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Abstract: The United Nations Convention to Combat Desertification (UNCCD) assumes spatial
disparities in land resources as a key driver of soil degradation and early desertification processes
all over the world. Although regional divides in soil quality have been frequently observed in
Mediterranean-type ecosystems, the impact of landscape configuration on the spatial distribution of
sensitive soils was poorly investigated in Southern Europe, an affected region sensu UNCCD. Our
study proposes a spatially explicit analysis of 16 ecological metrics (namely, patch size and shape,
fragmentation, interspersion, and juxtaposition) applied to three classes of a landscape with different
levels of exposure to land degradation (‘non-affected’, ‘fragile’, and ‘critical’). Land classification
was based on the Environmentally Sensitive Area Index (ESAI) calculated for Italy at 3 time points
along a 50-year period (1960, 1990, 2010). Ecological metrics were calculated at both landscape and
class scale and summarized for each Italian province—a relevant policy scale for the Italian National
Action Plan (NAP) to combat desertification. With the mean level of soil sensitivity rising over time
almost everywhere in Italy, ‘non-affected’ land became more fragmented, the number of ‘fragile’ and
‘critical’ patches increased significantly, and the average patch size of both classes followed the same
trend. Such dynamics resulted in intrinsically disordered landscapes, with (i) larger (and widely
connected) ‘critical’ land patches, (ii) spatially diffused and convoluted ‘fragile’ land patches, and
(iii) a more interspersed and heterogeneous matrix of ‘non affected’ land. Based on these results, we
discussed the effects of increasing numbers and sizes of ‘critical’ patches in terms of land degradation.
A sudden expansion of ‘critical’ land may determine negative environmental consequences since
(i) the increasing number of these patches may trigger desertification risk and (ii) the buffering effect
of neighboring, non-affected land is supposed to be less efficient, and this contains a downward spiral
toward land degradation less effectively. Policy strategies proposed in the NAPs of affected countries
are required to account more explicitly on the intrinsic, spatio-temporal evolution of ‘critical’ land
patches in affected regions.

Keywords: ecological metrics; desertification risk; agricultural mechanization; land-use change;
multivariate analysis; Europe

1. Introduction

Biophysical dynamics and socioeconomic forces leveraged land degradation, causing
an evident reduction in soil fertility and land productivity [1–3]. The reduction of soil’s
potential for both agricultural and natural productions is one of the main factors at the
base of land degradation, a key environmental issue worldwide [4]. At the same time,
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population growth, unrested economic development, and climate change, in turn, leveraged
land degradation [5]. The Mediterranean region is considered a paradigmatic hotspot
of soil degradation thanks to the coexistence of multiple phenomena such as erosion,
salinization, compaction, sealing, and contamination at close locations [6]. A joint set of
factors including population expansion, agricultural intensification, industrialization, and
urban sprawl—in ecological contexts featuring climate aridity and more recurrent droughts
than in the past—have largely shaped such processes [7–10]. Altogether, these forces were
demonstrated to exert negative effects on soil quality [11–13].

The negative impact of a given factor on both sensitive and insensitive soils is as-
sumed to be spatially ‘neutral’ (i.e., causing an increase in the level of sensitivity across a
sufficiently broad area) or spatially ‘asymmetric’ (e.g., determining a rise in the degree of
sensitivity specifically in already affected areas, or in non-affected land). In this perspective,
soil degradation processes have been subjected to many changes and create multiple dis-
turbances, due to the abovementioned causes, particularly over-extraction of underground
water, which has led to plant degradation and soil crusting, as well as overgrazing in
dryland and the increased impact of mechanization on a larger scale, expanding tillage, and
resulting in large areas where steppe vegetation is being destroyed [14–16]. For instance,
the choice of specific agricultural machines is critical to reduce land sensitivity and to
optimize the productive process in terms of sustainability and resilience [17].

With soil sensitivity to degradation becoming a dynamic attribute of both natural
and anthropogenic ecosystems [18], a high-resolution, diachronic assessment of landscape
transformations may provide a basic knowledge to delineate (and interpret) the relationship
between landscape structure and desertification risk [19–21]. In these regards, landscape
fragmentation is taken as a proxy of soil sensitivity to degradation [22]. While being
characteristic of a given ecosystem’s state, land fragmentation reflects endogenous and
exogenous shocks including climate change and human pressure [23]. However, relatively
few studies have investigated these issues in a specific soil degradation perspective [24].
Assuming vegetation cover as a good indicator of ecosystem conservation in dry areas,
earlier studies document a negative relationship between plant cover and soil erosion [7].
Sun et al. (2007) demonstrated that habitat connectivity is a proxy of desertification
risk [25]. At the same time, Alados et al. (2004) demonstrated how factors influencing
dominant plant cover decrease the underlying biodiversity in communities affected by soil
degradation and landscape fragmentation [8,26]. Habitat fragmentation is in turn reflective
of the most important consequences of land-use at the landscape level, exerting severe
consequences on natural ecosystems and ecological processes [9]. These factors may impact
population and community dynamics causing important modifications in the composition
of plant cover [27]. With vegetation patches becoming more fragmented and homogeneous,
soils were demonstrated to be more exposed to early desertification [28]. Whether these
processes lead to soil degradation—in turn triggering complex transformations responsible
for changes in landscape composition—has been occasionally explored [29].

In human-dominated landscapes, such as agricultural systems, soil degradation
and landscape fragmentation depend on the specific disturbance regime, i.e., the spatio-
temporal pattern of external shocks [30]. Socioeconomic traits can be considered in a
broad-scale analysis, e.g., evidencing that disturbance gradients brought about by socioe-
conomic factors and historical elements of the landscape influence vegetation cover [31].
Topographical constraints were found to be additional factors affecting vegetation sensi-
tivity to degradation [18]. While several studies have definitely analyzed fragmentation
effects on vegetation or fragmentation causes [32], an integrative approach to fragmenta-
tion and the related socioeconomic forces is needed to clarify vegetation dynamics and
enhance conservation of fragmented landscapes, where factors affecting vegetation and
fragmentation processes interact [33]. Assuming soil sensitivity associated with intense
landscape modifications, large-scale analyses evaluating the relationship between land-
scape fragmentation and the level of soil sensitivity are relatively scarce and partial [34]. A
quantitative characterization of spatial patterns is a crucial step when assessing intrinsic
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linkages between landscape configuration and the underlying ecological processes related
to soil degradation [35–37]. Compared with the rest of Europe, Mediterranean countries
such as Spain, Greece, and Italy have a medium level of landscape fragmentation overall,
with greater fragmentation in peri-urban, coastal areas [38].

Based on these premises, the working hypothesis of this study is that a given local
system may undergo different patterns of soil sensitivity to degradation, depending on the
various dynamics related to the process of fragmentation of the land patches exposed to
different levels of degradation [39]. For this purpose, the Environmental Sensitive Area
(ESA) framework was adopted here as an effective monitoring system of land degrada-
tion [40]. Assuming responses to soil degradation as based on a set of land management
actions depending on the local context [41], the present study assesses the evolution of
landscape metrics in Italy between 1960 and 2010, considering administrative regions as
the elementary spatial domain [42]. In line with these perspectives, regional mitigation
plans may promote a policy shift from driver-specific (and process specific) targets to a
more comprehensive set of practical actions mixing responses adapted to the local context.

2. Methodology
2.1. Study Area

With a coastline of about 7600 km including islands, Italy is divided longitudinally by
the Apennine Mountain chain; the Alps in turn separate Northern Italy from the European
continent. Geographically speaking, Italy is partitioned into 3 macro-regions (North, Centre,
South) with a total surface area extending 301,330 km2 and 3 elevation belts (23% flat land,
42% hilly areas, and 35% mountainous districts). Being located in the middle of the
Mediterranean basin, the country is characterized by a relatively mild climate with dry/hot
summers and temperate/wet winters. On average, the amount of precipitation increases
with elevation while temperature regimes follow the reverse pattern [43]. In common with
other Mediterranean countries, Italy displays a marked gap in socioeconomic development
reflected in differential population density, settlement distribution, and natural resource
capital between Northern and Southern regions [44].

2.2. Estimating Soil Sensitivity to Degradation

The Environmentally Sensitive Area (ESA) scheme was adopted here as a flexible
and simplified procedure evaluating soil sensitivity to degradation intended as a (more or
less generalized) condition underlying land degradation and desertification risk [20], with
outcomes validated on the ground [40]. This framework produces a multi-dimensional
index based on 14 elementary variables classifying soils according to different degrees of
sensitivity to degradation that depends on 4 thematic domains: climate, soil, vegetation,
and human pressure. Climate was described using average annual rainfall rate, aridity
index, and aspect [45]. Soil was described considering depth, texture, slope, and the nature
of the parent material. Vegetation was evaluated adopting plant cover, fire risk, protection
offered by vegetation against soil erosion, and the degree of resistance to drought shown
by vegetation, as basic descriptors of soil sensitivity. Human pressure has been finally
quantified as the result of population dynamics and selected land-use change, evaluating
population density, annual rate of population growth, and agricultural intensity. A detailed
description of the methodology has been provided in a technical Supplementary File S1 to
this study.

A scoring system was applied to all variables of this study, allowing the calculation of
four quality indicators of climate (Climate Quality Index, CQI), soil (Soil Quality Index, SQI),
vegetation (Vegetation Quality Index, VQI), and land management (Land Management
Quality Index, MQI) that are estimated as the geometric mean of the scores assigned to
each input variable. Each quality indicator ranges from 1 (the lowest contribution to soil
sensitivity) to 2 (the highest contribution to soil sensitivity). The ESAI was finally estimated
in each spatial unit and year as the geometric mean of the four quality indicators, resulting
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in a score that ranges between one (the lowest sensitivity to degradation) and two (the
highest sensitivity to degradation).

Three classes of soil sensitivity were identified: (i) non-affected or (potentially af-
fected) land (ESAI < 1.225), (ii) ‘fragile’ land (1.225 < ESAI < 1.375), and (iii) ‘critical’ land
(ESAI > 1.375). Maps have been produced at 1 km2 pixel resolution [38]. The ESAI score at
each elementary spatial unit was treated as a ratio variable ranging continuously from 1
to 2. The average ESAI score was calculated separately at 103 provinces—an administra-
tive partition of Italy reflecting the NUTS-3 level of European Nomenclature of Territorial
Statistics—and 3 years (1960, 1990, 2010). This country’s partition is consistent with the
characteristics and resolution of the indicators selected; in these regards, the Italian Na-
tional Action Plan (NAP) to Combat Desertification has designed administrative regions
and provinces as the effective spatial units to coordinate and implement mitigation policies.

2.3. Logical Framework

To verify the intrinsic relationship between landscape fragmentation and soil degrada-
tion in Italy, our study evaluates landscape structure at different levels of soil sensitivity to
degradation using a dashboard of 16 landscape-level metrics calculated at 3 time points
(1960, 1990, 2010) on the basis of the 3 ESAI maps. Our study was articulated in two steps:
First, Italian land was classified into three increasing levels of sensitivity (‘non-affected’,
‘fragile’, and ‘critical’) according to the Environmentally Sensitive Area (ESA) nomenclature,
as a function of four key dimensions of land degradation (climate, soil quality, vegetation
cover, and human pressure). Second, the composition, configuration, and structure of land-
scapes constituted of the 3 ESA sensitivity classes were studied using 16 landscape metrics
at the spatial level of administrative regions, a relevant domain for environmental reporting
and policy implementation. In other words, we calculated these ecological metrics on
homogeneous patches constituted of spatially contiguous pixels classified within the same
ESAI sensitivity class, thus forming ‘non-affected’, ‘fragile’, and ‘critical’ land patches. In
these regards, ‘critical’ land patches have been considered as local ‘soil sensitivity hotspots’
possibly requiring specific mitigation measures [31], e.g., by creating new tools that evaluate
negative impacts on soils (e.g., mechanization indexes to monitor soil compaction).

Landscape metrics are assumed to inform strategies contrasting soil degradation that
can be implemented in Regional Action Plans (RAPs) developed in line with the guidelines
of the NAP. The average ESAI score and the related landscape metrics were calculated
individually for each land patch (see above) and aggregated at the spatial scale of Italian
provinces. To this end, we made use of the ‘zonal statistics’ procedure developed in ArcGIS
(ESRI Inc., Redwoods, CA, USA) software, elaborating a surface-weighted total (or average)
of each individual indicator—including the ESAI—recorded on each elementary patch (i.e.,
ensemble of spatially contiguous pixels within the same sensitivity class) belonging to the
spatial unit under investigation [43]. A total of 16 landscape metrics assessing patch size,
fragmentation, shape, fractality, and juxtaposition (Table 1) were chosen with the aim at
providing a comprehensive assessment of the spatial configuration of Italian landscapes
over time based on the ESAI classification of Italy in ‘non-affected’, ‘fragile’, and ‘critical’
land [46]. These metrics were derived from the above-mentioned ESAI raster maps using
simple computational tools from ArcGIS and ‘Patch Analyst’ packages at the provincial
scale [47].
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Table 1. List of landscape metrics used to study the spatial distribution of land vulnerability to
degradation in Italy.

Acronym Metric Rationale

MPI Mean proximity index The degree of isolation and fragmentation of the corresponding patch type

MNN Mean nearest neighbor distance The shortest straight-line distance between the focal patch and its nearest
neighbor of the same class

IJI Interspersion/juxtaposition index The observed interspersion divided by maximum possible interspersion
for the given number of patch types

MPS Mean patch size The arithmetic mean of the patch sizes
PSCoV MPS coefficient of variation The coefficient of variation in patch size relative to the mean patch size

ED Edge density The sum of the lengths of all edge segments, divided by the total area
MSI Mean shape index The average perimeter-to-area ratio for weighted by the size of its patches

AWMSI Area-weighted mean shape index The average shape index of patches, weighted by patch area

MPFD Mean patch fractal dimension
The sum of 2 times the logarithm of patch perimeter divided by the

logarithm of patch area for each patch of the corresponding patch type,
divided by the number of patches of the same type

AWMPFD Area-weighted mean fractal dim. The average patch fractal dimension, weighted by patch area
LPI Largest patch index The percent of the landscape or class that the largest patch comprises

LSI Landscape shape index The sum of the landscape boundary and all edge segments within the
landscape boundary divided by the square root of the total landscape area

SDI Shannon diversity index Minus the sum, across all patch types, of the proportional abundance of
each patch type multiplied by that proportion

SHEI Shannon evenness index The observed Shannon’s Diversity Index divided by the maximum
Shannon’s Diversity Index for that number of patch types

SIEI Simpson’s evenness index The observed Simpson’s Diversity Index divided by the maximum
Simpson’s Diversity Index for that number of patch types

MSIEI Modified Simpson’s even. Index
The observed modified Simpson’s diversity index divided by the
maximum modified Simpson’s diversity index for that number of

patch types

2.4. Statistical Analysis

A Multiway Factor Analysis (MFA)—an extension of Principal Component Analysis
(PCA) and traditional Factor Analysis working on three-dimensional data matrices—was
carried out at the provincial scale considering together 17 variables (16 landscape metrics
and the average ESAI score) for 3 observation years (1960, 1990, 2010). MFA was adopted
with the aim at removing (or, at least, containing) the redundancy among metrics, identify-
ing few relevant and independent dimensions with characteristic metrics associated with
sensitive soils to degradation in Italy [31]. In other words, this technique illustrated the
spatial structure of the multivariate relationship between land metrics and the degree of
soil sensitivity [48]. Axes with eigenvalue >1 were identified and evaluated considering
together the position of loadings (metrics) and scores (provinces). The statistical distribu-
tion of the metric’s loadings on the selected axes was represented in a table comparing
the three years of investigation. The spatial distribution of province’s scores on the most
relevant axes was illustrated through maps and compared with the spatial distribution
of the average ESAI score at the same geographical scale. Metrics were also separately
calculated at the class scale for ‘non-affected’, ‘fragile’, and ‘critical’ land. Considering all
the metrics presented above (except for landscape diversity metrics, which were calculated
only at the landscape scale), a non-parametric hypothesis testing was developed with
the aim of verifying the intrinsic differences between the three classes mentioned above
separately for each metric. A Kruskal–Wallis one-way Analysis of Variance was adopted to
fill this objective, testing significant differences at p < 0.05 after Bonferroni’s correction for
multiple comparisons.

3. Results

A descriptive analysis of the spatial distribution of the ESAI in Italy delineated an
increase of the mean scores by 1.5% (between 1.34 in 1960 and 1.36 in 2010). On average,
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the most sensitive provinces were observed in Southern Italy (Sicily, Sardinia, Apulia, and
Basilicata). In Northern Italy, Emilia Romagna and Veneto displayed some areas with high
or moderately high sensitivity scores, especially for 2010 (Figure 1).
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Figure 1. Spatial distribution of the Environmentally Sensitive Area Index (ESAI) in Italy (left: 1960;
right: 2010).

The highest increase in sensitivity scores were observed along the Po River Valley,
a flat district experiencing intense agricultural intensification and urban sprawl in the
last decades (Figure 2). A decomposition of the increase in the ESAI score within two
sub-periods (1960–1990 and 1990–2010) documents a substantially different spatial distri-
bution that may reflect the intrinsic action of different drivers. While in the first period,
vulnerability growth was more intense in already affected—or at least sensitive—areas,
in the second period such increases were more evidently observed in non-affected areas,
determining a sort of convergence between exposed and non-exposed land that resulted in
worse environmental conditions at the base of land degradation.
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Changes over time in landscape structure was investigated considering the empirical
results of a Multiway Factor Analysis of metrics pooling together observations of three
years (1960, 1990, 2010). Loadings of each landscape metric on the selected (principal)
axes of the MFA were reported in Table 2. The first four axes (all with eigenvalues > 1)
accounted for a stable proportion (more than 80%) of the explained variance in the total
variance of all observation years. The first axis explained less variance over time, while
the reverse pattern was observed for the second and the third axes. The temporal pattern
associated with ESAI loadings was paradigmatic because it was associated specifically
and uniquely with Axis 4, more intensively (0.88) in 1960, and less intensively (0.58) in
1990. Since no other metrics were associated with Axis 4 in all years (except for MNN in
2010), and assuming axes as orthogonal by construction, these findings indicate that the
configuration of sensitive landscapes in each Italian province (i.e., the spatial distribution
of ‘non-affected’, ‘fragile’, and ‘critical’ land) was independent from the average level of
soil sensitivity (i.e., the mean ESAI score).

Table 2. Results of a Multiway Factor Analysis run on the full set of landscape metrics (see Table 1 for
acronyms) considered in this study at the provincial scale in Italy, by year; only significant loadings
were reported here.

Metric
1960 1990 2010

Axis1 Axis2 Axis3 Axis4 Axis1 Axis2 Axis3 Axis4 Axis1 Axis2 Axis3 Axis4

MPI 0.64 0.69 0.55 0.60 0.57
MNN −0.61 −0.63 0.65

IJI 0.69 0.58 −0.68 0.57 −0.62
MPS −0.85 −0.53 0.69 −0.62

PSCoV 0.91 0.80 0.80
ED 0.60 −0.59 0.66 −0.62
MSI 0.76 0.50 0.74 0.88

AWMSI 0.61 0.75 0.96 0.88
MPFD 0.62 0.56 0.71

AWMPFD 0.67 0.66 0.93 0.85
LPI −0.74 −0.87 −0.77
LSI 0.72 0.58 0.82 0.64 0.63
SDI 0.81 0.94 0.96

SHEI 0.89 0.94 0.94
SIEI 0.96 0.95 0.94

MSIEI 0.93 0.94 0.93
ESAI 0.88 0.58 −0.57

Variance
(%) 43.4 20.6 11.1 6.0 36.8 24.1 13.8 6.4 38.7 21.5 17.4 5.8

In this perspective, sensitive landscapes were described using few structural dimen-
sions in 1960: Axis 1 (43% of total variance) was associated with diversification metrics;
Axis 2 was associated with shape, variability, and fractality metrics (21% of total variance);
and Axis 3 (11% of total variance) was associated with fragmentation and interspersion
metrics. Thirty years later (1990), landscape configuration changed moderately: Axis 1
(37%) was associated positively with diversification metrics and negatively with fragmen-
tation metrics, Axis 2 (24%) was mostly associated with variability and fractal metrics, and
Axis 3 (14%) was basically associated with mean patch size and shape metrics (positive
loadings) and with location/interspersion metrics (positive and negative loadings respec-
tively with MPI and IJI). Conversely, the results of the MFA delineated a substantial change
in landscape configuration in 2010. Axis 1 (39%) represented a geographical gradient
opposing landscape diversification (all diversity metrics received positive loadings) to
landscape fragmentation (negative loadings assigned to MPS, MNN, and LPI). The ESAI
received a negative loading to Axis 1 suggesting how fragmented landscapes were more
sensitivity to degradation. In other words, an increase over time in the ESAI was associated
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with a process of landscape fragmentation, with the latent interspersion of ‘non-affected’,
‘fragile’, and ‘critical’ lands in a more mixed landscape matrix. Fractal dimension (Axis 2)
and shape dimension (Axis 3) were basically independent from the overall degree of soil
vulnerability. In this perspective, Axis 1 provides an enriched description of spatial pat-
terns of soil sensitivity to degradation, considering not only the average ESAI alone, but
integrating this composite index with other 16 landscape metrics in a (non-redundant)
spatial representation of the geographical gradient from insensitive to sensitive areas in
Italy. Figure 3 compares the spatial distribution of the average ESAI in Italy with the spatial
distribution of Axis 1 scores derived from MFA, distinguishing Italian provinces with
significantly negative scores (black) from non-significant scores (grey) and significantly
positive scores (white).
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This classification was based on the sign and intensity of the ESAI loading on Axis
1; since the loading received a negative sign, it means that provinces with negative scores
have an above-average degree of soil sensitivity to degradation. The overall picture
indicates the added value of the proposed methodology when interpreting the spatial
distribution of sensitive landscapes to degradation. The global pattern is similar between
the two maps: Southern areas are, on average, more sensitive than Northern areas in Italy.
However, landscape analysis provided potentially richer results than the analysis of the
individual ESAI score because it identified two hotspots of soil sensitivity, the former in
Southern Italy (i.e., dry rural districts of Southern Sicily) and the latter in Northern Italy
(i.e., the agricultural districts along the Po River in a specific district bounded by Eastern
Lombardy, Southern Veneto, and Northern Romagna). These hotspots feature (i) a high
degree of soil sensitivity and (ii) a moderately high landscape fragmentation over time.
The resulting map supports the ESAI when focusing on practical actions against landscape
fragmentation in order to assure habitat integrity, to safeguard the buffering potential of
‘non-affected’ land, and to counteract on-site and off-site soil degradation. The results of a
non-parametric Kruskal–Wallis analysis of variance testing significant differences in class
metrics (distinguishing ‘non-affected’ from ‘fragile’ and ‘critical’ lands) were illustrated
in Table 3. In these regards, mechanization could have played an important role in the
development of intensive agricultural systems, leading to fragmentation of ‘non-affected’
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land patches and a synergic impact of ‘fragile’ and ‘critical’ land expanding over larger and
larger areas.

Table 3. Results of a non-parametric Kruskal–Wallis analysis of variance (z-score) testing significant
(*) differences (p < 0.05 after Bonferroni’s correction for multiple comparisons) in selected metrics
among the three ESAI classes (non-affected, fragile, critical) in Italy, by year (landscape diversity
metrics were not calculated at the class scale).

Metric 1960 1990 2010

MPI 6.3 * 0.8 0.6
MNN 7.1 * 0.8 0.1

IJI 7.6 * 6.3 * 6.6 *
MPS 8.0 * 1.4 0.3

PSCoV 0.1 0.3 0.4
ED 5.8 * 4.3 * 2.3
MSI 7.6 * 3.4 * 2.0

AWMSI 6.2 * 2.9 * 1.9
MPFD 5.6 * 1.1 1.1

AWMPFD 6.4 * 3.2 * 2.3
LPI 7.8 * 0.3 0.8
LSI 2.9 * 4.3 * 3.8 *

The results of this inferential analysis document a progressive landscape mixing: Out
of 12 class metrics, 11 metrics were significantly different among the 3 classes mentioned
above in 1960, 6 metrics were significantly different in 1990, and only 2 metrics were
significantly different in 2010. These findings confirm a latent process of landscape homoge-
nization: With the expansion of sensitive areas, ‘critical’ and ‘non-affected’ land classes have
progressively assumed the same structural characteristics over the whole range of Italian
provinces, from North to South. Interestingly, only two metrics were stably different among
land classes all over the investigated time windows: IJI (quantifying the interspersion and
juxtaposition pattern of sensitive and insensitive land patches) and LSI (assessing the shape
of both sensitive and insensitive land patches). ‘Fragile’ and ‘critical’ land maintained, even
in more recent times, a convoluted shape and a peculiar juxtaposition pattern compared
with ‘non-affected’ land. Such a differential landscape configuration suggest that shape
and interspersion are relevant dimensions that may respond—more rapidly and effectively
than other landscape dimensions—to specific measures preserving ‘non-affected’ land.
Other dimensions—such as, for instance, patch size—became over time less effective in
discriminating among ‘non-affected’, ‘fragile’, and ‘critical’ lands.

4. Discussion

While soil degradation and desertification indicators are regarded as useful tools
for both environmental monitoring and land management, a common methodology for
identification and joint application of such indicators in permanent assessment of ecological
conditions is still lacking in specific world areas, such as the Mediterranean basin [31,40,45].
Changes in land cover clearly provide an important knowledge reflecting the intimate
interactions between humans and nature [18,19,49]. In dry environments where fragile
ecosystems are dominant, landscape transformations often reflect a significant impact on the
environment due to unsustainable anthropogenic pressure [38,50,51]. While Mediterranean
landscapes have been shaped by human–nature interactions over long times, the main
drivers of change in such contexts remain human impact, land-use, economic development,
and population growth [12,36,52]. Evaluating landscape configuration, its current state
(structure) and its past/present/future changes (dynamics) provides an understanding of
the ecological mechanisms and processes that drive environmental changes [5,44,53].

While desertification assessment has made increasing use of landscape ecology prin-
ciples, few exercises with landscape metrics were developed with the aim at quantifying
environmental change [8,27,28]. Assuming soil degradation as typically related with the
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spatial structure of degraded and wealthy landscapes [25,54], our study explicitly explores
and integrates concepts and methodology of a landscape approach. Since spatially explicit
information allow a better comprehension of ecological issues in dry ecosystems [55–57].
(Tao, 2004; Sun et al., 2005; Okin et al., 2009), the integration of remote sensing with Geo-
graphic Information System techniques, field surveys, and official statistics is increasingly
important for the assessment of environmental problems such as soil degradation in the
perspective of landscape ecology [26,51,58]. This rationale allows a refined monitoring of
soil sensitivity to degradation, a reliable environmental reporting of desertification risk, and
an appropriate design of containment policies based on a multidimensional indicator dash-
board [30,59,60]. Starting from Italy, the proposed methodology can be easily generalized
to other socioeconomic contexts in Southern Europe.

4.1. Landscape Dynamics and Soil Degradation

The empirical results of this study document how a landscape approach allows for a
relatively quick assessment of soil degradation that can be used in supporting (regional-
scale) application plans in both prevention, planning, and decision-making [25,61,62].
Considering constraints and processes that determine vegetation degradation and land-
scape fragmentation, human activities deteriorate landscapes more intensively around
settlements and in flat districts than in strictly rural areas, reflecting the different tolerance
of Mediterranean landscapes to certain degree of traditional land use [44,48,63]. Our find-
ings also suggest that—despite being well-preserved in most cases (i.e., in non-affected
land)—some risks should be more extensively considered [37], including the loss of the
best-preserved vegetation patches due to human activities (e.g., shifting from ‘non-affected’
and/or ‘fragile’ land into ‘critical’ land). The comparison of landscape metrics at dif-
ferent levels and by means of an appropriate combination of indicators into a unifying
multivariate representation allows the identification of areas with specific spatial patterns
related to soil degradation, testing the validity of a landscape approach to land degradation
monitoring in districts normatively (i.e., sensu NAP) classified as both affected and non-
affected [33,34,64]. Landscape metrics set up in the present study integrate the standard
approaches used in land degradation monitoring, e.g., based on individual indicators such
as the ESAI [46].

Our study provides a quantitative analysis of natural and human change affecting the
level of soil sensitivity to degradation in an affluent economy mentioned as partly affected
in the Annex IV of the United Nations Convention to Combat Desertification (UNCCD). By
delineating non-linear trends in soil sensitivity, results suggest how the spatial balance be-
tween affected and non-affected land is an important trait of any Mediterranean landscape,
whose long-term equilibrium is shaped by background territorial conditions [39]. A large-
scale assessment based on landscape metrics definitely illustrates—likely better than more
traditional approaches—the complex shift in landscape structure and configuration [65]. In
these regards, our results document how landscapes with homogeneous structures and
configurations are frequently associated with high levels of soil sensitivity [35]. In other
words, landscape fragmentation and diversification demonstrate to be (positive or negative)
factors of soil sensitivity depending on the specific territorial context [8,9,21,23].

Using a traditional approach of landscape ecology, the intimate structure of landscapes
was evaluated at three levels of soil sensitivity in Italy. With the level of soil sensitivity
to degradation rising between 1960 and 2010 almost in all Italian regions [45], landscapes
were proven to become increasingly fragmented, as far as the number of homogeneous
patches and the mean patch size are concerned [10]. The empirical results of a multivariate
analysis confirm that the increase in the level of soil sensitivity on a large scale has been
associated with a structural change in the configuration of landscapes [11], altering the
dynamic balance in affected and non-affected land [66]. The spatial polarization in (few, re-
mote and unconnected) ‘critical’ land and (dominant) ‘non-affected’ land—representing the
background landscape matrix in the 1960s—was mostly replaced with an intrinsically disor-
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dered landscape intermixing well-connected patches of ‘critical’ or ‘fragile’ land (expanding
over time) with (smaller and more fragmented) patches of non-affected land [67,68].

Unfragmented, non-affected land represents a physical barrier to the expansion of
‘fragile’ and ‘critical’ land, i.e., acting as a buffer zone [4,69,70]. ‘Critical’ land expanded
radio-centrically, incorporating both ‘fragile’ and ‘non-affected’ areas and forming a struc-
tured spatial network [71]. ‘Non-affected’ land has been strongly fragmented, acting less
effectively as a buffer to the expansion of ‘critical’ land [6]. Displaying a spatially additive
expansion, ‘fragile’ land has in turn undergone fragmentation processes [13]. Spatial po-
larization in affected and non-affected areas was progressively more intense, especially in
Southern Italy, often resulting in a fractal landscape [30,52,72].

Provinces exposed to a higher level of soil sensitivity featured a more homogeneous
landscape [73], with increases in the average size of ‘critical’ land patches and uneven
fragmentation of non-affected land patches that may erode their capacity to buffer further
vulnerability increases and to resist to external shocks leading to renewed processes of
land degradation [48]. In these regards, the recent spatial diffusion of patches exposed to
intrinsic degradation (i.e., ‘critical’ land, considered as ‘hotspots’ of soil degradation) may
bring to important consequences in two directions [74]. The increasing number of hotspots
may leverage the intrinsic probability of local-scale soil degradation. At the same time, since
the buffering effect of neighboring (non-affected) land is supposed to be more effective on
smaller (than larger) hotspots, this phenomenon may bring a self-alimenting expansion of
sensitive soils [75]. This result appears particularly relevant for ‘zero net’ land degradation
strategies, since preserving the spatial integrity and connectivity of non-affected land is an
important planning tool containing the risk of desertification [47]. At the same time, acting
preventively on the landscape mechanisms that stimulate the radio-centric, self-additive
expansion of ‘critical’ and ‘fragile’ lands and reducing the connectivity of non-affected land,
appear a reasonable measure reinforcing the adaptation of local landscapes to external
disturbances, e.g., climate change, urbanization, and crop intensification [76]. Proactive
policies enforcing a more effective protection of relict unfragmented land could successfully
reverse the trend of growing landscape fragmentation and fractalization.

4.2. Policy Implications

The present study finally documents how the spatial balance between ‘critical’ and
‘non-affected’ land is a particularly important trait of any Mediterranean landscape, whose
dynamic equilibrium is strongly influenced by the background territorial (i.e., socioeco-
nomic and environmental) conditions [66]. In this direction, landscape metrics are refined
indicators of soil sensitivity [60] and provide an information dashboard of (apparent and
latent) landscape dynamics [59]. The analysis run on a provincial scale also allows for
an operational use of these indicators from an integrated policy perspective. In Italy,
the National Action Plan against Desertification (NAP) provides for (and coordinates)
the implementation of Regional Action Plans (RAPs), which can largely benefit from the
quantitative information presented in our work. In particular, landscape metrics offer
a multivariate reading of vulnerable landscapes [77], going beyond the unidimensional
indications provided with the ESAI ranking [49].

The multivariate analysis of landscape metrics run in this study indicates how land-
scape structure was highly diversified at the provincial level in Italy [38]. In all study
periods, the empirical results of the analysis go beyond the traditional dichotomy between
Northern (non-affected) and Southern (affected) regions, highlighting a more heterogeneous
spatial framework that mixes soil/land classes as a function of changes in the dominant
landscape [31]. These results outline highly differentiated levels of soil sensitivity in both
regions. In this view, concentrating efforts to mitigate and adapt to the risk of desertification
in affected areas of Southern Italy—intended as the general strategy of the NAP—should
be, at least in part, reconsidered. Based on landscape metrics and their empirical relation-
ship with the ESAI, some provinces of both Southern Italy (Sardinia, Sicily, Puglia) and
Northern Italy (Emilia Romagna, Veneto) share high levels of soil sensitivity to degradation
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and, therefore, they can benefit from specific strategies of mitigation and adaptation [43].
Reconsidering territorial classifications of affected and non-affected areas, acquiring more
information at a disaggregated spatial level, and evaluating together structure, composi-
tion, and functions of ‘non-affected’, ‘fragile’, and ‘critical’ lands are urgent tasks of any
policy strategy oriented toward ‘zero-net’ land degradation [22,78,79]. Landscape metrics
provided a suite of indicators ancillary to the ESAI, giving a complete overview of the
relationship between soil sensitivity to degradation and landscape fragmentation [46]. In
line with these results, future implementations may consist of, e.g., generating maps of
agricultural mechanization and other sensitivity indicators for wider areas.

The research design performed in this study exploited a multivariate framework
based on sequential statistical steps. Distinguishing landscape dynamics and trends of
each individual class, an exploratory analysis provided the appropriate assessment of the
relationship between soil sensitivity and land transformations [18,20,41,80]. Redundancy
among landscape metrics was treated using a factor analysis that decomposed indicators
into few independent (i.e., non-redundant) dimensions relevant to the analysis of land
degradation trends. A non-parametric analysis of variance assured an additional verifi-
cation of significant differences in each individual metric across soil sensitivity classes,
i.e., comparing potentially affected, fragile, and critical land and identifying peculiar
(structural and functional) traits of the related landscape [3,35,81]. The results of this ap-
proach informed strategies of sustainable land management based on a comprehensive
investigation of landscape configuration as far as the different degrees of sensitivity are
concerned [10,82,83]. The results of these analyses were found to be in line with the predic-
tions of the Italian National Action Plan and the implementation of many Regional Action
Plans to combat desertification. Both documents evidence the need of a suite dashboard of
landscape indicators delineating the multiple dimensions of soil sensitivity to degradation
over time and space [2].

5. Conclusions

The use of traditional landscape metrics applied to soil degradation maps contributes
to permanent monitoring of desertification risk. These metrics provide detailed information
on changes over time in the structure and composition of land with a different degree of
sensitivity (‘non-affected’, ‘fragile’, ‘critical’), thus representing a reliable early-warning
dashboard of desertification indicators. Such indicators substantiate and enrich the informa-
tion related to the average level of sensitivity (landscape scale) and associated with the ESAI.
The integrated analysis of these metrics based on policy-relevant spatial domains shed light
on degradation dynamics, linking (at least indirectly) landscape transformations with the
underlying socioeconomic context. This logical scheme justifies the adoption of an admin-
istrative spatial scale (i.e., province) for the environmental reporting of landscape metrics
related to the ESAI land classification system. This spatial level is aggregated enough to (i)
contain a wide range of change processes, (ii) represent the relevant socioeconomic dynam-
ics on a territorial scale, and (iii) reflect an operational dimension of policy against the risk
of desertification, as suggested in the Italian NAP, which delegates local-scale containment
measures to the respective Regional Action Plans. Based on these premises, our work has
definitely shown how the availability of large datasets with diachronic information allows
a more comprehensive vision of the intimate landscape transformations at the base of soil
degradation. This knowledge supports the formulation of targeted, place-specific planning
actions counteracting the risk of desertification. Technological challenge and the growing
interest in open data provides an information base of interest in this direction. At the same
time, it appears increasingly necessary to make available diachronic information (e.g., from
reliable data sources such as historical land-use maps) that allow a long-term assessment of
landscape dynamics.
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34. Pindral, S.; Kot, R.; Hulisz, P.; Charzyński, P. Landscape metrics as a tool for analysis of urban pedodiversity. Land Degrad. Dev.
2020, 31, 2281–2294. [CrossRef]

35. Girvetz, E.H.; Thorne, J.H.; Berry, A.M.; Jaeger, J.A. Integration of landscape fragmentation analysis into regional planning: A
statewide multi-scale case study from California, USA. Landsc. Urban Plan. 2008, 86, 205–218. [CrossRef]

36. Llausàs, A.; Nogué, J. Indicators of landscape fragmentation: The case for combining ecological indices and the perceptive
approach. Ecol. Indic. 2012, 15, 85–91. [CrossRef]

37. Liu, T.; Yang, X. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015,
56, 42–54. [CrossRef]

38. Recanatesi, F.; Clemente, M.; Grigoriadis, E.; Ranalli, F.; Zitti, M.; Salvati, L. A fifty-year sustainability assessment of Italian
agro-forest districts. Sustainability 2016, 8, 32. [CrossRef]

39. Salvati, L.; Zitti, M. The environmental “risky” region: Identifying land degradation processes through integration of socio-
economic and ecological indicators in a multivariate regionalization model. Environ. Manag. 2009, 44, 888. [CrossRef]

40. Ferrara, A.; Kosmas, C.; Salvati, L.; Padula, A.; Mancino, G.; Nolè, A. Updating the MEDALUS-ESA Framework for Worldwide
Land Degradation and Desertification Assessment. Land Degrad. Dev. 2020, 31, 1593–1607. [CrossRef]

41. Cowie, A.L.; Orr, B.J.; Sanchez, V.M.C.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Welton, S. Land in balance: The scientific
conceptual framework for Land Degradation Neutrality. Environ. Sci. Policy 2018, 79, 25–35. [CrossRef]

42. Nickayin, S.S.; Quaranta, G.; Salvia, R.; Cividino, S.; Cudlin, P.; Salvati, L. Reporting land degradation sensitivity through multiple
indicators: Does scale matter? Ecol. Indic. 2021, 125, 107560. [CrossRef]

43. Salvati, L.; Petitta, M.; Ceccarelli, T.; Perini, L.; Di Battista, F.; Scarascia, M.E.V. Italy’s renewable water resources as estimated on
the basis of the monthly water balance. Irrig. Drain. 2008, 57, 507–515. [CrossRef]

44. Salvati, L.; Gemmiti, R.; Perini, L. Land degradation in Mediterranean urban areas: An unexplored link with planning? Area 2012,
44, 317–325. [CrossRef]

45. Basso, B.; De Simone, L.; Cammarano, D.; Martin, E.C.; Margiotta, S.; Grace, P.R.; Yeh, M.L.; Chou, T.Y. Evaluating Responses to
Land Degradation Mitigation Measures in Southern Italy. Int. J. Environ. Res. 2012, 6, 367–380.

46. Smiraglia, D.; Tombolini, I.; Canfora, L.; Bajocco, S.; Perini, L.; Salvati, L. The Latent Relationship Between Soil Vulnerability to
Degradation and Land Fragmentation: A Statistical Analysis of Landscape Metrics in Italy, 1960–2010. Environ. Manag. 2019, 64,
154–165. [CrossRef] [PubMed]

47. Zambon, I.; Benedetti, A.; Ferrara, C.; Salvati, L. Soil matters? A multivariate analysis of socioeconomic constraints to urban
expansion in Mediterranean Europe. Ecol. Econ. 2018, 146, 173–183. [CrossRef]

48. Zambon, I.; Colantoni, A.; Carlucci, M.; Morrow, N.; Sateriano, A.; Salvati, L. Land quality, sustainable development and
environmental degradation in agricultural districts: A computational approach based on entropy indexes. Environ. Impact Assess.
Rev. 2017, 64, 37–46. [CrossRef]

49. Wang, J.; Wei, H.; Cheng, K.; Ochir, A.; Davaasuren, D.; Li, P.; Nasanbat, E. Spatio-temporal pattern of land degradation from
1990 to 2015 in Mongolia. Environ. Dev. 2020, 34, 100497. [CrossRef]

50. Salvati, L.; Zitti, M. Territorial disparities, natural resource distribution, and land degradation: A case study in southern Europe.
Geojournal 2007, 70, 185–194. [CrossRef]

http://doi.org/10.1080/15324982.2014.968691
http://doi.org/10.1007/s10980-006-9046-6
http://doi.org/10.1023/B:LAND.0000036149.96664.9a
http://doi.org/10.1038/nature06111
http://www.ncbi.nlm.nih.gov/pubmed/17851524
http://doi.org/10.1007/s10980-010-9520-z
http://doi.org/10.1016/j.ecolind.2012.05.013
http://doi.org/10.1007/s00267-004-0059-0
http://doi.org/10.1016/j.eiar.2016.07.003
http://doi.org/10.1371/journal.pone.0119811
http://www.ncbi.nlm.nih.gov/pubmed/25822505
http://doi.org/10.1080/21683565.2013.825829
http://doi.org/10.1002/ldr.3601
http://doi.org/10.1016/j.landurbplan.2008.02.007
http://doi.org/10.1016/j.ecolind.2011.08.016
http://doi.org/10.1016/j.apgeog.2014.10.002
http://doi.org/10.3390/su8010032
http://doi.org/10.1007/s00267-009-9378-5
http://doi.org/10.1002/ldr.3559
http://doi.org/10.1016/j.envsci.2017.10.011
http://doi.org/10.1016/j.ecolind.2021.107560
http://doi.org/10.1002/ird.380
http://doi.org/10.1111/j.1475-4762.2012.01083.x
http://doi.org/10.1007/s00267-019-01175-6
http://www.ncbi.nlm.nih.gov/pubmed/31197464
http://doi.org/10.1016/j.ecolecon.2017.10.015
http://doi.org/10.1016/j.eiar.2017.01.003
http://doi.org/10.1016/j.envdev.2020.100497
http://doi.org/10.1007/s10708-008-9124-1


Int. J. Environ. Res. Public Health 2022, 19, 2710 15 of 16

51. Zhang, Y.; Chen, Z.; Zhu, B.; Luo, X.; Guan, Y.; Guo, S.; Nie, Y. Land desertification monitoring and assessment in Yulin of
Northwest China using remote sensing and geographic information systems (GIS). Environ. Monit. Assess. 2008, 147, 327–337.
[CrossRef]

52. Mao, D.; Wang, Z.; Wu, B.; Zeng, Y.; Luo, L.; Zhang, B. Land degradation and restoration in the arid and semiarid zones of China:
Quantified evidence and implications from satellites. Land Degrad. Dev. 2018, 29, 3841–3851. [CrossRef]

53. Qi, Y.; Chang, Q.; Jia, K.; Liu, M.; Liu, J.; Chen, T. Temporal-spatial variability of desertification in an agro-pastoral transitional
zone of northern Shaanxi Province, China. Catena 2012, 88, 37–45. [CrossRef]

54. Sun, D.; Li, H.; Li, B. Landscape connectivity changes analysis for monitoring desertification of Minqin county, China. Environ.
Monit. Assess. 2008, 140, 303–312.

55. Sun, D.; Dawson, R.; Li, H.; Li, B. Modeling desertification change in Minqin county, China. Environ. Monit. Assess. 2005, 108,
169–188. [CrossRef]

56. Tao, W. Progress in sandy desertification research of China. J. Geogr. Sci. 2004, 14, 387–400. [CrossRef]
57. Okin, G.S.; Parsons, A.J.; Wainwright, J.; Herrick, J.E.; Bestelmeyer, B.T.; Peters, D.C.; Fredrickson, E.L. Do changes in connectivity

explain desertification? BioScience 2009, 59, 237–244. [CrossRef]
58. Gonzalez-Abraham, C.E.; Radeloff, V.C.; Hammer, R.B.; Hawbaker, T.J.; Stewart, S.I.; Clayton, M.K. Building patterns and

landscape fragmentation in northern Wisconsin, USA. Landsc. Ecol. 2007, 22, 217–230. [CrossRef]
59. Vogt, J.V.; Safriel, U.; Bastin, G.; Zougmore, R.; von Maltitz, G.; Sokona, Y.; Hill, J. Monitoring and Assessment of Land Degradation

and Desertification: Towards new conceptual and integrated approaches. Land Degrad. Dev. 2011, 22, 150–165. [CrossRef]
60. Sommer, S.; Zucca, C.; Grainger, A.; Cherlet, M.; Zougmore, R.; Sokona, Y.; Hill, J. Application of indicator systems for monitoring

and assessment of desertification from national to global scales. Land Degrad. Dev. 2011, 22, 184–197. [CrossRef]
61. Weng, Y.C. Spatiotemporal changes of landscape pattern in response to urbanization. Landsc. Urban Plan. 2007, 81, 341–353.

[CrossRef]
62. Duvernoy, I.; Zambon, I.; Sateriano, A.; Salvati, L. Pictures from the other side of the fringe: Urban growth and peri-urban

agriculture in a post-industrial city (Toulouse, France). J. Rural. Stud. 2018, 57, 25–35. [CrossRef]
63. Cecchini, M.; Zambon, I.; Pontrandolfi, A.; Turco, R.; Colantoni, A.; Mavrakis, A.; Salvati, L. Urban sprawl and the ‘olive’

landscape: Sustainable land management for ‘crisis’ cities. GeoJournal 2019, 84, 237–255. [CrossRef]
64. Istanbuly, M.N.; Jabbarian Amiri, B.; Kaboli, M. Applying Landscape Metrics to Revise Land Degradation Model for Assessing

Environmental Impacts. J. Nat. Environ. 2021, 74, 195–207.
65. Biasi, R.; Brunori, E.; Smiraglia, D.; Salvati, L. Linking traditional tree-crop landscapes and agro-biodiversity in Central Italy using

a database of typical and traditional products: A multiple risk assessment through a data mining analysis. Biodivers. Conserv.
2015, 24, 3009–3031. [CrossRef]

66. Hill, J.; Stellmes, M.; Udelhoven, T.; Röder, A.; Sommer, S. Mediterranean desertification and land degradation: Mapping related
land use change syndromes based on satellite observations. Glob. Planet. Change 2008, 64, 146–157. [CrossRef]

67. Qi, F.; Wei, L.; Haiyang, X. Comprehensive evaluation and indicator system of land desertification in the Heihe River Basin. Nat.
Hazards 2013, 65, 1573–1588. [CrossRef]

68. Sklenicka, P. Classification of farmland ownership fragmentation as a cause of land degradation: A review on typology,
consequences, and remedies. Land Use Policy 2016, 57, 694–701. [CrossRef]

69. Adamo, S.B.; Crews-Meyer, K.A. Aridity and desertification: Exploring environmental hazards in Jáchal, Argentina. Appl. Geogr.
2006, 26, 61–85. [CrossRef]

70. Hirche, A.; Salamani, M.; Abdellaoui, A.; Benhouhou, S.; Valderrama, J.M. Landscape changes of desertification in arid areas: The
case of south-west Algeria. Environ. Monit. Assess. 2011, 179, 403–420. [CrossRef]

71. Ibanez, J.; Martinez Valderrama, J.; Puigdefabregas, J. Assessing desertification risk using system stability condition analysis. Ecol.
Model. 2008, 213, 180–190. [CrossRef]

72. Pili, S.; Grigoriadis, E.; Carlucci, M.; Clemente, M.; Salvati, L. Towards sustainable growth? A multi-criteria assessment of
(changing) urban forms. Ecol. Indic. 2017, 76, 71–80. [CrossRef]

73. Peters, D.P.; Havstad, K.M.; Archer, S.R.; Sala, O.E. Beyond desertification: New paradigms for dryland landscapes. Front. Ecol.
Environ. 2015, 13, 4–12. [CrossRef]

74. Marathianou, M.; Kosmas, K.; Gerontidis, S.; Detsis, V. Land-use evolution and degradation in Lesvos (Greece): An historical
approach. Land Degrad. Dev. 2000, 11, 63–73. [CrossRef]

75. Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy global assessment of land degradation. Soil Use Manag. 2004, 24, 223–234.
[CrossRef]

76. Perrin, C.; Nougarèdes, B.; Sini, L.; Branduini, P.; Salvati, L. Governance changes in peri-urban farmland protection following
decentralisation: A comparison between Montpellier (France) and Rome (Italy). Land Use Policy 2018, 70, 535–546. [CrossRef]

77. Xie, H.; Zhang, Y.; Wu, Z.; Lv, T. A bibliometric analysis on land degradation: Current status, development, and future directions.
Land 2020, 9, 28. [CrossRef]

78. Wang, H.; Yuan, H.; Xu, X.; Liu, S. Landscape structure of desertification grassland in source region of Yellow River. J. Appl. Ecol.
2006, 17, 1665–1670.

79. Briassoulis, H. Governing desertification in Mediterranean Europe: The challenge of environmental policy integration in
multi-level governance contexts. Land Degrad. Dev. 2011, 22, 313–325. [CrossRef]

http://doi.org/10.1007/s10661-007-0124-2
http://doi.org/10.1002/ldr.3135
http://doi.org/10.1016/j.catena.2011.08.003
http://doi.org/10.1007/s10661-005-4221-9
http://doi.org/10.1007/BF02837482
http://doi.org/10.1525/bio.2009.59.3.8
http://doi.org/10.1007/s10980-006-9016-z
http://doi.org/10.1002/ldr.1075
http://doi.org/10.1002/ldr.1084
http://doi.org/10.1016/j.landurbplan.2007.01.009
http://doi.org/10.1016/j.jrurstud.2017.10.007
http://doi.org/10.1007/s10708-018-9848-5
http://doi.org/10.1007/s10531-015-0994-5
http://doi.org/10.1016/j.gloplacha.2008.10.005
http://doi.org/10.1007/s11069-012-0429-5
http://doi.org/10.1016/j.landusepol.2016.06.032
http://doi.org/10.1016/j.apgeog.2005.09.001
http://doi.org/10.1007/s10661-010-1744-5
http://doi.org/10.1016/j.ecolmodel.2007.11.017
http://doi.org/10.1016/j.ecolind.2017.01.008
http://doi.org/10.1890/140276
http://doi.org/10.1002/(SICI)1099-145X(200001/02)11:1&lt;63::AID-LDR369&gt;3.0.CO;2-8
http://doi.org/10.1111/j.1475-2743.2008.00169.x
http://doi.org/10.1016/j.landusepol.2017.09.027
http://doi.org/10.3390/land9010028
http://doi.org/10.1002/ldr.1018


Int. J. Environ. Res. Public Health 2022, 19, 2710 16 of 16

80. Chelleri, L.; Schuetze, T.; Salvati, L. Integrating resilience with urban sustainability in neglected neighborhoods: Challenges and
opportunities of transitioning to decentralized water management in Mexico City. Habitat Int. 2015, 48, 122–130. [CrossRef]

81. Safriel, U.; Adeel, Z. Development paths of drylands: Thresholds and sustainability. Sustain. Sci. 2008, 3, 117–123. [CrossRef]
82. Bestelmeyer, B.T.; Duniway, M.C.; James, D.K.; Burkett, L.M.; Havstad, K.M. A test of critical thresholds and their indicators in a

desertification-prone ecosystem: More resilience than we thought. Ecol. Lett. 2013, 16, 339–345. [CrossRef] [PubMed]
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