bindea et al. (20) 
(table available at https://cdn.amegroups.cn/static/public/
tcr-23-2072-3.xlsx). To investigate the association between 
MRGs and immune checkpoints, nine immune checkpoints 
from the literature that have been proved to be associated 
with glioma (21) were selected and their gene expression 
profiles analyzed, including PD-1 (PDCD1), LAG-3, CTLA-4,  
CD73 (NT5E), CD161 (KLRB1), IDO1, CD47, CD276 and 
CD39 (ENTPD1). 

Analysis of somatic mutation

To demonstrate the landscape of somatic mutation in high- 
and low-risk groups, “TCGAbiolinks” package in R was 
utilized to download copy number variation (CNV) data 
from TCGA and integrate them with patients in different 
risk groups. Then the mutation profiles of risk groups 
were analyzed and visualized using “maftools” package in 
R. The genes with mutation rates greater than 5% in each 
group were taken as a concatenation, and the pathways 
enriched in mutated genes in each group were taken as an 
intersection, which were all screened using the fisher exact 
test for significantly different mutated genes and associated 
pathways.

Prediction for chemotherapeutic agents 

The drug prediction was performed using “oncoPredict” 
package (22). The training data of cell lines expression and 
drug response information for 545 drugs came from The 
Cancer Therapeutics Response Portal (CTRP) (23-25).  
These data, together with the gene expression data of 
TCGA, were processed integratedly to get sensitivity scores 
that predict the half-maximal inhibitory concentration (IC50) 
of drugs for glioma patients. After that, the top 4 Food 
and Drug Administration (FDA) approved drugs and top 2 
FDA-experimental drugs that were positively and negatively 
correlated with risk scores would be selected as sensitive 
drugs.

Statistical analysis and visualization

All statistical analyses and figures except for PPI analysis 
were all completed by the R software (4.2.0 Build 485). 
P<0.05 was considered statistically significant differences. 
Most figures were tuned in Adobe Illustrator 2022 before 
publication for better viewing experience.
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Results

Identification of 29 DEMRGs between normal and tumor 
tissues

A total of 675 cases of glioma tissues from TCGA-LGG 
and TCGA-GBM and 255 cases of normal tissues from 
GTEx were integrated to analysis. The differences in 
RNA-seq data of 9,425 genes between normal and tumor 
were statistically significant (table available at https://
cdn.amegroups.cn/static/public/tcr-23-2072-4.xlsx), and 
subsequently 29 DEMRGs were identified from these 
genes. Among them, 17 DEMRGs were downregulated 
while 12 DEMRGs upregulated. Noteworthy, according 
to the definition of mitochondrial genes categories from 
MITOMAP, DEGs belonging to structural nuclear 
genes were all downregulated while DEGs belonging to 
MtDNA maintenance and coenzyme Q10 biogenesis were 
all upregulated (Figure 2A) The PPI network of these 
DEMRGs indicated that NDUFA12, NDUFA11, NDUFS7 
and COX6A1 are hub genes (Figure 2B), while ATP8A2 does 
not interact with this network. 

Construction of prognostic model with DEMRGs

To evaluate the prognostic value of each DEMRGs, 
univariate Cox regression analysis was applied to identify 
prognostic genes. The results showed that four genes 
(NDUFA13, NDUFS7, NDUFV2, PDSS1) were excluded 
for P>0.05. Among the remaining 25 genes, four genes 
(ATP8A2, NDUFA9, TRMT5, VARS2) had an improved 
effect for prognosis, while the remaining 21 genes had the 
opposite effect (Figure 2C). Subsequently, these prognostic 
genes were enrolled in the LASSO Cox regression analysis 
for narrowing down candidates according to the minimum 
penalty parameter (Lambda), finally identifying 14 
genes (TYMP, TSFM, TRMT5, SDHA, SARS2, POLG2, 
NDUFA9, MGME1, ISCU, DARS2, COX8A, COX6A1, 
COQ2, BOLA3) for next multivariate Cox regression 
(Figure 2D) Eventually, six genes, including four risk genes 
(TYMP, TSFM, MGME1, BOLA3) and two protective 
genes (TRMT5, NDUFA9) were identified with non-zero 
coefficients (Figure 2E) to construct MRGs prognostic 
model as following:

( ) ( )TRMT5 9

1 3

Risk Score 0.2945143 0.2632571
0.7087276 0.7415966

0.739635 0.9511057

TYMP TSFM

NDUFA

MGME BOLA

E E
E E
E E

= ∗ + ∗

+ ∗ − + ∗ −

+ ∗ + ∗
	 [2]

Furthermore, to verify the expression of these genes in 
real-world tumor tissues, we found immunostaining images 

of five DEMRGs other than TSFM in high- and low-
grade gliomas in the Human Protein Atlas (HPA) database  
(Figure 2F).

Validation of prognostic model built from MRGs

The robustness of the prognostic model built from MRGs 
was validated in both training cohort and validation 
cohort. The results of PCA (Figure S1A-S1C) and t-SNE 
(Figure S1D-S1F) indicated this prognostic model can well 
distinguish the two groups. The distribution of the risk score, 
expression level of 6 genes and prognostic status between 
high- and low-risk groups is shown in Figure S1G-S1I.  
Kaplan-Meier survival curves (Figure 3A-3C) indicted 
that patients in high-risk were more likely to display a 
significantly worse prognosis in TCGA, CGGA_325 and 
CGGA_693 datasets. The ROC curve, which reflects a 
combination of sensitivity and specificity in a predictive 
model, also showed that the model had good predictive 
performance. For example, the area under the curve (AUC) of 
the model in CGGA_325 was 0.76 at 1 year, 0.82 at 3 years,  
0.85 at 5 years (Figure 3D). The TCGA cohort (Figure 3E) 
and the CGGA_693 cohort (Figure 3F) showed a similar 
pattern to the CGGA_325.

Next, the risk score was considered as independent 
factors to perform univariate and multivariate regression 
analysis together with other clinical features of the patients. 
In TCGA, eventually, age, grade and risk score were 
identified as statistically significant prognostic factors 
(Figure S2A,S2B) While grade, isocitrate dehydrogenase 
(IDH) mutation status, 1p/19q codeletion status and risk 
score were identified as statistically significant prognostic 
factors in both CGGA_325 (Figure S2C,S2D) and 
CGGA_693 (Figure S2E,S2F). The nomogram built from 
prognostic factors in TCGA is shown in Figure 3G, and the 
calibration curves of the nomogram validated in TCGA 
(Figure S2G), CGGA_325 (Figure 3H) and CGGA_693 
(Figure 3I) also manifested a favorable consistence between 
observational and predictive values for OS.

Additionally, the association between risk scores and 
some clinicopathological features in CGGA_693 (Figure 4A) 
and CGGA_325 (Figure 4B) showed that higher risk scores 
were more likely to be associated with higher World Health 
Organization (WHO) grade, 1p/19q codeletion, IDH 
mutation and O6-methylguanine-DNA methyltransferase 
(MGMT) methylation. The results of TCGA (Figure S2H) 
were also similar. However, it is worth noting that this 
clinicopathological data was derived from bioinformatics 
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Figure 2 Identification of prognostic mitochondrial-related DEGs in the TCGA cohort. (A) Twenty-nine mitochondrial-related DEGs between 

tumor (TCGA) and normal tissue (GTEx) and their categories. (B) PPI network among 28 candidate genes. ATP8A2 does not interact with this 

network. NDUFA12, NDUFA11, NDUFS7 and COX6A1 are hub genes. (C) Results of univariate Cox regression analysis between candidate gene 

expression and OS, and 25 genes were identified with P<0.05. (D) LASSO regression and the coefficients of the 25 OS-related genes, and 14 genes 

were identified for multivariate Cox regression. (E) Multivariate Cox regression for 14 candidate genes, and only 6 genes were identified with 

coefficients for the construction of prognostic model. (F) Immunostaining results of DEMRGs in different grades of glioma from Human Protein 

Atlas. The links are provided for TYMP (https://www.proteinatlas.org/ENSG00000025708-TYMP/pathology/glioma), MGME1 (https://www.

proteinatlas.org/ENSG00000125871-MGME1/pathology/glioma), BOLA3 (https://www.proteinatlas.org/ENSG00000163170-BOLA3/pathology/
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https://www.proteinatlas.org/ENSG00000163170-BOLA3/pathology/glioma
https://www.proteinatlas.org/ENSG00000163170-BOLA3/pathology/glioma
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analysis and the results contained not available (NA) values, 
which may be biased compared to the actual results.

GSEA 

Biological functional analysis between risk groups was 
performed based on DEGs and their log2FC value. The 
GSEA results for KEGG database (Figure 5A) showed 
that tumors in high-risk group were more involved in 
immune pathways [systemic lupus erythematosus, CC 
chemokine receptor (CCR) interaction, etc.], tumor 
formation (cell cycle, hematopoietic cell lineage, focal 
adhesion, etc.) and various signal pathways (Toll-like 
receptors, P53, chemokine, etc.). For tumors in low-risk 
group some different signal pathways involved (ERBB, 
phosphatidylinositol, calcium). In addition to these, long 
term potentiation, neuroactive ligand receptor interaction, 
gap junction, tight junction, etc. were involved. The 
GSEA results for HALLMARK database (Figure 5B) also 
mentioned many new signaling pathways that were enriched 
in high-risk group, like JAK-STAT3, m-TOR, KRAS, 
and new immune pathways, such as tumor necrosis factor 
(TNF)-α, interferon (IFN)-γ. In summary, tumorigenesis 
in the two groups involved many distinct biological 
mechanisms.

Prognostic model significantly correlated with immune 
status

Immune analyses were performed to explore the correlation 
between risk scores and immune status and immune 
differences between different risk groups. ESTIMATE results 
in TCGA cohorts revealed that risk scores are positively 
correlated with the presence of stroma (R=0.67; Figure 6A),  
the infiltration of immune cells (R=0.72; Figure 6B)  
and negatively correlated with tumor purity (R=−0.71; 
Figure 6C). And patients in the high-risk group showed a 
higher correlation for all three than in the low-risk group 
(0.45 vs. 0.2, 0.51 vs. 0.18, −0.49 vs. −0.19). These results 
imply higher tumor heterogeneity and a more complex 
immune environment in patients of high-risk group. 
Analysis of immune cell infiltration in TCGA (Figure 6D) 

and CGGA (Figure S3A,S3B) demonstrated that tumor 
in the low-risk group had higher infiltration of B memory 
cells, monocytes, and CD4 T naive cells, while tumor in 
the high-risk group had more infiltration of B naïve cells, 
macrophages, CD4 T memory cells, γδ T cells, and T reg 
cells. Further, the analysis between the prognostic model 
and immune checkpoints revealed that the risk score was 
correlated with immunotherapy checkpoints other than 
CD73 (NT5E). And the correlation between some immune 
checkpoints and risk score was high, such as PD-1 (PDCD1, 
R=0.6), IDO1 (R=0.68), CD276 (R=0.71) (Figure 6E), which 
suggest that patients in the high-risk group would suffer 
more for tumor immunosuppression related with these 
immune checkpoints. The situation was similar in CGGA 
(Figure S3C,S3D). Logically, tumor cells in the high-
risk group would be more likely to be enriched in various 
immune pathways for immune escape, and the degree of 
enrichment was positively correlated with the risk score 
(Figure 6F). Some highly associated immune pathways and 
immune processes are of particular interest, such as JAK-
STAT pathway (RIL6 JAK−STAT3 signaling =0.74, RJAK-STAT signaling pathway 
=0.72) and para-inflammation (R=0.8). Taken together, 
the results above demonstrated that prognostic models 
built from MRGs are associated with tumor heterogeneity, 
immune suppression and immune checkpoints.

Analysis of somatic mutation

Somatic mutation analysis showed that the mutation rate of 
all MRGs genes did not exceed 1% (Figure S4A), suggesting 
that MRGs are generally stable in the development of 
glioma. However, the distribution of somatic mutations was 
dramatically different between the two groups (Figure 7A,7B).  
Fisher’s exact test showed that genes like TTN, EGFR, 
PTEN were more likely to be mutated in high-risk group 
while genes like ATRX, CIC, IDH1/2, FUBP1 were more 
likely to be mutated in low-risk group (Figure 7C). The 
pathways where these significantly mutated genes are 
located were also analyzed for high-risk (Figure S4B) and 
low-risk groups (Figure S4C). Fisher’s exact test showed 
that WNT, RTK-RAS, PI3K and cell cycle pathways were 
significantly affected by mutated genes (Figure 7D-7G) in 

ENSG00000139180-NDUFA9/pathology/glioma), respectively. Scale bar, 300 μm. HR, hazard ratio; CI, confidence interval; AIC, Akaike information 

criterion; Not sig., not significant. DEGs, differentially expressed genes; TCGA, The Cancer Genome Atlas; GTEx, the Genotype-Tissue Expression 

project; PPI, protein-protein interaction; OS, overall survival; LASSO, Least Absolute Shrinkage and Selection Operator; DEMRGs, differentially 

expressed mitochondrial-related genes.

https://cdn.amegroups.cn/static/public/TCR-23-2072-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-2072-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-2072-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-2072-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-2072-Supplementary.pdf
https://www.proteinatlas.org/ENSG00000139180-NDUFA9/pathology/glioma
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Figure 3 Validation of the predictive effects of prognostic models. Kaplan-Meier survival curves for TCGA (A), CGGA_325 (B) and CGGA_693 (C); 

ROC curves for CGGA_325 (D), TCGA (E) and CGGA_693 (F); (G) nomogram built from TCGA; the calibration plots for nomogram in CGGA_325 

(H) and CGGA_693 (I). TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; AUC, area under the curve; OS, overall survival; 

ROC, receiver operating characteristic.
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high-risk group (Figure 7H).

Chemotherapeutic agents prediction for different groups

Twelve chemotherapeutic agents with strongly correlated 
sensitivity and risk scores were selected among the 545 
agents (Figure 8). Drugs sensitive to tumors in the high-risk 
group included olaparib, pevonedistat, cyclophosphamide, 
fulvestrant, abiraterone, and bleomycin A2, with olaparib 
and pevonedistat not yet FDA-approved. Drugs sensitive 
to tumors in the low-risk group included nilotinib, 
itraconazole, canertinib, lovastatin, sitagliptin, and pitstop2, 
with canertinib and pitstop2 not yet FDA-approved. The 
targets or activities of selected compounds, and the full 
result of prediction are shown in table available at https://
cdn.amegroups.cn/static/public/tcr-23-2072-5.xlsx. 

Discussion

It has been a consensus that mitochondria, as the center of 
cellular metabolism, have an important driving function 

in tumor. The tumor microenvironment with scarce 
resources makes the mitochondria in tumor cells often 
defective and mitochondria can promote tumor growth (26).  
Nowadays, most studies tend to focus on the effect 
of individual mitochondria-related gene, pathway, or 
component in glioma. The effects of all MRGs on glioma 
progress and prognosis are still unclear. In this study, 
we identified 29 MRGs that were aberrantly expressed 
in glioma tissues, and after analyzing their prognostic 
value, we constructed a prognostic model using six of 
them and validated its robustness. Compared to the low-
risk group, patients in the high-risk group had worse OS 
and corresponding clinicopathological characteristics. 
GSEA and immunological analysis showed that patients in 
the high-risk group had higher tumor heterogeneity and 
significant immunosuppressive effects. In addition, we gave 
six potential therapeutic agents for each of the high- and 
low-risk groups.

Observing all DEMRGs, it is intriguing to find that 
genes belong to coenzyme Q10 biogenesis and mtDNA 
maintenance were all upregulated while genes belong to 

https://cdn.amegroups.cn/static/public/tcr-23-2072-5.xlsx
https://cdn.amegroups.cn/static/public/tcr-23-2072-5.xlsx
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Figure 5 Functional enrichment analysis between the high- and low-risk groups in TCGA cohort. The KEGG pathway enrichment analysis (A) and the 

HALLMARK gene set enrichment analysis (B). The enrichment analysis results in this figure were all statistically significant. abs, absolute value; NES, 

normalized enrichment score; TCGA, The Cancer Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes.

nuclear structure were all downregulated. Coenzyme Q10 
(CoQ10) is an essential component of the mitochondrial 
respiratory chain for modulating gene expression, 
mitochondrial function and even cell death (27,28). Yen 
et al. experimentally explored that low level of CoQ10 
predicted more malignancy and PDSS2 was significantly 

upregulated in astrocytoma (29), which is consistent with 
our data analysis, but the effect of PDSS1 and COQ2 had 
not been clarified due to technical reasons. Literature 
has reported a close association between the mutations 
of PDSS1 and COQ2 and eye diseases caused by primary 
CoQ10 deficiency syndrome (30). Research has also found 
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Figure 6 The immune status of different risk groups and its correlation with the risk score in TCGA cohort. (A-C) The relationship between the risk 

score and immune score, stromal score and tumor purity calculated by ESTIMATE. (D) The landscape of immune cell infiltration status analyzed by 

CIBERSORT between risk groups. R value means the correlation of cell infiltration value and risk score. (E) The landscape of nine candidate immune 

checkpoints related gene expression between risk groups. R value means the correlation of gene expression value and risk score. (F) The landscape of 

enrichment degree of 16 immune-related pathways between risk groups. R value means the correlation of the enrichment degree and risk score. ns, not 

significant; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. NK, natural killer; TCGA, The Cancer Genome Atlas.
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that PDSS1 can regulate the cell cycle to induce cancer (31). 
In the field of gliomas, further research is still needed to 
elucidate the specific roles of these two genes. The results 
combined with our data analysis imply that upregulation 
of these three genes leads to decreased intracellular 
CoQ10. MtDNA, also known as mitochondrial genome, 
cannot replicate, repair itself and synthesize nucleotides 
without proteins used to maintain its integrity (32). The 
genes encoding these proteins are categorized as mtDNA 
maintenance. In this category, TYMP is responsible for 
nucleotide metabolism by thymidine phosphorylase 
synthesis. Excessive thymidine produced by highly expressed 
TYMP can imbalance mitochondrial deoxynucleotide 
pools and further lead to DNA mutations (33). MGME1 
protein is a mitochondrial nuclease. Many studies have 
demonstrated that lacking MGME1 causes mutations and 
various mitochondrial-related diseases (34-36), but little 
is known about the role that high expression of MGME1 
plays in tumor. Structural nuclear genes in mitochondria 
are closely related to cellular OXPHOS activities (37). 
These differential genes, especially for hub genes, display 
lower expression in gliomas and may imply abnormalities 
in OXPHOS function. Abnormal OXPHOS function 
promotes aerobic glycolysis rather than pyruvate oxidation, 
as known as Warburg effect, driving the aggressive 
character of tumors (38). Attempts have been made to 
restore oxidative phosphorylation function in glioblastoma 
by other means to stimulate tumor immunity (39). BOLA3 

is an important gene involved in Fe-S cluster biosynthesis, 
which is a complex, stepwise process, and its dysfunction 
leads to a deficiency of mitochondrial respiratory complexes 
and impaired function of lipoic-acid-dependent enzymes. 
The role of Fe-S biogenesis in carcinogenesis is currently 
unclear (40,41). However, as this gene is a key prognostic 
gene in glioma, it could be a future research direction. The 
effect of TSFM and TRMT5 expression on tumor has not 
yet been reported in the literature, and more attention has 
been paid to the effects of their mutations on disease. 

Although MRGs mutations are not the primary cause of 
glioma, mitochondrial function and gene mutations often 
interact with each other (33,42). Generally, IDH-mutated 
glioma exhibits a favorable disease outcome compared with 
its wild-type counterpart. One reason is that the imbalance 
of redox status in glioma cells can be rebalanced by the 
proline produced by the IDH mutation, thus maintaining 
cellular metabolism in mitochondria (43). It has been shown 
that gliomas with IDH1 mutations are also frequently 
accompanied by mutations in CIC or FUBP1, which is 
linked to codeletion of the 1p/19q arms where these genes 
reside (44). The data analysis in our study also came to this 
conclusion. 

Immune status analysis and GSEA results similarly 
implied a profound influence of mitochondria on the 
TIME. JAK-STAT signaling pathway (45,46), Toll-like 
receptor pathway (47) and IFN response (48) all have 
immunosuppressive effects on gliomas via PD-L1. These 
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may be an explanation for the downregulation of naïve T 
cells and upregulation of PD-1 expression in the high-risk 
group. Recently, new nanoparticles called IR-LND@Alb 
has successfully inhibited PD-L1 in tumor cells by targeting 
aberrant OXPHOS activities in mitochondria (49). In 
addition to PD-1/PDL1, some immune checkpoints with 
high correlation with mitochondria-related prognostic 
model, such as IDO1, CD276 and KLRB1, might be 
promising targets for combination of mitochondria-targeted 
drugs to jointly improve the prognosis of high-risk patients. 

Some predicted chemotherapeutic agents had been 
tested in other studies. Olaparib is a mitochondrial complex 
I inhibitor. It was the most positively correlated drug in 
the results and has been proved to be effective in vitro 
against temozolomide-resistant human glioblastoma cells, 
particularly those with lower OXPHOS activities (50).  
Pevonedistat can upregulate PD-L1 expression in 
glioblastoma (51). Canertinib is sensitive to tumor cells in 
the low-risk group according to prediction results, probably 
because it is an ERBB pathway inhibitor that is significantly 
activated in low-risk tumors. And experiments have proved 
that it has a reduced effect on glioma cells with STAT3 
activated (52). Therefore, the effect is better for tumor cells 
in the low-risk group with insignificant STAT3 activation. 

It is glad to see parts of our results have been proven 
before, which shows the reliability of our analytical 
approaches. Undoubtedly, many of our conclusions are only 
derived from some public databases, and they still need to 
be demonstrated experimentally. The feasibility and utility 
of this prognostic model still need to be tested in future 
clinical practice. However, our study has initially elucidated 
the important role of MRGs in glioma prognosis and 
immune function. We hope our study will provide a new 
pathway for assessing patient prognosis and inspire further 
research regarding glioma mitochondria-related functions.

Conclusions

The novel MRG signatures (TYMP, TSFM, MGME1, 
BOLA3, TRMT5, NDUFA9) can predict prognosis and 
immunological status in glioma.
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