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Genome-wide association studies had a troublesome adolescence, while researchers 
increased statistical power, in part by increasing subject numbers. Interrogating 
the interaction of genetic and environmental influences raised new challenges of 
statistical power, which were not easily bested by the addition of subjects. Screening 
the DNA methylome offers an attractive alternative as methylation can be thought 
of as a proxy for the combined influences of genetics and environment. There are 
statistical challenges unique to DNA methylome data and also multiple features, 
which can be exploited to increase power. We anticipate the development of DNA 
methylome association study designs and new analytical methods, together with 
integration of data from other molecular species and other studies, which will boost 
statistical power and tackle causality. In this way, the molecular trajectories that 
underlie disease development will be uncovered.
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The influences of nature and nurture on 
human health have been studied for hun-
dreds of years. In the last few decades, deri-
vations of genome-wide association studies 
(GWAS) have interrogated the interplay 
of the two, either by incorporating genetic 
and environmental measures in gene × envi-
ronment screens or by screening the DNA 
methylome (as the latter can be thought of 
as the product of genetic and environmental 
influences). Both approaches are afflicted by 
problems of low statistical power to detect 
significant associations, and in both cases 
increasing subject numbers to boost power 
has practical impediments. As we enter the 
era of the methylome-wide association-study 
(methWAS), we discuss ways to increase sta-
tistical power appropriate to these types of 
studies.

Health is a result of the interaction 
of genes with environment
Increasingly, we understand that genetics and 
prior environmental exposures determine 
an individual’s sensitivity and resistance to 
extrinsic influences. This can be expressed in 
terms of negative symptomology, for exam-
ple, a genotypic group could be more sensitive 
to the consequences of a high-fat diet while 
another genotype group is relatively resistant. 
For example, Asians experience higher risk 
of hypertension, cardiovascular disease and 
diabetes at lower BMIs compared with other 
racial groups [1–3]. It can also be expressed in 
terms of plasticity wherein a genotypic group 
does worse in a ‘bad’ environment but bet-
ter in a ‘good environment’. For instance, 
the long allele (5-HTTLPR L) genotype of 
the variable tandem repeat (VNTR) within 
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SLC6A4 is associated with an increased risk for affec-
tive disorders under adverse conditions but also with 
a decreased risk under more favorable settings [4]. In 
another example, polymorphisms in ESR1 moderate 
the effects of family cohesion on age of menarche. Spe-
cifically, girls with a GG genotype at ESR1 polymor-
phism rs9304799 experience puberty later in a high 
quality family environment and much earlier puberty 
in a low quality family environment. In contrast, the 
impact of family environment on age of menarche in 
AG girls is less and has no effect on age of menarche in 
girls with a AA genotype [5,6].

Diseases such as obesity, diabetes, hypertension, 
depression, schizophrenia and coronary heart disease 
are major public health issues with high economic 
costs and significant consequences on quality of life. 
Their pathogenesis starts long before the symptoms are 
apparent and their etiology comprises both genetic and 
environmental components. They are the consequence 
of the interplay of genes and environment and cannot 
be sufficiently explained by their separate (or marginal) 
effects. Detecting which environmental exposures and 
which genetic variants are causative and in which com-
binations, is an important task to enable intervention 
and prevention [7].

Screens for genetic, environmental & GxE 
influences are afflicted by low statistical 
power
Screens for environmental influences on health have 
tended to be hypothesis driven, but hypothesis-free, 
large-scale screens for genetic variants have had their 
own productive era in terms of GWAS [8]. The num-
ber of tests inherent in a GWAS has highlighted prob-
lems of statistical power to detect significant associa-
tions. Typically millions of genetic variants are assayed 
exceeding the number of subjects contained within the 
study, leading to low statistical power. Once a statisti-
cal modeling approach is chosen, factors influencing 
statistical power include:

•	 Required significance level (chosen to protect over-
all Type 1 error) – less stringent level implies higher 
statistical power.

•	 Magnitude of true effect size – higher effect size 
implies higher statistical power.

•	 Sample size – higher sample size implies higher 
statistical power.

•	 Noise (unwanted variability) – more noise implies 
less statistical power.

A type 1 error rate of 0.05 is typically used and 
multiple testing corrections are applied to ensure this 

error rate is maintained across all tests conducted. 
For a GWAS, which assumes all common genetic 
variation has been covered, the uncorrected p-value 
required to claim significance for an individual test 
is p < 5 × 10-8 (this corresponds to a genome-wide 
0.05 type 1 error rate maintained across one million 
independent tests) [9–11]. GWAS researchers have tack-
led the problem of a stringent required significance 
level, by increasing the number of subjects, either in 
individual studies or by combining studies through 
meta-analysis, thereby boosting statistical power.

However when interaction with environmental 
components is included in a genome-wide screen, 
increasing subject numbers is not always feasible. 
Adding more subjects for genetic characterization has 
economies of scale but environmental observations 
on more subjects do not [12]. Genetic information 
can be obtained from a one-time collection of DNA 
sample and running genotyping assays for the addi-
tional subjects incurs only incremental cost and little 
additional time. In contrast, collecting information 
on environmental exposures from additional subjects, 
such as measuring their fasting blood glucose levels, 
costs the same, has the same subject burden and takes 
the same amount of clinic time for subject 2000 as it 
did for subject 1. Also and importantly, testing for an 
interaction itself requires larger sample sizes to achieve 
the same statistical power due to additional variabil-
ity associated with the estimated interaction term [13]. 
An oft-quoted ‘rule of thumb’ is that detection of an 
interaction requires a sample size at least four-times 
larger than that required for the detection of a main 
effect of comparable magnitude [14]. This may be one 
of the reasons why the wealth of literature on GxE 
effects (especially in the psychological sciences) has 
not translated to a raft of searches for GxE associations 
in genome-wide data. These studies, variously called 
genome–environment-wide interaction (GEWI) and 
gene × environment wide association (GxEWA) studies 
have been suggested [15,16]. However in actuality, can-
didate gene approaches, for example [17]; or dimension 
reduction using polygenic risk scores, for example [18]; 
or GxE test of candidates identified in a GWAS, are 
usually applied.

Utilizing DNA methylation marks as a proxy 
for GxE
Happily, there are intermediate markers, which inte-
grate gene and environment effects and can be tested 
against phenotype. Genome-wide DNA methylation 
marks can be assayed by microarray [19,20] (although 
these covers only a small fraction of the methylome) or 
emerging NGS approaches [21,22] and therefore meth-
WAS can be conducted. DNA methylation marks are a 
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product of the interaction between genes and environ-
ments. One unusually complete example is the methyl-
ation state of FKBP5, which is decreased in response to 
childhood trauma only in carriers of a risk allele. Meth-
ylation state goes on to predict stress reactivity and risk 
of psychopathology in adulthood [23,24]. Teh et al. [25] 
showed that the majority of variation in the neonate 
DNA methylome is best explained by an interaction of 
an SNP and a prenatal environment (compared with 
the main effect of a SNP or an environment).

A phenotype may be the result of many polymor-
phisms and environmental factors. It is difficult to 
model all these possibilities in a screen. However DNA 
methylation marks are downstream of all these factors 
and therefore combine multiple inputs. MethWAS can 
be conducted as an alternative to GEWIS, without the 
need to collect complex environmental data or model 
the different ways interactions can occur [26]. This is 
notwithstanding the fact that DNA methylation marks 
work in concert with each other and may interact to 
cause phenotypes. Similarly, epigenetic marks may 
act in concert with genetic or environmental factors 
to affect phenotype as elegantly described by Ladd-
Acsta and Fallin [12]. There is certainly an argument 
for conducting methylation × genetics or methylation 
× environments or methylation × methylation studies. 
However testing methylation marks against pheno-
type is already a more comprehensive study of genetic 
and environmental influences than can be hoped for 
using a finite number of environmental measures and 
simplistic statistical models to integrate them with 
genotype, as would be done in GEWIS.

As has been ably covered elsewhere [27–29], research-
ers conducting methWAS must tackle decisions such as: 
the platform to use to measure the DNA methylome, 
the appropriate tissue to sample and the timepoint to 
measure both the methylome and environmental expo-
sure or phenotype. Besides these crucial decisions to 
ensure a well-designed study, they must find ways of 
boosting statistical power and appropriately analyz-
ing DNA methylation which is a continuous data-type 
(a marked contrast from categorical DNA polymor-
phism data). There is reason to hope that effect sizes 
will be larger for epigenetic marks than for genotypic 
ones, as some published studies seem to suggest [30–32]. 
Already significant and replicated associations have 
been reported from large studies, for example, HIF3A 
methylation associated with BMI [33] and AHRR meth-
ylation for smoking [34], and extended by independent 
groups, for example [35–39] and [40], respectively. When 
possible, the study should be sufficiently powered with 
adequate sample size. However, due to the increased 
difficulty and cost in sampling the relevant tissue (at 
sufficient depth and resolution) for methWAS com-

pared with GWAS, it is unlikely that methWAS stud-
ies will achieve the same sample numbers as GWAS. 
Therefore, statistical power must be boosted by other 
means, by exploiting the intrinsic characteristics of 
DNA methylation data to reduce unwanted variability 
and by efficient statistical modeling.

Increasing power of methWAS by reducing 
(unwanted) variability
One of the factors that negatively affects statistical 
power is unwanted variability. For methylation data, 
one of the key sources of unwanted variability is cel-
lular heterogeneity [41–43]. The most efficient way to 
reduce unwanted variation caused by cellular hetero-
geneity is to investigate methylation in more homo-
geneous samples. For example, blood can be fraction-
ated and DNA methylation investigated in specific 
cell types, for example [44], and more precisely from 
specific subpopulations, for example [45–47]. Another 
possibility for blood-based study is to directly mea-
sure the cell count in the DNA sample and adjust 
methylation data accordingly, for example [42,48]. 
However, such measures are not always feasible, for 
instance when studying previously frozen bloods or 
tissues that are by nature heterogeneous and not easily 
fractionated (e.g., placenta). In these scenarios, cel-
lular heterogeneity has to be accounted for using sta-
tistical approaches, either by deriving an estimate of 
cellular proportions using an independent dataset of 
methylation profiles of the individual cell types and 
adjusting for these derived cell type proportions (ref-
erence-based adjustment) [49], or directly adjusting 
without inferring the cellular proportions (reference-
free adjustment) [50]. These approaches, although 
absolutely necessary in methylome data from mixed 
cell type samples [42,43], have limitations. Reference-
based adjustments require the use of an appropriate 
cell- specific methylation reference panel. When it is 
unclear if the available reference-panel is appropriate 
for the specific study (e.g., an adult blood reference 
panel might not be appropriate for use in investigat-
ing infant cord blood methylation [51]) it might be 
useful to construct reference-panels that are appro-
priate to the study. For example, a study investigat-
ing infant cord blood methylation might fractionate 
and assess methylation in a few fresh (non-study) cord 
blood samples to construct a reference panel, which 
is less tedious than fractionating or obtaining cell 
counts in all the study samples. It is also important to 
optimize the performance of this procedure by select-
ing the most informative cell type markers from the 
methylome [52]. The reference-free approaches cal-
culated from the dataset under study, are limited in 
their precision and may remove (wanted) biological 
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variability from the data and hence reduce statistical 
power.

Other major sources of unwanted variability in 
methylome data are batch effects. In methWAS known 
sources of batch effects are bisulfite conversion batch, 
experimental batch, chip and position on chip for 
array studies [53] and reagent set and order for sequenc-
ing runs [54,55]. Minimizing batch effects from these 
sources can be done by designing the study to ensure 
the phenotype of interest is not confounded by predict-
able batch effects, optimizing laboratory procedures 
and by statistical approaches to correct observed batch 
effects in the data [20]. There is scope to further improve 
the processing of DNA methylation data. For instance 
current processing methodologies for Illumina450K 
data assume that the methylated and unmethylated 
signals form independent gamma distributions, which 
is obviously not true [63]. Last, there are known sources 
of variability that are not necessarily the variable of 
interest, such as sex [56], ethnicity [42] and age [57,58], 
which can be adjusted for in downstream analyses.

Increasing power of methWAS by 
appropriate statistical modeling
At an individual site, in an individual cell, methylation 
is either 0 or 100%. However in tissue samples, a mix-
ture of cells is assayed to give an average methylation 
percentage at any given site. Thus percent methylation 
values are continuous and range from 0 to 100. Meth-
ylation levels at particular sites are often not normally 
(Gaussian) distributed across samples; they can be 
bimodal, profoundly skewed, or multimodal. Extreme 
values of highly methylated and highly unmethylated 
sites show reduced variance compared with intermedi-
ate values [59,60]. Both of these facts violate assumptions 
made by classical statistical techniques such as ordi-
nary least squares regression which assume normality 
and constant variance of model residuals (errors) [61]. 
Violation of statistical assumptions can lead to large 
numbers of false-negative results and therefore loss of 
power [62]. Various approaches can be used to surmount 
problems arising from methylation value distributions. 
One solution is to logit transform the percent meth-
ylation values (often termed beta values) to M val-
ues [59] but this does not always result in an appropriate 
error distribution with constant variance [63]. Other 
solutions include modeling using robust regression 
to minimize the effect of outliers or robust standard 
errors for regression coefficients to deal with heteroske-
dasticity [62], modeling using non-normal errors [63,64] 
or using nonparametric techniques which rely on 
ranks rather than the methylation values [65]. Bayes-
ian approaches have also been used to shrink estimated 
sample variances toward a pooled estimate [66].

Many modern platforms for methylome assay 
(e.g., methyl-capture sequencing, Infinium arrays) 
measure methylation sites at single base resolution. 
Most published methWAS analyzed each site indi-
vidually for association with exposure/phenotype of 
interest, for example [22,33]. The individual site analy-
sis is then corrected for multiple testing using Bonfer-
roni [67] or false discovery rate (FDR) [68,69]. Recently, 
a new approach to FDR that is less stringent has been 
suggested [70]. Its appropriateness in methWAS hinges 
on the assumption of unimodality, in other words, 
whether the effect size has a common mode. The 
assumption might be violated when comparing old age 
to young age samples because there are global methy-
lome changes with aging, where both hypomethyl-
ation and hypermethylation can occur. However, it 
may be reasonable for phenotypes, which have subtle 
locus-specific effects on the methylome.

As an alternative to individual site analysis, grouped-
site analysis, where one assesses the collective associa-
tion between a group of sites and phenotype, can be 
employed. The advantages a grouped analysis confers 
over individual marker analysis have been well investi-
gated in the context of GWAS and many of the same 
reasons apply here. Briefly, an individual marker analy-
sis could be an erroneous signal or the analysis suffers 
from power loss because the testing procedure ignores 
the correlation of the tested markers and does not allow 
joint effects of marks to be modeled. The inefficiency 
due to multiple testing becomes particularly relevant as 
the number of sites (in methWAS usually CpGs) being 
tested increase with the newer arrays and sequencing 
platforms. For example, the widely used Illumina Infin-
ium HumanMethylation450 beadchip array includes 
485,512 sites [19] while the new Illumina Infinium 
MethylationEPIC beadchip includes 856,187 sites [71]. 
Sequencing technologies can in principle assay all 
approximately 28 million CpGs in the human genome, 
but in practice are likely to assay an order of magnitude 
less (a recent study using methyl-capture sequencing 
of clinical samples assayed approximately 2–3 million 
methylation sites [72]). As methylation at CpGs show 
patterns of correlation across the epigenome, in prin-
ciple, we can estimate the effective number of inde-
pendent tests/CpGs across the epigenome and adjust 
for this number, as opposed to all the 2–28 million 
CpGs, similar to what was done in GWAS [9–11]. How-
ever, this is not a trivial task as, unlike genotype, DNA 
methylation is variable across cell-type, tissue and age 
so this estimate would have to be performed for each 
combination of cell combination, tissue and age tested.

Grouped-CpG analysis decreases the number of 
tests by aggregating co-varying CpGs. This is espe-
cially attractive, for higher coverage methods to reduce 
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the number of tests while retaining the broader survey 
of interindividual variation. Another advantage is that 
multiple-testing corrections often assume indepen-
dence between tests and grouping-CpGs improves the 
fit of the data to this assumption. Existing grouped-
CpG analysis can be classified into two classes based on 
how the groups are defined: groups are defined in test-
ing procedure and groups are formed a priori. Meth-
ods that group the CpGs during the testing procedure 
include region discovery [73], bump hunting [74] and 
comb-p [75]. These tests typically first test each CpG 
for association between exposure/phenotype, and then 
define the region of differential methylation using the 
individual marker analyses. They have the advantage 
of prioritizing association with the phenotype to form 
the groups. However, when the groups are defined as 
part of the testing procedure, computationally inten-
sive permutation procedures are generally required to 
obtain a p-value that maintains the correct Type 1 
error control [76]. On the other hand, when the groups 
are defined and formed a priori (i.e., without using 
exposure/phenotype to define the groups), multiple 
testing correction is straightforward via standard pro-
cedure over the total number of groups tested, provid-
ing a computationally efficient alternative. Examples 
of tests include forming groups using genomic annota-
tions [77], such as genes, pathways or CpG islands. For 
example, if groups were formed using CpG island con-
text (∼29K CpG islands in genome, each island con-
sisting of all CpGs within that island would represent 
one test), the bonferroni threshold to maintain a Type 
1 error rate at 0.05 would be 0.05/(29 × 103). However, 
this approach risks reducing power, unless the collaps-
ing approach is carefully chosen (see next paragraph). 
Alternatively, groups can be formed using the methyla-
tion data to find spatially correlated CpGs data such as 
in adjacent sites clustering (A-clustering) [78], or using 
methylation data to group CpGs based on co-varying 
networks as was done in weighted correlation network 
analysis (WGCNA) [79]. The choice of how groups are 
formed can affect both the statistical power and inter-
pretation of results. The ideal choice remains an open 
research question, and is likely to depend on the choice 
of platform for methylation assay which determines 
the scarcity of the CpG measures as well as underly-
ing CpG co-varying architecture and phenotype under 
study. For example, combining a CpG with an effect 
on phenotype with other non co-varying CpGs that do 
not affect the phenotype could introduce substantial 
noise and reduce the power.

Another factor that affects statistical power, is how 
information is aggregated across the CpGs within 
the group. In the simplest case, information is col-
lapsed at the CpG level into a single summary variable 

(e.g., mean methylation) [80,81]; and one tests for asso-
ciation between this summary variable and the pheno-
type. This test highly resembles the collapsing/burden 
tests used in the analysis of rare variants sequencing 
association studies (an example of a collapsing test is 
to use the mean or total number of rare variants in the 
group as a summary variable), and implicitly assumes 
that all CpGs within the group share the same effect 
size (and hence can be represented using a single 
regression coefficient) [82,83]. However, if the effects of 
the CpGs on phenotype have opposite signs or if only 
few CpGs within the group show association with the 
phenotype, this simple collapsing approach would be 
highly inefficient. Another approach to aggregating 
information at the CpG-level is to conduct a princi-
pal component analysis (PCA) on the CpGs within 
the group and test the resulting principal components 
(PC) for association with the phenotype. WGCNA [79] 
utilizes such an approach where the first PC for CpGs 
within the module (denoted the eigengene/eigenCpG) 
is compared with the phenotype. This analysis offers 
the chance to determine ‘emergent properties’ of the 
data. However, the power of this approach is highly 
dependent on the appropriate number of PCs used, 
for example, if only the first PC is used and impor-
tant information is captured in the second PC, this 
approach can suffer from power loss [84]. An alterna-
tive method is to aggregate information at the test sta-
tistics level, such as in kernel machine regression [77]. 
This method offers an advantage by allowing effects 
to have different signs and boosts power by varying the 
degrees of freedom of the test depending on the corre-
lation of tested terms. Another closely related method 
aggregates information at the p-value level and uses 
weighted inverse c2 method to account for correlation 
in the p-values [85].

Increasing power of methWAS by leveraging 
data from multiple molecular species
A complementary approach to increase power in meth-
WAS is to integrate omics data from other molecular 
species such as genetics, sequence metrics and chroma-
tin states and transcriptomics since DNA methylation 
is influenced by genotype [25], the broader characteris-
tic of the sequence context [86], and chromatin state [87] 
and both influences and is influenced by transcrip-
tion [88–90]. When integrating information from the 
transcriptome, it is essential that the transcriptome 
is measured in the same tissue as interrogated for the 
DNA methylome and appropriate for the phenotype in 
question. In the simplest case, data from other molecu-
lar species is used as a filtering criterion to reduce the 
number of CpGs tested. For example, if genotype and 
methylation data are both available, analysis could be 
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restricted to only methylation marks showing asso-
ciation with genotype. In this way power is increased 
as the number of tests is reduced. For example, in a 
study investigating methylation as an intermediary 
for genetic risk in rheumatoid arthritis, Liu et al. [91] 
required candidate CpG ‘mediators’ to have methyla-
tion levels which co-vary with in cis genotype. If tran-
scription and methylation data are available, one could 
restrict the CpGs tested to those affecting transcrip-
tion (i.e., CpG showing association between transcrip-
tion and methylation) [92]. However, this approach is 
very conservative as a methylation mark could affect 
transcription in different tissues or conditions to the 
one tested, and could do so in a nonlinear way, which 
may not be detected by the analysis. So false positives 
are reduced at the expense of increasing false negatives. 
Both of these examples do not examine the association 
between phenotype and other molecular species. Alter-
natively, the associative screen is first conducted for the 
methylome and other molecular species separately and 
then the nominally significant marks are mapped to 
a common identifier, often genes or pathways. Identi-
fiers that show statistical significance for multiple spe-
cies are meta-analyzed and prioritized. These methods 
increase power by decreasing the required significance 
level for any one type of molecular species and instead 
requiring association of phenotype to be present across 
molecular species, for example [93,94] but again they 
risk missing true positive because of the stringent cri-
teria that the molecular levels be linearly correlated in 
the cell type(s) and conditions tested.

The different molecular species can also be jointly 
analyzed in the association analysis. When jointly ana-
lyzing different molecular species with measurements 
of the same nature (e.g., continuous measurements 
for both methylation and transcription), aggregating 
information at the data level is possible. Methodologies 
suggested for this type of analysis include factor analy-
sis performed on data from all molecular types, and 
then constrained (for example by linear discriminate 
analysis or SVA) to the phenotype [95]. Another possi-
bility is to apply WGCNA [79] with the co-varying net-
work modules constructed using all molecular species 
together (each molecular species is appropriate scaled). 
When jointly analyzing molecular species with differ-
ent types of measurements (e.g., categorical data from 
genotype vs. continuous data from methylation), anal-
ysis methods that aggregate information at the test sta-
tistics-level are generally more appropriate. For exam-
ple, Zhao et al. [77] employed kernel machine regression 
and constructed a test of the joint effects of a group 
of SNPs and a group of CpGs on a phenotype. New 
approaches may also integrate stand-specific informa-
tion from DNA methylome and transcriptome data 

and detect the association of allele-specific methylation 
(ASM) and expression (ASE) with disease. Regions of 
ASM and ASE are variable across individuals (as they 
are often a consequence of in cis polymorphisms affect-
ing DNA methylation states) and across tissues within 
the same individual [96] suggesting tissue-specific 
functional roles. Again there is an assumption that all 
molecular species in a network will show coordinated 
behavior in a manner that is amenable to the statistical 
tools and in the tissue and condition tested.

Increasing power & addressing causality in 
methWAS by leveraging information from 
multiple timepoints
Simplistically there are three possibilities that can 
explain a true observed association between two 
variables (besides chance and selection bias). (i) The 
first variable causes the second variable; (ii) the sec-
ond variable causes the first variable; (iii) a third fac-
tor (confounder) is a common cause of both variables. 
In interpreting findings from observational studies, 
one has to address the question of whether the asso-
ciations are likely to be causal (scenario i or ii) or due 
to confounding (scenario iii). In this respect, GWAS 
findings are more readily interpreted because genetic 
variation occurs upstream of other influences and can 
not be influenced by them. Therefore, while causal 
mediation methods have been applied in GWAS [97] 
their application in methWAS is less straightforward. 
As DNA methylation is dynamic across the human 
lifecourse, methWAS findings have to contend with 
issues of confounding by genetic and/or environ-
mental factors and, in the absence of confounding, 
directionality of causation. Furthermore, the causal 
possibilities can co-occur, for instance a methylation 
mark can cause disease but development of the disease 
can then affect methylation at the same CpG. There-
fore, attempting to determine directionality of effects 
from a observational methWAS study with data col-
lected from a single time point is extremely challeng-
ing. For example, Figure 1A–C presents a simple sce-
nario where methylation at a disease-associated CpG 
is stable with age and measured at/after disease onset 
(as happens in cross-sectional or case–control studies, 
for example [91]). We can observe a positive correlation 
between methylation and disease at T

1
 but it is not pos-

sible to discern between causality in either direction 
(Figure 1A vs 1B) or the confounding case (Figure 1C). If 
the DNA sample was collected prior to disease onset, 
for example in prospective cohort studies, the tempo-
ral relationship is easier to establish (Figure 1D–F) and 
it is possible to discern between the casual scenarios 
(Figure 1D & 1E). Nevertheless, it remains impossible to 
rule out confounding (Figure 1F). Some, studies have 
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Figure 1. Simplified DNA methylation trajectories for a subject without (green solid line) and with disease 
(dotted blue line) where (A & D) methylation changes as a consequence of disease, or (B & E) disease occurs 
as a consequence of methylation, or (C & F) there is no causal relationship between disease and methylation 
(a confounding factor independently affects both disease status and methylation), respectively. T1 and 
Td represent times when DNA sample is collected and disease occurred, respectively (these events are also 
represented with a square and ‘D’). Tc is the time when a confounding factor (e.g., environmental exposures) 
affects methylation (denoted with a ‘C’). In the top panel (A–C), DNA sample is collected after disease onset, we 
observe a positive association between methylation and disease, but cannot distinguish between each of the 
three scenarios D->M, M-> D and confounding. In the bottom panel (D–F), DNA sample was obtained prior to 
disease onset, allowing us to rule out D -> M, but both M -> D and confounding are still possibilities.

future science group
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used Mendelian randomization [39,98] and mediation 
analysis [91] to address causality. These methods require 
strong assumptions including the assumption that the 
genetic instrument (or any polymorphisms they are in 
linkage disequilibrium with) can affect the phenotype 
only through methylation and not through any other 
pathways. They also require very large sample sizes or 
very high effect sizes to achieve adequate statistical 
power [99].

Jointly interpreting findings from multiple observa-
tional studies with different study designs could pro-
vide better clues as to the directionality of causation. In 
a recent study, DNA methylation was implicated as a 
mediator of the effects of genetic variants on the devel-

opment of hypertension. SNPs significantly associated 
with hypertension were identified in a replicated GWAS 
study in adults. In a subpopulation of those adults, 
methylation marks in cis with the associated SNPs were 
also strongly associated with the phenotype. Addition-
ally, in a (separate) population of neonates who are not 
affected by hypertension, the same methylation marks 
still associated with the identified SNPs. This suggests 
that the variation in methylation is upstream of the 
phenotype, not a consequence of it [100]. Data from dif-
ferent age groups could thus allow us to better under-
stand the directionality of the associations. In another 
example, a replicated methWAS, identified the associa-
tion of methylation of HIF3A and adult BMI [33]. The 

DNA sample collected (T1) after disease onset (Td)

DNA sample collected (T1) prior to disease onset (Td)
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authors speculated that HIF3A hypermethylation was 
a consequence of increasing adiposity. However, the 
association of HIF3A methylation and weight was also 
detected in neonates suggesting it was not solely a con-
sequence of adult acquired adiposity.

Alternatives to interpreting findings from multiple 
observational studies are longitudinal studies that 
prospectively sample the methylome and collect envi-
ronmental influences at multiple time points. Longitu-
dinal studies better allow us to map methylation trajec-
tories alongside disease progression, and environmental 
influences. Therefore, they are powerful in examining 
causality [27,101]. This aim is central to efforts of lon-
gitudinal cohorts with epigenetic sampling [39,102–104]. 

Additionally, multigenerational studies will allow 
investigation of epigenetic mediation of transgen-
erational transmission, for example, of metabolic 
profile [105–107], lifespan [108] or psychophysiological 
trauma [109].

Future perspective
Boosting statistical power in individual studies is 
desirable. Statistical power can be boosted by increas-
ing sample size to logistical limits, although it is dif-
ficult to estimate the required sample size a priori (as 
is often required by grant awarding bodies) as vari-
ance of continuous methylation levels and effect size 
on phenotypes are usually unknown. Statistical power 

Executive summary

Health is a result of the interaction of genes with environment
•	 Complex diseases are a product of the interaction of genetic predisposition and environmental influences.
Screens for GxE influences are afflicted by low statistical power
•	 Hypothesis-free large-scale screens for genetic variants influencing disease (genome-wide association studies 

[GWAS]) require thousands of subjects to achieve statistical power to detect true associations.
•	 Investigating interactions with environmental influences in these screens, reduced power further.
•	 Moreover, increasing number of subjects is nontrivial as collection of environmental measures (especially 

longitudinal measurements) is costly and burdensome.
Utilizing DNA methylation marks as a proxy for GxE
•	 An alternative is to study the DNA methylome.
•	 DNA methylation marks are putatively downstream of multiple causative genetic and environmental factors 

and upstream of disease.
•	 However, as the DNA methylome must be measured in an appropriate tissue and at appropriate time(s), 

methylome-wide association studies (methWAS) are challenging to perform in massive numbers of subjects. 
Therefore, statistical power must be boosted by other means.

Increasing power of methWAS by reducing (unwanted) variability
•	 A key source of unwanted variability in methWAS studies is introduced by cellular heterogeneity. This can be 

tackled by study design, collection of cell count data and statistical adjustment.
•	 Other sources of unwanted variability can also be partially bested by statistical modeling.
Increasing power of methWAS by appropriate statistical modeling
•	 Statistical models employed within methWAS must account for the non-normal distribution and 

heteroskedascity of the data.
•	 Appropriate multiple testing procedures must also be applied, without causing excessive loss of power.
•	 Grouping CpGs and testing grouped-CpGs as a single unit reduces the number of variables to test and so 

increases power.
Increasing power of methWAS by leveraging data from multiple molecular species
•	 Combining methWAS with data from other molecular species (e.g. genotype and transcriptome) can decrease 

required significance levels and so increase statistical power.
•	 It can also detect the ‘emergent properties’ of the data.
Increasing power & addressing causality in methWAS by leveraging information from multiple timepoints
•	 Causality and confounding are important issues in methWAS.
•	 It is challenging to address them in single timepoint data.
•	 However, there are promising clues emerging from studies that combine observations made at different 

stages of the lifecourse.
•	 We look forward to longitudinal and multi-generational studies that incorporate DNA methylation measures.
Future perspective
•	 Replication across independent studies and sample sets is critical for the future of methWAS, especially to 

address confounding.
•	 We look forward to taking full advantage of existing datasets to boost the power of methWAS studies and 

uncover molecular trajectories that underlie disease.



www.futuremedicine.com 1125future science group

How to make DNA methylome wide association studies more powerful    Review

can be boosted through careful study design and data 
analysis as described here. Lessons can be learnt from 
the evolution of GWAS studies but DNA methylation 
is not analogous to DNA polymorphisms and differ-
ent approaches are necessary. Statistically significant 
results remain vulnerable to confounding by unknown 
factors in the data, which could drive a spurious asso-
ciation between phenotype and DNA methylation 
marks. Replication in independent datasets, as has 
become standard for GWAS is perhaps even more 
critical for methWAS. Additionally, meta-analysis can 
be conducted across studies to boost the total sample 
size. Large-scale epigenome mapping initiatives have 
provided hugely important information about DNA 
methylation across tissues and individuals and their 
relationship with other molecular marks [110–112]. 
These provide methWAS studies with important 
context, which could be utilized to enhance statisti-
cal power, for instance in more appropriate grouping 
of CpGs and modeling of the interaction with other 
molecular species. As the field goes on to produce 
more data from samples on the continuum of health 
and disease, development of analytical methods for 
the interpretation and integration of methWAS data 
while conserving power, will become an even more 
important research challenge. MethWAS offers hope 
of the confident identification of DNA methylation 
marks, which are downstream of genetic and environ-
mental influences but upstream of disease. Their dis-

covery, in part relies on increasing the statistical power 
of methWAS.
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