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Marginal structural models (MSMs) are commonly used to estimate causal intervention effects in longitudinal
nonrandomized studies. A common challenge when using MSMs to analyze observational studies is incomplete
confounder data, where a poorly informed analysis method will lead to biased estimates of intervention effects.
Despite a number of approaches described in the literature for handling missing data in MSMs, there is little
guidance on what works in practice and why.We reviewed existing missing-data methods for MSMs and discussed
the plausibility of their underlying assumptions. We also performed realistic simulations to quantify the bias of 5
methods used in practice: complete-case analysis, last observation carried forward, the missingness pattern
approach, multiple imputation, and inverse-probability-of-missingness weighting. We considered 3 mechanisms
for nonmonotone missing data encountered in research based on electronic health record data. Further illustration
of the strengths and limitations of these analysis methods is provided through an application using a cohort
of persons with sleep apnea: the research database of the French Observatoire Sommeil de la Fédération de
Pneumologie. We recommend careful consideration of 1) the reasons for missingness, 2) whether missingness
modifies the existing relationships among observed data, and 3) the scientific context and data source, to inform
the choice of the appropriate method(s) for handling partially observed confounders in MSMs.

complete cases; inverse probability weighting; last observation carried forward; missingness pattern approach;
multiple imputation; propensity score; time-varying confounding

Abbreviations: CC, complete-case; CPAP, continuous positive airway pressure; IPMW, inverse-probability-of-missingness
weighting; LOCF, last observation carried forward; MAR, missing at random; MCAR, missing completely at random; MI, multiple
imputation; MPA, missingness pattern approach; MSM, marginal structural model; OSFP, Observatoire Sommeil de la
Fédération de Pneumologie.

Although randomized trials are the gold standard for
establishing causal effects of treatments and nonpharma-
cological interventions on health outcomes, observational
data are increasingly being used for causal inference (1).
The enormous potential offered by the wealth of routinely
collected medical data available and the need for real-world
evidence to assess the efficacy and safety of treatments have
contributed to this phenomenon.

These routinely collected data typically have a longitu-
dinal structure, following people over time, allowing the
measurement of dynamic treatment patterns, including treat-
ment switching or delay to treatment initiation. Patients
with chronic conditions often have a nonlinear treatment

history: Treatment prescription might be updated based on
the occurrence of new health events, changes in individual
factors, or side effects induced by previous treatments. The
newly prescribed treatment might, in turn, affect future
health events and individual factors, themselves potentially
associated with the outcome of interest (2). In such settings,
specific statistical methods are required to account for con-
founding bias induced by time-varying variables (3). Indeed,
adjusting for the confounders and treatment history is not
sufficient, and often leads to biased estimates of the causal
treatment effects (4). This is because the effect of a treatment
received at a specific time on the outcome is mediated by
subsequent treatments. Propensity scores—the individual
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probabilities of receiving the treatment of interest condition-
ally on individual characteristics—have been extended to
situations with time-varying treatment and confounders (5),
with scores estimated at each time point (6). The cumulative
product of the inverse of these scores over time can be used
as a weight to account for confounding in the estimation of
the treatment effect in a marginal structural model (MSM)
(7). This method of adjusting for time-varying confounders
is the most common in practice, by far (8).

A challenge when analyzing observational data is incom-
plete confounder information. In routinely collected data,
missingness is particularly prevalent among covariates. This
can happen if some information is not recorded at a given
time point or the frequency of the measurement varies from
one patient to another (e.g., asynchronous medical visits
(9)). This might jeopardize the validity of the results if the
issue is ignored in the analysis, depending on the underlying
missingness mechanisms. In practice, despite the STROBE
recommendations to report the amount of missing data and
the way in which they are handled (10) in observational
studies, reporting is often suboptimal. A review of reporting
of missing exposure data in longitudinal cohort studies
showed that 43% of identified publications adhered to
these guidelines (11). Importantly, when the method for
handling missing data was reported, it was often done using
inadequate methods. Although several methods for handling
missing data on covariates have been used in the con-
text of time-varying exposures (11), the most common
approaches—complete-case (CC) analysis and last observa-
tion carried forward (LOCF)—have been criticized. Use of
more complex approaches such as multiple imputation (MI)
or inverse-probability-of-missingness weighting (IPMW)
have been suggested, but their performance is yet to be fully
explored. Another promising approach, which has not been
extended to the context of MSMs, is the missingness pattern
approach (MPA).

To our knowledge, there are no published guidelines on
the choice of methods for handling missing confounder
data in MSMs. Published studies on missing data in MSMs
focused on missing data in the exposure (11, 12) or com-
pared the performance of a few methods only (13, 14).
Moodie et al. (14) compared the use of IPMW and MI,
finding that MI outperformed IPMW, but they did not inves-
tigate the performance of MPA and LOCF. Moreover, only
1 covariate and 2 time points were considered, limiting the
generalizability of the results. Vourli and Touloumi (15)
investigated the performance of MI, IPMW, and LOCF but
reached opposite conclusions in their setting, finding that
IPMW usually performed better than MI. This might be
explained by the omission of the outcome from the impu-
tation model. A recent plasmode simulation (13) suggested
superiority of MI over IPMW, but surprisingly, CC analysis
was the least biased. A limitation of these published studies
is their focus on missingness mechanisms described under
Rubin’s taxonomy of missing data (16); this taxonomy may
be too restrictive to describe complex missingness scenarios
encountered in routinely collected data (17).

Our aims in this paper are, first, to provide an overview
of existing methods for handle missing data on confounders
in MSMs and, second, to recommend practical guidelines.

These guidelines will rely on the understanding of the as-
sumptions and missingness mechanisms under which these
methods are valid. We focus on situations where some vari-
ables are not recorded during the visit, rather than missing
data introduced because of sparse follow-up. These 2 sce-
narios differ in terms of both underlying missingness mech-
anisms and required statistical methods. The challenges of
sparse follow-up have been discussed by Mojaverian et al.
(9) and Kreif et al. (18). We present the design and results
of a simulation study comparing the performance of CC
analysis, LOCF, MI, IPMW, and MPA in handling partially
observed confounders under common missingness mecha-
nisms encountered in observational studies. Finally, we
illustrate the implementation of these methods by investi-
gating the impact of treatment compliance on sleepiness in
patients with sleep apnea.

MSMs AND THE ISSUE OF MISSING DATA

Causal inference in the presence of time-varying
treatment and confounders

When time-varying confounding occurs, standard regres-
sion approaches fail because of treatment-confounder feed-
back (19), even when models are adjusted for past treatment
and confounders (3). MSMs were developed (7) to estimate
causal effects in this setting. MSMs rely on an extension
of inverse-probability-of-treatment weighting, a propensity
score approach, for multiple time points. Details about this
framework and underlying assumptions for a single time
point are provided in Web Appendix 1 (available at https://
doi.org/10.1093/aje/kwaa225). Similar to propensity score
approaches, MSMs are a 2-stage process. In the first stage
(19), weights—based on the inverse of the probability of a
patient’s receiving the treatment they actually received—are
estimated to create a pseudopopulation in which treatment
and confounders are independent. In the second stage, a
weighted regression (using the weights derived in the first
stage) including only the treatment history can be used to
obtain an estimate of the causal effect of the treatment regi-
mens of interest. Under the assumptions of no interference,
consistency, exchangeability, and positivity extended to time-
varying settings, and assuming that the model used to obtain
the weights is correctly specified, MSMs lead to unbiased
estimates of the marginal causal effect of the treatment
regimen.

In practice, the weights can be estimated using pooled
logistic regression (6), in which each person-time interval
is considered as an observation. This pooled logistic regres-
sion model must include the confounders and their relevant
interactions to ensure that the distributions of confounders
are balanced between treatment groups in the weighted
pseudopopulation at each time point. Further details on the
implementation of MSMs can be found in Web Appendix 2.

Missing data in MSMs: mechanisms and methods

The choice of an appropriate missing-data method relies
on the characterization of the missingness patterns and the
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missingness mechanisms. The missingness patterns simply
define which values of the covariates are observed and which
are missing. For example, if the data set contains only 2
time-fixed covariates, L1 and L2, there are 4 missing data
patterns: L1 and L2 can both be observed, L1 and L2 can
both be missing, L1 can be observed and L2 missing, or L1
can be missing and L2 observed. Similarly, if L1 and L2 are
measured at 2 time points, there are 16 patterns. Some meth-
ods for handling missing data, such as multiple imputation,
apply to any pattern of missing data; other methods apply
only to specific structures of missing data, the most common
being the monotone missing-data pattern. In longitudinal
data, monotone missingness patterns occur when, once a
patient has a missing observation at 1 time point, values for
all subsequent time points are also missing. This is typically
what happens when patients are lost to follow-up. Whereas
methods based on inverse weighting have been proposed
to address this type of missing data in MSMs, there is no
guidance on how to handle arbitrary patterns (not monotone)
in MSMs. This is, however, the most common pattern found
in routinely collected data where data are not collected for
research purposes, and the quality of recording may vary
from one visit to another.

Little and Rubin’s classification (16) is often used to
classify the missing data as being 1) missing completely
at random (MCAR), when the probability of data being
missing does not depend on the observed or unobserved
data; 2) missing at random (MAR), if the probability of
data being missing does not depend on the unobserved data,
conditional on the observed data; or 3) missing not at random
(MNAR), if the probability of data being missing depends on
the unobserved data, even after conditioning on the observed
data (20).

A variety of methods for handling missing data on co-
variates have been used in the context of time-varying expo-
sures (11). The most common approach is CC analysis, in
which only patients with a complete record for all of the
covariates are included in the analysis. Another simple and
popular approach is LOCF: When a measurement is missing
for a given patient, the most recent past value observed for
that patient is used to impute the missing value. MI uses
relationships existing among the observed variables to draw
plausible values multiple times for the missing data; the
standard error of the treatment effect estimates accounts for
the uncertainty in these predictions. In MSMs, Robins et al.
(7) proposed using censoring weights to account for patients
lost to follow-up. Complete cases are reweighted by the
inverse of their probability of remaining in the study. Loss
to follow-up can be viewed as a missing-data problem, and
therefore these weights can be accommodated to account for
missing data. This method is called IPMW. Another promis-
ing approach for handling partially observed confounders
that should be extended to MSMs is the MPA. The MPA has
been proposed for the estimation of propensity score weights
in studies with a single time point (17). The sample is split
into subgroups of patients having missing information on the
same set of covariates, and the weights are derived in each
subgroup from the covariates available in that pattern. More
details on these methods are presented in Web Appendix 3.
The approaches rely on different assumptions; their validity

depends on the missingness mechanisms in the data at hand.
These assumptions, along with the strengths and limitations
of each method, are summarized in Table 1.

METHODS

We performed a simulation study to 1) illustrate the im-
pact on bias of violations of the assumptions required for
each method to be valid, and the relative precision of these
methods when assumptions hold, and 2) highlight existing
challenges in their implementation in practice. Data were
simulated to mimic an observational study evaluating the
effect of a time-varying binary treatment on a continuous
outcome in the presence of time-varying confounding. We
focused on 4 plausible types of missingness mechanisms
(Figure 1).

• MCAR mechanism: Missingness is not dependent on
either observed variables or unobserved variables.

• MAR mechanism: We consider 3 situations—1) missing
data depend on observed past treatment and confounder
values (MAR|A, L); 2) missing data depend on past treat-
ment and confounder values and outcome (MAR|A, L,
Y); and 3) missing data are associated with the outcome
through the independent risk factor (MAR|A, L, V).

• “Constant” mechanism: Confounder values are missing
if they have remained constant since the last visit (a
mechanism under which LOCF is expected to perform
well).

• “Differential” mechanism: The missingness mechanism
itself is MAR, but missingness affects the subsequent
association between the true value of the confounder
and the treatment (the mechanism implicitly assumed
by the MPA). In other words, the past observed values
of the confounders and treatment predict missingness,
but among persons with a missing covariate value at a
given time point, there is no association between the
true (but unmeasured) value and the subsequent treatment
received.

We compared the performance of CC analysis, LOCF,
MPA, MI, and IPMW to estimate the causal effect of the
intervention at each time point. The analysis model was the
additive model proposed by Daniel et al. (3) and Robins
et al. (7):

Y = βint + β0a0 + β1a1 + β2a2,

where Y is a continuous outcome, ak are the binary treatment
indicators at time k (k = 0, 1, 2), and the β coefficients are
the parameters of the MSM. This model allows estimation
of the contrast between any treatment strategies of interest.
The data-generating mechanisms, methods, estimands, and
performance measures for our simulations are presented in
Web Appendix 4, and the R code with which to generate the
data is available in Web Appendix 5. In the main scenario,
the proportion of missing data was around 40%, and the
sample size was 10,000. We also investigated the impact
of a smaller proportion of missing data (5%) and a smaller
sample size (n = 500).
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Table 1. Characteristics of 5 Missing-Data Methods for Partially Observed Time-Varying Confounders

Method Missing Data on . . . Assumptions
Unbiased in MSMs

When . . .
Advantages Limitations

Complete-case
analysis

Covariates
Treatment
Outcome

Missing data are MCAR. MCAR Straightforward May be inefficient
because of the loss
in sample size

Last observation
carried forward

Covariates
Treatment
Outcome (except

at baseline)

The true, but missing,
value is the same as
the last available
measurement
or
the treatment decision
depends on the
previous available
measurement rather
than the true
(unobserved) one.

Constant Straightforward

Discards fewer
patients than
complete-case
analysis

Can lead to
confidence intervals
that are too narrow

Patients are
discarded if
baseline
measurements are
missing.

Multiple
imputation

Covariates
Treatment
Outcome

Missing data are MAR.a

The imputation model
is correctly specified.

MCAR
MAR|A, L
MAR|A, L, Y
MAR|A, L, V

Maintains the original
sample size

May be
computationally
intensive

Challenging for a
large number of
time points

Inverse-probability-
of-missingness
weighting

Covariates
Treatment
Outcome

Missing data are MAR
given the treatment
and the covariates,
but not the outcome.

The weight model is
correctly specified.

MCAR
MAR|A, L
MAR|A, L, V

Constant

Faster than multiple
imputation for large
data sets

Weights
simultaneously
address
confounding and
missing data.

May be inefficient for
small and moderate
sample sizes

Missingness
pattern
approach

Covariates The partially observed
covariate is no longer
a confounder once
missing (e.g., the
treatment decision
depends on the
confounder value only
when a measurement
is available).

Differential Relatively simple to
implement

Assumptions do not
relate to Rubin’s
taxonomy, so this
method may work
when standard
methods do not.

Does not handle
missing data on the
exposure or
outcome

Challenging when
the number of
missingness
patterns is large

Abbreviations: MAR, missing at random; MCAR, missing completely at random; MSM, marginal structural model.
a Extensions with which to accommodate data that are missing not at random exist but are challenging to apply in practice.

RESULTS

The results of the main simulation study (n = 10,000 and
40% of missing data) are presented as box plots in Figures 2
and 3, showing the distribution of the absolute bias for each
method, and are summarized in Table 1. Full results are
presented in Web Tables 1–5 and Web Figures 1–4.

Missingness completely at random

Whereas CC, MI, and IPMW lead to unbiased estimates
at the 3 time points, the MPA estimates are biased at each
time point and LOCF estimates are biased at times 1 and
2 (Figure 2). The bias for the MPA arises from the direct

associations existing between the confounders and the treat-
ment allocation at subsequent time points, even among par-
ticipants with missing covariate values. For LOCF, the bias
arises because the missing values were generally different
from the observed previous value because confounder values
were affected by prior treatment.

Missingness at random

Except for MI, which led to unbiased estimates at each
time point for the 3 MAR scenarios, the performance of
the other analysis strategies relied on the variables that
were predictive of missingness (Figure 3). When missing-
ness depended on the values of past treatment assignment
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Figure 1. Causal graphs representing several possible scenarios for missing values. At each time point, L1 and L2 are the 2 time-varying
confounders, A is the time-varying treatment, Y is the outcome, V is an independent risk factor, and R is the missingness indicator. The diagrams
represent scenarios in which missingness occurs completely at random (MCAR) (A); occurs when there has been no change since the previous
measurement (constant) (B); occurs at random given the confounders and treatment (MAR|A, L) (C); occurs at random given the confounders,
treatment, and outcome (MAR|A, L, Y) (D); occurs at random given the confounders, treatment, and an independent risk factor (E); and depends
on the treatment and confounders but the association between the missing value and the subsequent treatment allocation no longer exists
(differential) (F). Under the panel F scenario, the confounder only contributes to the treatment allocation decision when it is observed. MAR,
missing at random; MCAR, missing completely at random.

and confounders, IPMW estimates were unbiased at the 3
time points. A small bias was observed for CC analysis and
larger biases were obtained when using LOCF and MPA,
for similar reasons as in MCAR scenarios. When the out-
come was directly related to missingness, the only unbiased
approached was MI. However, when an indirect associ-
ation between the outcome and missingness existed, the
IPMW led to unbiased estimates, with a lower precision
than MI.

Missingness on constant values

Only LOCF was unbiased (Figure 3), and the bias was
worse with MI and IPMW than with CC analysis. This is
because they both use the existing relationships between the
confounders, treatment, and outcome in the observed data,
but in this scenario, these relationships do not reflect the
associations existing between the true (missing) confounder
values and the other variables.

Missingness affecting the subsequent
covariate-treatment associations

MPA was the only appropriate method for obtaining unbi-
ased treatment effect estimates, although the bias of the other

approaches was quite small. As in the previous scenario,
the associations between confounders and treatment among
the complete cases cannot be used to make inferences about
the relationship among participants with missing confounder
values. Therefore, CC analysis, MI, and IPMW are biased.
LOCF estimates are unbiased when missingness in a variable
depends only on the previous measurement for that variable.
However, in the current scenario, missingness depends on
past values of the treatment and confounders.

When the sample size was small (n = 500), the magnitude
of bias was similar to that observed for the sample size
of 10,000, but the standard errors of the treatment effect
estimates were very large, illustrating the lack of efficiency
of MSMs in small samples (Web Figures 3 and 4).

When only 5% of the data were missing, biases were
smaller in magnitude and were, in our setting, negligible for
non-MAR situations. However, we would not recommend
the implementation of a method known to be biased when
unbiased alternatives exist.

ILLUSTRATIVE EXAMPLE

To illustrate the different methods, we analyzed data
from a French prospective national cohort study that uses
the research database of the Observatoire Sommeil de la
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Figure 2. Absolute bias of the treatment effect estimate at k = 0 (left column (panels A, D, and G)), k = 1 (middle column (panels B, E,
and H)), and k = 2 (right column (panels C, F, and I)) on full data and following the use of different missing-data approaches under missing
completely at random (top row (panels A–C)), constant (middle row (panels D–F)), and differential (bottom row (panels G–I)) missingness
mechanisms (n = 10,000; 40% of missing data). For multiple imputation, 10 imputed data sets were generated. CC, complete cases; IPMW,
inverse-probability-of-missingness weighting; LOCF, last observation carried forward; MI, multiple imputation; MPA, missing pattern approach.

Fédération de Pneumologie (OSFP). The OSFP registry is a
standardized Web-based report containing anonymized lon-
gitudinal data on patients with sleep disorders (21). We
aimed to estimate the causal effect of compliance with
the use of a continuous positive airway pressure (CPAP)
device on sleepiness symptoms among patients diagnosed
with obstructive sleep apnea. In the OSFP registry, the num-
ber of recorded visits per patient varies, so for simplicity,
we focused on patients who had follow-up visits within
3 months, 6 months, and 1 year after initiation of CPAP
treatment in order to focus on the problem of missing records
rather than sparse follow-up. Compliance was determined as
use of a CPAP device for an average of 4 or more hours per
night within each time interval. The outcome was a continu-
ous sleepiness score measured during the last visit using the
Epworth sleepiness scale (22). Age, sex, body mass index
(weight (kg)/height (m)2), nocturia, and the presence of
depression were considered as potential confounders in this
study. The investigators intended to record updated values of
body mass index, nocturia, and depression at each visit; how-
ever, measurement was not always undertaken as planned.

Patients could have 1 (or more) missing measurement(s)
on at least 1 of these variables. Patients’ characteristics are
described in Web Table 6.

Out of 1,169 patients included, only 263 (22.8%) had
complete records with no missing values (i.e., were complete
cases) (Web Table 7). Data were not MCAR, since associa-
tions were observed between all potential confounders and
the probability of having a complete record. However, an
MAR mechanism was plausible in this setting. The MPA was
not a suitable method for this analysis because of missing
data on the CPAP exposure.

Results are presented in Figure 4 and Web Table 8. Over-
all, we found no causal effect of CPAP compliance on sleepi-
ness. Due to the relatively small sample size, IPMW led to
very wide 95% confidence intervals. The 95% confidence
interval for LOCF was narrower but did not account for
the uncertainty around the imputed values. Furthermore, the
assumption underlying the validity of LOCF was unlikely
to hold here. As expected, all approaches produced similar
results because confounding was not very strong (Web Table
7). However, this application illustrates the inefficiency of
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Figure 3. Absolute bias of the treatment effect estimate at k = 0 (left column (panels A, D, and G)), k = 1 (middle column (panels B, E, and H)),
and k = 2 (right column (panels C, F, and I)) on full data and following the use of different missing-data approaches under 3 scenarios of data
missing at random (MAR): 1) MAR given the covariates and the treatment (MAR|A, L) (top row (panels A–C)); 2) MAR given the covariates, the
treatment, and the outcome (MAR|A, L, Y) (middle row (panels D–F)); and 3) MAR given the covariates, the treatment, and the independent risk
factor (MAR|A, L, V) (bottom row (panels G–I)) (n = 10,000; 40% of missing data). For multiple imputation, 10 imputed data sets were generated.
CC, complete cases; IPMW, inverse-probability-of-missingness weighting; LOCF, last observation carried forward; MI, multiple imputation; MPA,
missing pattern approach.

IPMW and the limitations of the MPA approach when expo-
sure data are missing.

DISCUSSION

In this paper, we have presented 5 methods for handling
missing values in partially observed time-varying covariates
in MSMs, identified situations in which they are appropriate
for estimating unbiased causal effects, and illustrated how
to implement these approaches in practice. We have shown
that, for the estimation of causal effects, CC analysis is
often biased, unless data are MCAR. The validity of this
assumption cannot be tested from the data (23), but viola-
tions of these assumptions can be detected by looking at
associations between the probability of being a complete
case and the variables available in the data set. While the
MCAR assumption is rarely plausible, we also showed that
when missing values are MAR given treatment history and
confounders, the bias of the CC estimates is usually small.

LOCF leads to biased estimations of the treatment effects,
unless missing values are in truth missing because they
remained constant over time or when the previous mea-
surement is used to adapt treatment (rather than the true—
but missing—measurement). This assumption may hold in
routinely collected data. For instance, a general practitioner
might not record a patient’s weight during a visit if it has not
changed since the previous consultation. This assumption
cannot be tested from the data, but the plausibility of the
assumption can be assessed using expert opinion, build-
ing on what has been proposed in randomized trials (24).
Moreover, when using LOCF, the uncertainty around the
single imputation of missing values is not accounted for (25).
Although this is not an issue for categorical variables, it
is problematic for continuous confounders, where imputing
exactly the previous measurement may lead to inappropriate
certainty.

As expected, MI led to unbiased estimates of the treatment
effect when data were MCAR or MAR. When implementing
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Figure 4. Results of applying unadjusted analysis, complete-case (CC) analysis, the last observation carried forward (LOCF) approach,
multiple imputation (MI), and inverse-probability-of-missingness weighting (IPMW) to an illustrative example on sleep apnea using data from the
Observatoire Sommeil de la Fédération de Pneumologie registry. Each point represents the difference in sleepiness scores at the end of the
study (12 months) between compliers (use of a continuous positive airway pressure (CPAP) device for ≥4 hours/night) and noncompliers (CPAP
use for <4 hours/night) at each of 3 time points (3 months (squares), 6 months (circles), and 12 months (triangles)). Bars, 95% confidence
intervals.

MI, the outcome must be included in the imputation model
and the treatment effect estimated in each imputed data
set and combined using Rubin’s rules, as recommended in
settings with a single time point (26). In our simulations and
example, treatment and covariate values at all time points
were included in the imputation model. With an increasing
number of time points, issues of overfitting may arise. Two-
fold multiple imputation has been proposed for circumvent-
ing this problem (27). Instead of using all the time blocks in
the imputation model, only the current and adjacent times
are used, and therefore there are fewer parameters to be
estimated in the imputation model.

MPA and IPMW have never been investigated in the con-
text of MSMs. The MPA is unbiased when either the asso-
ciation between the partially observed confounder and the
outcome or the association between the partially observed
confounder and the subsequent treatment disappears among
patients with a missing value for that confounder. Hence,
the validity of this approach depends not on the missing-
ness mechanism but instead on the relationship between
covariates, treatment, and outcome among patients with
missing data. In routinely collected primary-care data, this
assumption is plausible when, for instance, the results of a
blood test are used by the general practitioner to adapt the
treatment prescription. If these results are missing (i.e., not
available to the general practitioner), they will not be used in
the treatment decision: Among patients with missing blood
test results, the true (but unmeasured) value of the biological
parameter is not directly associated with the treatment, and
therefore the test result is no longer a confounder. Imple-
mentation of the MPA is straightforward, but issues may

arise when there are many missingness patterns. The MPA’s
inability to accommodate missing data on the treatment
and the outcome might limit its applicability, unlike IPMW,
which includes only the complete records in the analysis,
regardless of which variables have missing values. IPMW
generally leads to unbiased estimates when data are MCAR
and MAR. The exception is the situation where missingness
is directly affected by the outcome, because the outcome
might be associated with treatment and confounder values
at later time points, which are not accounted for in the miss-
ingness model used to compute the weights. IPMW is also
unbiased in scenarios where the MPA is unbiased, because
patients are censored at the first instance of missing data, and
therefore no use is made of the information measured at later
time points. However, IPMW is somewhat inefficient. This is
explained by a loss in sample size and by the multiplication
of 2 weights (the treatment weight and the missingness
weight) that are both estimated with uncertainty, leading to
highly variable treatment effect estimates. We recommend
the use of IPMW in very large data sets—a situation in which
MI would be highly computationally intensive. Furthermore,
a limitation in the current implementation of IPMW is that
missing data were considered monotonic; that is, patients
were excluded from the analysis even when the outcome was
available at the end of follow-up. Recent developments on
inverse weighting have included an extension to nonmono-
tone missingness patterns (28), but it remains unclear how it
could be transposed to MSMs.

It is clear that no single missing-data method can simulta-
neously handle different types of missingness mechanisms.
However, in practice, missing values can occur in several
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variables according to different mechanisms. In such situa-
tions, it is crucial to understand the reasons for missingness
to identify groups of variables with similar missingness
mechanisms that could all be handled together. For instance,
in routinely collected data, some variables might not have
been updated because their values remained unchanged, and
some variables might be missing at random. A pragmatic
approach would be to first use the LOCF on the first group
of variables and then multiply impute the variables from the
second group. A more principled combination of methods
has been proposed in simpler settings. Qu and Lipkovich
(29) combined the MPA and MI for propensity score anal-
ysis with a single time point. Seaman et al. (30) proposed
combining MI and IPMW, but further investigation is needed
before these methods can be implemented in MSMs.

Although the role of our simulation was not to investigate
the statistical properties of the 5 approaches in a broad range
of settings but rather to empirically illustrate the theoretical
findings, the design of the simulations had several limita-
tions. First, we focused on a relatively simple setting with
3 time points and a few covariates. A plasmode simulation
approach based on the sleep apnea study would have been
more realistic but would not have allowed us to investigate
the “constant” and “differential” mechanisms of missing
data. Second, we generated data with a continuous outcome
only. While this was chosen because bias is more easily
observed with continuous outcomes, our conclusions will
apply to binary and time-to-event outcomes; the validity of
the methods relies on the missingness mechanism, which
is independent of the nature of the outcome. Similar con-
clusions would also hold had the outcome been measured
repeatedly. With a larger number of partially observed con-
founders, sparse data in some missingness patterns may pre-
clude use of the MPA approach. Moreover, in the presence
of numerous confounders with interactions and nonlinear
effects, the functional form of the weight model might be
harder to specify parametrically, and the obtained weights
could be unstable. These problems may be alleviated by
using more robust approaches (31) or statistical learning
methods (32). Finally, the standard error of treatment effect
estimates in our simulation study did not account for the
uncertainty in the weight estimation, resulting in overly wide
95% confidence intervals. A nonparametric bootstrap was
used in our illustrative example, but it was too computation-
ally demanding for use in simulations.

In conclusion, the choice of the appropriate method(s)
with which to handle partially observed confounders in
MSMs must rely on careful consideration of the reasons for
missingness and whether missingness modifies the existing
relationships among observed data. Causal diagrams may
help in understanding the structure of the data and the
relationships between variables when data are missing and
when data are observed. Although MI outperforms the other
approaches when data are MAR, we presented 2 scenarios,
encountered in routinely collected data, where MI leads
to biased estimates of the treatment effect estimates but
LOCF and the MPA might be suitable alternatives. Any
analysis with missing data inevitably relies on assumptions
about the missingness mechanisms or missingness patterns,
which are often not made explicit. We therefore encourage

researchers to clearly describe the assumptions under which
their primary analysis is valid and to perform sensitivity
analyses to assess the robustness of their results to departures
from these postulated missingness mechanisms.
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