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Abstract

Cell fate decisions are controlled by complex intracellular molecular regulatory

networks. Studies increasingly reveal the scale of this complexity: not only do

cell fate regulatory networks contain numerous positive and negative feedback

loops, they also involve a range of different kinds of nonlinear protein–protein
and protein–DNA interactions. This inherent complexity and nonlinearity

makes cell fate decisions hard to understand using experiment and intuition

alone. In this primer, we will outline how tools from mathematics can be used

to understand cell fate dynamics. We will briefly introduce some notions from

dynamical systems theory, and discuss how they offer a framework within

which to build a rigorous understanding of what we mean by a cell “fate”, and
how cells change fate. We will also outline how modern experiments, particu-

larly high-throughput single-cell experiments, are enabling us to test and

explore the limits of these ideas, and build a better understanding of cellular

identities.
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1 | INTRODUCTION

Cells in multicellular organisms typically specialize into distinct “types”, which perform specific functions within the
context of the tissue, and organism, within which they reside. The concept of cell “type” has many definitions,
reflecting the long history of cell biology and accumulation of experimental methods (Clevers et al., 2017). Cells were
first discovered with the advent of microscopy (Hooke, 2003), and following the naturalist tradition of the time, were
organized into distinct classes by morphology and function. How these classes arise has been a longstanding question.

An early idea was that each distinct cell “type” carries only part of the genome and therefore has access to a differ-
ent set of “instructions” of how to behave. This idea, although appealing, was proven false by pioneering experiments
of Gurdon in the 1970s who showed, via serial transplantation of the nuclear content of adult cells into enucleated eggs
and monitoring their development, that individual adults cells possess the organism's entire genome (Laskey & Gurdon,
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1970). We now know that essentially all adult cells within an organism possess the same genome (aside from certain
lymphocytes, some neurons and anuclear cells, such as mature red blood cells and platelets), yet different cells express
this genome in different ways.

From the purely biological point-of-view, this is the de facto working definition of a cell type: different cell types are
defined by the different genes and proteins that they express, and the different functions they accordingly perform. This
working definition has motivated much experimental work because it provides a convenient way to associate cellular
functions with particular patterns of molecular expression. For example, different types of stem and progenitor cells are
routinely characterized by the different combinations of cell surface markers that they express (Akashi, Traver,
Miyamoto, & Weissman, 2000; Lv, Tuan, Cheung, & Leung, 2014; Thomson et al., 1998).

This simple, flexible definition of cell type has been disrupted with the advent of high-throughput, single-cell methods,
primarily single-cell RNA-sequencing (scRNA-seq) which have revealed substantial “heterogeneity” within previously
established cell types (Björklund et al., 2016; Buettner et al., 2015; Grün et al., 2015; Zeisel et al., 2015). In this context, het-
erogeneity is typically taken to mean that cells of the same type can have substantially different levels of gene expression,
including in genes that may have been used to define that cell type. Increasingly it is becoming clear that traditional ways
of identifying and categorizing cell types are unable to capture this complexity, leading to ambiguity as to what is really
meant by a cell type. A rigorous, consistent definition of cell type, is therefore required to make use of this new wave of
gene expression data. By developing such a theory, we can begin to address the question of why patterns of expression, and
not some others, occur; or why particular patterns of expression should confer particular functions to the cell.

These “why” questions hint that there is a deeper truth to be found concerning the rules that govern how the
genome is outworked in a cell, beyond simple cataloguing of which cells express which factors. This is a complex ques-
tion that is difficult to address in a purely experimental way. However, mathematical models provide a logical frame-
work within which to explore complex issues like this, and there has accordingly been a long and fruitful history of
biologists and theoreticians working together to explore this issue theoretically, and wrestling with how mathematical
notions relate to the complexity observed in experiment.

Here, we will outline some of the main lines of thought that have emerged from this discussion. In the first part of
this primer, we will discuss some theoretical notions before exploring how these notions relate to experiment.

2 | CELL FATE: IN THEORY

To begin our discussion, it is useful to distinguish between the state of a cell and its fate. Before we start it is worth noting that
the terms cell “type” and cell “fate” are often used interchangeably. As a technicality, however, fate refers to the future of the
cell—the “type” toward which it is progressing. For reasons that will become apparent, we will focus on cell fates specifically.

For the purposes of our discussion we will assume that there are a set of molecular identifiers (or species) Xi that
and individual cell may (or may not) express. For example, Xi may denote the abundance of the mRNA product of the
ith gene in the genome, or the abundance of the ith protein in the proteome. The complete molecular state of a cell can
then be encoded in the vector x(t) = xi(t) ∈ X, where xi(t) is the abundance of the ith molecular species at time t and
X denotes the space of all possible expression patterns. It is important to note that the state of the cell may (in fact, cer-
tainly will) change over time, and so we make this explicit in our formalism from the start. It is also notable that a given
experimental method will inevitably only measure a subset of the molecular identifiers that specify a cell, so the defini-
tion of a cell state is contextual and will depend on the experimental method used.

We now wish to establish how these cell states relate to distinct cellular functions or fates (also known as types—
henceforth we will use the term cell fate, for clarity of nomenclature) in the adult or developing organism. To do so, we
will assume that there is a mapping from cell states to cell fates (Figure 1). To construct this map, let yi ∈ Y denote the
ith cell fate and Y denote the set of all possible fates. Traditionally, there were thought to be 200–300 distinct cell fates
in the adult human (Junqueira, Junqueira, Carneiro, & Kelley, 1992) (although by uncovering hitherto unappreciated
heterogeneity within established cell types recent efforts, such as the Human Cell Atlas, are revising this estimate
(Lukowski et al., 2019; Regev et al. (2017)). By contrast, the human genome contains approximately 20,000 genes
(Church et al., 2009), each of which may be expressed at varying levels. Even if each gene can only be expressed at two
levels (i.e., “on” or “off”) this gives �220,000 distinct cell states. Thus, from purely mathematical reasoning the number
of possible cell states vastly outnumbers the number of distinct cellular functions. It is clear, therefore, that not all
molecular states can map to distinct cell fates. From a mathematical perspective this means that our mapping from cell
states to cell fates is many-to-one (Figure 1).
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This simple observation has a couple of important consequences. First, it means that many different cell states may
map to the same fate. Mathematicians would say that the mapping is surjective (assuming the biologically reasonable
technicality that every state maps to some function). Biologically this means that slight variations the molecular expres-
sion patterns will not typically affect cell function. For example, an extra copy of a housekeeping protein is unlikely to sig-
nificantly alter the behavior of a cell; neither is the loss of a single copy of an abundantly expressed mRNA. The
mathematical statement of surjectivity therefore relates to the biological fact that molecular expression patterns are likely
to fluctuate in the cell, while the identity or function of the cell will typically be robust to these fluctuations. However,
some fluctuations must result in a change in identity, or there would only be one possible cell fate. Thus, there must be
some cell states that are “close” to each other, yet nevertheless map to different fates (how we chose to define “close” is
important here, and an issue that we will discuss soon). This means that the mapping must have some structure and, in
particular, there must be “fault lines” that separate X into discrete pieces X i, each of which maps to a different fate yi
(as a mathematical technicality, each X i need not be connected). To understand this structure that emerges in the map-
ping between genotype and phenotype, it is helpful to take a short detour into some dynamical systems theory.

In its most general form, a continuous dynamical system is a set of coupled ordinary differential equations that
describe how a set of time-dependent variables xi(t), for i = 1, 2, … n, evolve over time:

dx
dt

=F xð Þ, ð1Þ

where F(x) is a set of coupling functions that encode the way in which the rates of change of the xis depend on each
other (without loss of generality we may assume that these coupling functions do not depend explicitly on time since
we can always set xn + 1(t) = t to put the equations in the form above). If xi(t) is associated with the expression of the ith
molecular species in the cell, then this dynamical system describes how molecular expression patterns evolve over time.
If Equation (1) describes a system that is out of thermodynamic equilibrium (i.e., is exchanging matter and/or energy
with its environment), which is the case for the cell, then the dynamical system is said to be dissipative.

This view of the cell as a dissipative dynamical system is useful for understanding the structure of the mapping from
genotype to phenotpye. One particular notion—that of the attractor—is particularly important. Although the formal
definition of an attractor is subtle (Strogatz, 2018), informally an attractor of a dissipative dynamical system is an iso-
lated subset of the state space A ∈ X toward which the system will evolve for a subset of initial conditions XA ∈ X. The
subset of initial conditions that converge toward A is known as the basin of attraction of A. Importantly, a complex
dynamical system may exhibit numerous coexisting attractor states. In this case, the basins of attraction partition the
state space into discrete pieces. This notion is illustrated schematically in Figure 2.

This piece of dynamical systems theory offers us a simple way to interpret the structure of the mapping from geno-
type to phenotype in a general way, as follows:

The intracellular regulatory networks that control cell fates encode a complex dynamical system that
admits numerous coexisting attractors. Each of these attractors constitutes a distinct cell fate.

Molecular
state

Cell
fate

A

B

C

i
ii

FIGURE 1 Mapping molecular states to cell fates. An individual

cell can be described both in terms of its molecular state, and its fate.

Each point in the molecular state box is a complete descriptor of the

molecular constitution of a cell. The mapping between states and fates

is many-to-one: different subsets of expression state space may map to

the same fates. Here, three different fates A, B, and C, are illustrated,

colored blue, red, and gray. Furthermore, similar molecular expression

states may map to different fates. Two such states, marked i and ii are

illustrated
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We note briefly that formally attractors are never actually attained (for any initial conditions off the attractor); they
are limiting sets toward which trajectories in the dynamical system are drawn as t ! ∞, that is, they are the ultimate
“fate” of a trajectory. For this reason, attractors are better associated with cell fates rather than cell types.

This idea was originally proposed in embryonic form by Conrad Waddington in the 1930s, and was developed by Max
Delbrück in the 1940s and Stuart Kauffman from the 1960s onwards (Delbrcük, 1949; Kauffman, 1969; Waddington, 1939).
Again this is a simple statement that has significant consequences. First, there are many different types of attractor that can
occur, including: stable stationary states (isolated points in state space X which represent fixed patterns of gene expression,
which can be categorized into subcategories such as stable nodes, stable spirals, etc.); stable limit cycles (closed trajectories in
state space, which represent self-sustaining patterns of oscillation); as well as more exotic structures such as limit tori and
strange attractors (which represent more complex rhythmic dynamics). Thus, cell fates may be associated with stable
unchanging patterns of gene expression or may be characterized by stable recurrent dynamics of various different kinds.

Second, not all molecular configurations are the same: any molecular configuration that is not part of an attractor
will be an unstable transient that the cell will only adopt briefly without revisit; conversely molecular configurations
that are part of an attractor are “robust” in the sense that all initial condition within the basin of attraction will con-
verge toward them over time.

Before discussing the experimental implications of this dynamical systems view, it is worth noting that this perspective
is a generalization of a view that is well known to biologists: Waddington's epigenetic landscape (Waddington, 2014).

Waddington conceived a view of the dynamics of development as analogous to a ball rolling under the influence of
gravity down a complex landscape, with numerous hills and valleys. As development occurs the ball, which represents
the cell, takes an increasingly constrained trajectory as it is guided along valley floors that may successively divide until
it ultimately comes to rest at a local minimum of the landscape.

Waddington summarized his view as follows (Waddington, 2014):

This ‘landscape’ presents, in the form of a visual model, a description of the general properties of a compli-
cated developing system in which the course of events is controlled by many different processes that inter-
act in such a way that they tend to balance each other …

and elsewhere (Waddington, 1939)

The line followed by the process [development] is the bottom of a valley… One might roughly say that all
these genes correspond to the geological structure which moulds the form of the valley.

It is clear from these quotes that Waddington had in mind that each cell fate is what we would now call a fixed-
point attractor, and that the dynamics are governed by a process of steepest descent on a landscape, the structure of
which is determined by interactions between the genes.

FIGURE 2 The cell as a dynamical system. Functional

associations between molecular components in the cell give rise to a

complex intracellular regulatory network. This network encodes the

architecture of a complex dynamical system that may admit numerous

attractors, each of which may be identified with a distinct cell “fate”.
The basins of attraction of the attractors partition the state space into

discrete pieces. The cell's intracelluar molecular dynamics may admit

many different kinds of attractor including various different kinds of

fixed-point such as (Upper-Left) stable nodes and (Right) stable spirals,

as well as (Lower-Left) limit cycles, and (Lower-Centre) more exotic

structures such as limit tori (shown) or even strange attractors
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This intuition can be encoded mathematically. To do so we first introduce a scalar potential V(x), which represents
the “height” of the landscape at point x. Mathematically, this potential defines the structure of an n-dimensional mani-
fold (essentially, a smooth structure that is locally equivalent to n-dimensional Euclidean space; Figure 3). To account
for the downhill flow, we assume that the vector field F(x) on the right-hand side of Equation (1) can be written in
terms of the gradient of this potential, and that inertia is negligible. In this case, the dynamics may be written as

dx
dt

=−rV xð Þ, ð2Þ

where r is the gradient operator.
Equation (2) is the mathematical statement of Waddington's intuition (and incidentally the equation of motion for a

charged particle within an electrostatic potential V(x) neglecting inertia). It is remarkable that at the time that Waddington
first made this speculation (the late 1930s) very little was known about the genes, and the theoretical foundations of dynami-
cal systems theory had not yet been laid, yet his vision for cell fate dynamics is notably close to our current understanding.

Nevertheless, although prescient, we now know that Waddington's vision was not complete. In particular, most dynami-
cal systems cannot be written in the form given in Equation (2) because most vector fields cannot be written as the gradient
of a scalar potential: indeed this is a very strong statement, which ensures that the dynamics only admit fixed point attractors
and is not generally satisfied by cell fate regulatory dynamics. For example, limit cycles corresponding to stable self-
sustaining oscillations are ubiquitous in cell biology (Abranches et al., 2014; Dunlap, 1999; Imayoshi et al., 2013; Kruse &
Jülicher, 2005; Manning et al., 2019; Tyson, Chen, & Novak, 2001), yet they are not admitted by the mathematical formalism
of Waddington's landscape, as given by Equation (2). In fact, Equation (2) implies the biologically unfeasible constraint that
the intracellular regulatory network that defines the landscape is symmetric—that is, each regulatory edge in the network is
bidirectional (Weinreb, Wolock, Tusi, Socolovsky, & Klein, 2018)—which is certainly not true.

Despite this limitation, Waddington's notion that dynamics are guided by a “landscape” that is shaped by regulatory
interactions between the genes continues to be the most widely adopted understanding of cell fate dynamics. Impor-
tantly, these ideas are not just of theoretical interest. Increasingly, they are being used to guide the design and interpre-
tation of experimental studies. In the next section, we will therefore explore how the theoretical ideas discussed in this
section are used practically to decipher experimental data.

3 | CELL FATE: IN PRACTICE

Modern experimental methods are able to profile the expression of thousands of molecular markers in thousands of
individual cells in a single experiment (Cheung and Utz (2011); Macosko et al., 2015; Picelli et al., 2014). The datasets
that these high-throughput single-cell experiments produce are allowing us to explore our understanding of the rela-
tionship between molecular expression patterns and cell fates in ever-increasing detail. However, they can be highly
complex, and require specialized computational tools to make sense of them. There is, therefore, now a burgeoning
field of single-cell analytics that aims to develop mathematical and computational methods specifically designed to dis-
sect the structure of single-cell data, and relate observed structures to theoretical notions of cell fate (Cao et al., 2019;
Moffitt et al., 2018; Rodriques et al., 2019).

A

B

FIGURE 3 Cell fate trajectories envisaged as a path of steepest

descent over a Waddington-like landscape. The distance from

molecular state A to point molecular state B over the landscape is

not the same as the Euclidean distance between them in the

expression space
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4 | CLUSTERING AND CELL FATES

In a statistical sense, a single-cell profiling experiment corresponds to a sampling of the space of all possible expression
patterns, X. Because interactions between genes and proteins result in high-dimensional associations between gene
expression patterns, these samples are not uniform in X, but rather typically exhibit a complex clustering structure that
indirectly reveals the nature of the underlying regulatory principles.

Accordingly, the most common set of techniques for single-cell analysis are clustering methods, which typically
seek to find distinct groups in the data and associate distinct cell fates with these groups. Figure 4 shows an example
of clustering of single-cell data using the widely employed Louvain clustering technique. Before we consider some
specific clustering methods, it is important to note, although it is not often explicitly said, that the connection
between data clusters and cell fates is motivated by the theory above. More precisely, in the presence of “noise”
(which could be both due to technical measurement error, and/or biologically functional fluctuations in expression
levels) theory predicts that clusters in the data will form around attractors of the deterministic dynamics. Typically
in experimental studies, clusters are assumed to be related to fixed points of the underlying dynamics. However, this
decision is made for reasons of parsimony, not biology. In fact, theory predicts that other topological structures
could also appear if the underlying dynamics admit attractors with a more complex geometry (e.g., noisy closed
“loops” in expression space would correspond to limit cycles in the underlying dynamics). In practice, however, we
do not yet have the tools to search for such structures in the highly noisy data that arise from single-cell experi-
ments, hence the current focus on clustering. This may change in the future though, and it is likely that advances in
single-cell profiling methods that produce more finely detailed, and less noisy data, in combination with develop-
ments in topological data analysis (Carlsson, 2009) will soon allow us to identify more complex dynamics from
single-cell profiling data.

Unsupervised clustering and community detection methods generally aim to identify partitions in data (Blondel,
Guillaume, Lambiotte, & Lefebvre, 2008; Girvan & Newman, 2002; Lloyd, 1982). As such, they can be used to decon-
struct the map from experimentally sampled cell states, xi ∈ X, to discrete cell fates, yi ∈ Y (Figure 1). There are now a
variety of different methods in use for this purpose: each method makes different assumptions about the data, and
different assumptions about the underlying dynamics. For example, k-means clustering is a widely used method that
seeks to minimize the within-cluster sum of squares, and so prefers clusters that are of similar size and approximately
“spherical” (Kiselev, Andrews, & Hemberg, 2019; Lloyd, 1982). From the dynamical systems perspective, this corre-
sponds to an assumption that the basins of attraction of the cell fate attractors are of similar size and simple geome-
try. Because this is a rather strong assumption, which may not be the case, there have been attempts to refine k-
means clustering for single-cell data (Grün et al., 2015). Hierarchical clustering (another widely used generic cluster-
ing method), by contrast, allows for more complicated cluster geometries, and additionally arranges clusters within a
nested hierarchy (Carlsson, 2009; Maimon & Rokach, 2005; Sibson, 1973; Ward Jr, 1963). Allowing for such
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FIGURE 4 Analysis of single-cell RNA-Seq profiling of a human bone marrow sample. Each point is an individual cell. (Left) Data are

projected into two dimensions using t-distributed stochastic neighbor embedding (t-SNE) and clustered using the Louvain method. (Right)

Known cell fates can be mapped to clusters by examining localization of characteristic markers. Clusters correspond to (1) myeloblasts,

(2) monoblasts, (3) lymphoid cells (4) stem and progenitors, and (5) erythroblasts
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hierarchical ordering is often a benefit: for example, in cases where cell fates can be decomposed into subtly different
subtypes each with slightly different molecular signatures corresponding to different functional biases, hierarchical
clustering can provide insight not only into individual cell fates but also the relationships between them (Zeisel et al.,
2015). Yet, it is not always the case that cell fates can be easily arranged in a hierarchy, and so hierarchical clustering
methods are not always appropriate. To circumvent these issues, a range of alternative methods are also used. Cur-
rently, the Louvain method is perhaps the most popular technique for clustering single-cell data, since it is able to
detect clusters of arbitrary structure without making assumptions on how clusters are related, so is generally better
suited to dissecting the structure of complex cell fate landscapes (Blondel et al., 2008; Butler, Hoffman, Smibert, Papa-
lexi, & Satija, 2018; Duò, Robinson, & Soneson, 2018; Freytag, Tian, Lönnstedt, Ng, & Bahlo, 2018; Girvan & New-
man, 2002; Stuart et al., 2019; Wolf, Angerer, & Theis, 2018). This flexibility is achieved by considering pairwise
distances between cells independently and restricting attention to the k-nearest neighbors of each cell, rather than
considering distances between all pairs of cells. Doing so allows the data to be represented as a graph, in which each
cell is a node and edges represent nearest neighbor relationships. Once constructed, this graph can be partitioned into
sets of densely connected nodes (cells), independently of the geometry of how these sets are arranged in the expres-
sion space, X.

5 | VISUALIZATION AND DIMENSIONALITY REDUCTION

In addition to clustering, a range of other data analysis methods are used to deconstruct the landscape of cell fate. Most
commonly, clustering is performed in conjunction with dimensionality reduction.

The data that results from single-cell profiling experiments are typically high-dimensional, and therefore hard to
interpret intuitively. There has, therefore, been considerable effort to apply a range of dimensionality reduction
methods to single-cell data (Becht et al., 2019; Ding, Condon, & Shah, 2018; Van Dijk et al., 2018). As with clustering,
the rationale for this effort is not just pragmatic. Because functional associations between genes give rise to correlations
in expression patterns, it is expected that important structural features of the data will be lower dimensional than the
space in which the data may be collected (i.e., the dimension of the expression space X).

The basic method for dimensionality reduction is principal components analysis (PCA) (Hotelling, 1933; Pear-
son, 1901). PCA is a linear method that essentially seeks to translate and rotate coordinates such that the first-
derived coordinate (or principal component, PC) captures as much variability in the data as possible and each suc-
cessive PC is orthogonal to the last and captures as much of the remaining variability as possible. PCA is quick and
easy to implement, and can be surprisingly informative. For example, because each PC is a linear combination of
underlying variables (e.g., the gene expression levels), the results of PCA can be easily interpreted and interrogated
for biological meaning. For this reason, it is widely used. However, because PCA is a linear method and biology is
inherently (and often strongly) nonlinear, it is inherently limited in dissecting single-cell data. For this reason, there
have been a number of attempts to derive alternative methods that are able to better capture biology's
nonlinearities.

A common, characteristic feature of these methods is that they recognize that to properly understand expression
data we need to refine our notion of “distance” between cells. To see why this is important it is helpful to return to
Waddington's landscape and note that to traverse a path between two points on the landscape, we are not free to
travel directly “as the crow flies” but rather the path(s) that we can take, and therefore, the distance between points
is constrained by the structure of the landscape itself. Importantly, the length of the shortest path, or geodesic,
between two points may therefore be very different from the Euclidean distance between the points. This discrepancy
may not be significant for points that are close to each other on the landscape but can be acute when considering the
distance between points that are far apart, because the geodesic may involve traversing over multiple hills and
through multiple valleys. For this reason, the most popular nonlinear dimensionality methods for single-cell expres-
sion data, such as t-distributed stochastic neighbor embedding (t-SNE), and uniform manifold approximation and
projection (UMAP) seek to balance local and global notions of distance (Becht et al., 2019; Grün et al., 2015; Hinton &
Roweis, 2003; Klein et al., 2015; Maaten & Hinton, 2008). The results of these methods are typically two-dimensional
“maps” of expression patterns that capture the essential structure of the data yet represent it in a two-dimensional
form that is easier to analyze visually. Often dimensionality reduction methods are used in combination with cluster-
ing methods to show how cell fates are arranged relative to one another. Figure 4 shows the typical output of such an
analysis.
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6 | TRAJECTORY INFERENCE

The methods described so far aim to identify different cell fates from data and represent relationships between them.
Such analysis is appropriate whenever the cell fate dynamics are at equilibrium. However, many experiments investi-
gate cell populations as they transition from one fate to another. Because they probe the transition between fates, such
dynamics are out-of-equilibrium. Examples of this kind of experiment include monitoring the dynamics of the induc-
tion of pluripotency in vitro, or the dynamics of stem cell lineage differentiation in vivo (Dahlin et al., 2018; Nestorowa
et al., 2016; Paul et al., 2015; Takahashi & Yamanaka, 2006).

The theory described above also provides a simple framework to interpret these experiments. First, note that the
field F(x) in Equation (1) that describes the cellular dynamics will typically depend upon a set of bifurcation parameters
μ that may change over time (for example, due to environmental changes). Importantly, at certain critical points,
known as bifurcation points, F(x;μ) will change its topology, resulting in the loss or gain of attractor states. If a develop-
mental or experimental process tunes a subset of bifurcation parameters such that when one attractor state loses stabil-
ity another gains stability, a cell will move along a trajectory in expression space and a fate change may occur.
Biologically, these bifurcation parameters often correspond to the expression levels of various different morphogens.
For example, it is well known that a set of critical values in the level of the morphogen Sonic Hedgehog determines the
stability different cell fates in the ventral neural tube Balaskas et al. (2012).

There is much interest in better understanding the typical trajectories that are followed by cells during such cell
fate transitions. Importantly, because current single cell profiling methods are destructive, it is not possible to contin-
uously monitor individual cells as they change fate, and so there has been considerable interest in developing compu-
tational methods that are able to infer trajectories from samples of cells taken periodically as they undergo a
transition. These methods are known as trajectory inference and in recent years, trajectory inference has become a
rapidly growing field—for instance, over 70 distinct methods were identified in a recent review (Saelens, Cannoodt,
Todorov, & Saeys, 2019). Inferred trajectories are particularly interesting from a biological perspective because they
can be used to assign an ordering to sampled cell states, enabling the dynamics of individual molecular species to be
determined, thereby helping to dissect the molecular mechanisms that drive cell fate changes (Aibar et al., 2017;
Trapnell et al., 2014).

Cell fate trajectories are often inferred by finding a directed network of cell state “milestones” that provide a skele-
ton that captures the essential topology of trajectories being examined (Saelens et al., 2019). Different methods make
different assumptions concerning the structure of this network. Most commonly it is assumed to have a tree-like struc-
ture which can contain a series of branches, but not cycles (Saelens et al., 2019; Street et al., 2018). In this case, putative
branch points (at which a cell fate “choice” is made, and different cells may adopt divergent fates) can also be identified
and the molecular changes that occur when cell fates diverge can be investigated. From a dynamical systems perspec-
tive such branch points are interesting because they occur whenever there is a bifurcation in the underlying dynamics.
Thus, trajectory inference methods can, in principle, allow indirect exploration of bifurcation points. Typically, this is
currently done in a relatively ad hoc way; however, we anticipate that future methods will allow us to better understand
the nature of the bifurcations that regulate cell fate choices directly from experimental data.

7 | CONCLUSIONS

In this primer, we have introduced some notions from dynamical systems theory and discussed how they can be used
to better understand cell fate dynamics both in theory and practice. This is an area that has its roots in pioneering work
by Waddington, Delbrück, Kauffman and others, yet is still an issue that is at the forefront of modern cell biology.
Indeed our understanding of the relationships between cell states, fates, and the dynamics of fate acquisition is still in
its infancy (Clevers et al., 2017). As we develop increasingly sophisticated experimental ways to interrogate cells as they
move between states, there is a concurrent need to refine, revise, and improve our theoretical understanding of cell fate
dynamics. Indeed, to properly understand modern experimental data, a sound theoretical foundation is needed. We
anticipate that the coming years will see ever-closer integration of theory and experiment in this area that will, in turn,
yield a deeper understanding of cell fate dynamics.
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