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For cursorial animals that maintain high speeds for extended durations of locomotion,
transitions between footfall patterns (gaits) predictably occur at distinct speed ranges. How
do transitions among gaits occur for non-cursorial animals? Jerboas (Jaculus) are bipedal
hopping rodents that frequently transition between gaits throughout their entire speed
range. It has been hypothesized that these non-cursorial bipedal gait transitions are likely
to enhance their maneuverability and predator evasion ability. However, it is difficult to use
the underlying dynamics of these locomotion patterns to predict gait transitions due to the
large number of degrees of freedom expressed by the animals. To this end, we used
empirical jerboa kinematics and dynamics to develop a unified spring Loaded Inverted
Pendulum model with defined passive swing leg motions. To find periodic solutions of this
model, we formulated the gait search as a boundary value problem and described an
asymmetrical running gait exhibited by the jerboas that emerged from the numerical
search. To understand how jerboas change from one gait to another, we employed an
optimization approach and used the proposed model to reproduce observed patterns of
jerboa gait transitions. We then ran a detailed numerical study of the structure of gait
patterns using a continuation approach in which transitions are represented by
bifurcations. We found two primary mechanisms to increase the range of speeds at
which gait transitions can occur. Coupled changes in the neutral leg swing angle alter leg
dynamics. This mechanism generates changes in gait features (e.g., touchdown leg angle
and timings of gait events) that have previously been shown to induce gait transitions. This
mechanism slightly alters the speeds at which existing gait transitions occur. The model
can also uncouple the left and right neutral leg swing angle, which generates asymmetries
between left and right leg dynamics. New gait transitions emerge from uncoupled models
across a broad range of speeds. In both the experimental observations and in the model,
the majority of the gait transitions involve the skipping and asymmetrical running gaits
generated by the uncoupled neutral leg swing angle mechanism. This simulated jerboa
model is capable of systematically reproducing all biologically relevant gait transitions at a
broad range of speeds.
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1 INTRODUCTION

Despite vast differences in morphology, the locomotion patterns
of many legged animals are strikingly similar (Alexander, 2002).
Typically, these gait patterns can be characterized by repeated
footfall sequences (Alexander, 1984; Hildebrand, 1989), the
ground reaction force profile (Alexander, 2009) or by how
gravitational, potential and kinetic energies are exchanged over
the course of a stride (Cavagna et al., 1977). As the speed of
locomotion increases, quadrupedal cursorial animals, such as
horses or gazelles, switch from using a walking gait at low
speeds to a trotting or pacing gait at intermediate speeds, and
then a galloping gait at their highest speeds. Previous studies
suggest that each gait minimizes oxygen consumption (Hoyt and
Taylor, 1981; Minetti et al., 1999) and minimizes the loading
impact on the musculoskeletal system (Farley and Taylor, 1991;
Lee et al., 2011) at a distinct speed range. Therefore, transitioning
between gaits as speed increases helps cursorial animals minimize
the cost of sustained steady-state locomotion, thereby enhancing
endurance at high speeds. Based on these fundamental principles,
the speeds at which cursorial gaits occur can be predicted by the
ratio of centripetal to gravitational force (as an animal moves over
its supporting limb), or the Froude number (Alexander and Jayes,
2009).

On the other hand, rapid and energetically costly changes in
acceleration and direction of movement are important for small
animals evading predators (Biewener and Blickhan, 1988; Chance
and Russell, 2009; Domenici et al., 2011). Some quadrupedal and
hexapedal prey animals temporarily rear up on hindlimbs and use
bipedal locomotion to enhance acceleration during escape (Full
and Tu, 1991; Clemente, 2014). Notably, jerboas (Dipodidae) are
desert rodents that evolved obligately bipedal locomotion from
quadrupedal ancestors. Although pentapedal (quadrupedal with
additional support from the tail) locomotion occurs during in
postnatal development (Eilam and Shefer, 1997), and
quadrupedal locomotion is used infrequently at slower speeds
(Happold, 1967), jerboas are the only hopping rodent to use
multiple bipedal gaits as their primary mode of locomotion as
adults (Moore et al., 2017). The hopping, skipping, and running
gaits are used throughout the entire jerboa speed ranges, with
frequent (≈ 50% of all recorded trials) transitions between gaits
that are not predicted by the Froude equation (Moore et al., 2017).
Because each gait is associated with a distinct range of
acceleration, rather than speed, frequent gait transitions likely
enhance the potential maneuverability and predator evasion
ability of a jerboa (Moore et al., 2017). Thus, building models
to characterize non-cursorial locomotion can help us understand
more agile and maneuverable locomotion.

The center of mass dynamics and kinematics for a wide variety
of cursorial animals can be modeled using a simplified “template”
approach with minimal degrees of freedom (Full and Koditschek,
1999). McGeer (1990) demonstrated that an Inverted Pendulum
model (IP) with two rigid legs is capable of walking on a sloped
ramp without the help of any additional controllers or actuators.
A Spring-Loaded Inverted Pendulum (SLIP) model explains the
kinetic and potential energy exchanges in running gaits
(Blickhan, 1989; Farley et al., 1993). These models have been

shown to explain the locomotion of cursorial animals that differ
greatly in size, leg number, or posture. The simplicity and broad
applicability of these template models have made them invaluable
for designing controllers for legged robots (Hereid et al., 2014;
DSCC, 2015).

Although these simplified models have been useful for
generating single-gait controllers, efficient and reliable
transitioning between gaits has been a consistent challenge for
legged robotics. Many robots use a heuristic controller that
initiates a gait transition by either stopping locomotion
entirely and then performing a sequence of procedures to
guide the system into another gait pattern or adding energy
into the system by providing a thrust during the stance phases.
These existing controllers usually generate abrupt changes in
center of mass trajectories or leg speeds (Hyun et al., 2014; Hyun
et al., 2016). Most recently, reinforced learning controllers
(Hwangbo et al., 2019; Siekmann et al., 2020) have been
proposed to enable smooth and stable gait changes. However,
this approach not only requires a large amount of data gathered
from a particular application, but very limited knowledge can be
learned about why and how this type of controller might
outperform its conventional counterparts. Empirical data from
animals has informed theoretical models to explain how gait
transitions can be initiated across a broad range of speeds,
potentially reveal new methodologies for synthesizing
switching controllers.

For quadrupedal locomotion, gaits can be modeled as
dynamical systems for which gaits with inter-limb
coordination are stable attractors (Schöner et al., 1990). In
these models, gait transitions associated with lack of
coordination can be identified as bifurcations along gait
system paths in parameter space. Genetic knockouts in
pattern-generating neural pathways confirm that changes in
synchronization between fore-hind and left-right leg pairs can
induce a gait transition as speed increases (Danner et al., 2016).
Breaking coordination between limbs has been successfully used
as a mechanism to transition a quadrupedal robot from walking
to trotting (Shinya et al., 2013). Previous studies have described
how changes in gait features (i.e., leg contact angle, timing of gait
events) result in gait transitions, it is difficult to translate these
findings into robotic controllers but without understanding how
model dynamics result in such changes in gait features. For
bipedal locomotion, Geyer et al. (2006) found that a unified
SLIP model can explain both bipedal walking and running gaits,
which suggests that these two gaits are different oscillation modes
of the same mechanical system with different energy levels. This
insight has been useful for predicting gait transitions in cursorial
bipeds (Gan et al., 2018b).

Here, we built upon previous template models (Geyer et al.,
2006; O’Connor, 2009; Shen and Seipel, 2012) to provide the first
insights into the factors determining the gait transitions of non-
cursorial bipeds, such as jerboas. First, we experimentally
measured Lesser Egyptian jerboa (Jaculus) kinematics and
dynamics for each gait across a broad range of speeds. We
used numerical optimization to match an extended SLIP
model (Gan et al., 2018b) to the jerboa data. The resulting
walking and running gaits were similar to the ones found in
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(Geyer et al., 2006). However, while the previous model required
directly changing the angle of attack, the passive dynamics of the
proposed model determine swing leg motion to generate different
gaits. As a result, many other gaits, including those that require
two different leg contact angles (e.g., asymmetrical bipedal
skipping) emerge from the proposed model as a natural
continuation from the gait search. We formally defined
asymmetrical running, a jerboa gait that emerged from the
numerical search. Using a detailed parameter scan, we
identified two distinct mechanisms to induce a transition
between these four gaits (walking, running, skipping and
asymmetrical running). The proposed bipedal model that
couples the neutral angle of both legs during the swing phase
can change this angle to induce a gait transition. Alternatively, the
model can uncouple the offset between the neutral angle of each
leg during the swing phase to induce a gait transition. With these
twomechanisms, the extended SLIPmodel is capable of matching
the jerboa pattern of transitioning between gaits across a broad
range of speeds. We also found that on the Poincaré section, the
fixed points of the skipping gait are in close proximity to solutions
found for all other gaits, which explains why jerboas transition to
and from skipping gaits most frequently (Moore et al., 2017).
Thus, this extended SLIP model matches empirical jerboa
kinematics and dynamics, predicts gait transitions throughout
a broad range of speeds, and provides a mechanism for initiating
these gait transitions.

2 METHODS

2.1 Animal Experiments
Details of the data collection procedure were reported in a
previous publication in which the speeds and acceleration
ranges associated with each gait were determined (Moore
et al., 2017). Trials were collected from five captive male
jerboas traveling along a narrow track (2 × 0.15 × 0.4 m3)
over a two-axis force platform (0.06 × 0.12 m2) and past a
high-speed video camera recording at 500 fps. We visually
categorized the gait of each stride by footfall pattern. Both feet
striking and lifting off simultaneously were considered hopping.
Overlapping but non-simultaneous foot strikes were considered
skipping, according to previous work (Moore et al., 2017). If the
same leg maintained the leading foot position, this gait would be
equivalent to a bipedal gallop, as defined in previous gait research
(Schropfer et al., 1985; Gan et al., 2018b). An aerial phase between
each foot strike was considered running if each aerial phase was
approximately the same duration.

To extract the kinematic data (i.e., center of mass (COM)
locations and leg angles over one stride) from the video
recordings, we used DeepLabCut, a markerless pose
estimation framework leveraging a deep neural network
(DNN) (Mathis et al., 2018). In this study, 35 videos that
contained a whole stride of a single gait pattern were used to
train the DNN. All three common jerboa gaits reported in (Moore
et al., 2017) (i.e., hopping, skipping, running) were included in
this study. Roughly 1/3 of the total frames of each video were
selected as the training data set. In these frames, we manually

labelled the location of the eye, the tail-base, and the two feet, as
shown in Figure 1 A. We estimated the COM location as the
midpoint between the eye and the tail-base. Then the leg angles
were calculated as the orientation of the line segments connecting
the COM to the feet.

2.2 Model Description
The proposed model used in this study consists of a point mass as
the main body, with mass m, and two massless legs, as illustrated
in Figure 1B. The vertical and horizontal positions of the main
body were defined by the variables x(t) and y(t), respectively. Left
and right legs (with index i ∈ [l, r]) were modeled as massless
linear springs with resting leg length lo and total spring stiffness k.
Both legs were connected to the main body through frictionless
rotational joints, with the joint angle αi(t) measured from the
vertical axis (positive in the counterclockwise direction).
Comparing with the convectional SLIP model, which
ignores swing leg motions by setting the leg to predefined
angles of attack immediately after lifting off, we added a
torsional passive spring to control the leg swing motion
during the flight phase of each leg. This is similar to the
monopedal SLIP model with hip torque and leg damping
proposed by (Shen and Seipel, 2012), in which active constant
hip torques and leg dampings during the stance phase
improved the stability and robustness of locomotion. In
contrast, the torsional springs in our model provide
passive torques enable the rotational motions of the swing
legs to facilitate gait transitions. The torsional spring directly
connected the leg to the main body at angle, φi (hereafter
referred to as the neutral swing leg angle (NSLA), measured
with respect to the vertical direction (Figure 1B). By fixing
the oscillation frequency ω, this torsional spring dictates the
swing leg rotational speed and amplitude and determines the
desired contact angle at the moment of touchdown. Because
we can assume that the torsional spring stiffness and the foot
mass have infinitesimal values, they do not affect stance leg
kinematics or dynamics (Gan et al., 2018b).

In our work, we ran optimizations to fit the trajectories of leg
angles (Figure 2) to determine the oscillation frequency ω. The
full set of parameters of the proposed model is denoted as �p

T
: �

[m, lo, g, k,ω,φl,φr].
The total stride time was defined as T and its value was not

known before finding a gait pattern of the proposed model.
Without loss of generality, we chose the apex transition ( _yo �
_y(T) � 0

���
log

√ ) as the Poincaré section. This means that the
beginning of each gait cycle was defined as the peak of the
aerial phase, when the COM was highest off of the ground. To
reproduce all observed bipedal gait patterns of jerboas and
analyze their transitions, we did not prescribe a specific
footfall pattern. Instead, we introduced four timing
variables tji (with index i ∈ [l, r], j ∈ [td, lo]), for the
touchdown and liftoff events that are confined within
the time interval of one stride [0, T). Their values were
determined and sorted through the gait finding process,
as detailed in Section 2.4. The full set of timing variables
of the proposed model is encapsulated in a vector �t

T
: �

[ttdl , tlol , t
td
r , tlor , T].
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2.3 Equations of Motion
Using the position and velocity vectors �q

T
: � [x, y, αl, αr],

_q
→T

: � [ _x, _y, _αl, _αr] to describe the state of the system, we
expressed the dynamics as a set of second-order time-varying
differential equations €q

→ � f( �q, _q
→
, �t, �p) that is parameterized by

�p. The equations of motion (EOM) were defined for the main
body as:

€x � Fx/m, €y � Fy/m − g, (1)
where Fx and Fy represent the net forces and torques generated by
the leg pairs. The dynamics of the leg pairs depended on whether
the legs were in contact with the ground. During the swing phase,
the leg was set to its uncompressed original length lo and the leg
angular accelerations were defined by:

€αswing,i � 1/lo €x cos αi + g + €y( )sin αi( ) + ω2m αi − φi( ), (2)

During stance, we assumed that the ground has infinite friction so
that the stance foot did not slide on the ground. A holonomic
constraint was introduced to make sure the horizontal position of
the contact foot (xc,i) was stationary.

xc,i − x − y tan αi � 0, (3)
Whenever a leg entered stance phase, the angular acceleration of
that leg was determined by the accelerations of the main body,
which was directly computed from the above ground constraint
by taking the time derivative twice:

€αstance,i � −2 _αi
2 tan αi( ) − 2 _αi _y

y
− €x + €y tan αi( )

y sec2 αi( ) . (4)

In addition, at the moments of touch-down ttdi , the leg velocities
were reset according to the holonomic constraint Equation (3),
resulting in additional discrete dynamics to ensure zero stance
foot velocity when integrating Equation (4). ttd+i and ttd−i were

FIGURE 1 | (A) shows how the proposed model relates to a jerboa. The COM location is approximated as the midpoint between the eye and the tail-base. The leg
angles are estimated by the orientation of the line segments connecting the COM to the feet (B) illustrates the proposed SLIPmodel with passive swing leg motion. There are
four continuous states (shown in blue) including the position of the torso (x, y) as well as the leg angles (αl0 , αr0). Model parameters are highlighted in red, including total body
mass, m, uncompressed leg length, lo, gravity, g, and leg stiffness, k. Adding a torsional spring to a SLIP model enables motion of passive swing leg. The rotational
speeds of both swing legs are determined byω and the neutral leg angle are φl and φr respectfully. Note that the neutral leg swing angle for the right leg,φr, is different from that
of the left leg, demonstrating an uncoupled model. A simplified version of the model showing the range of the swing leg motion is also shown in the top-right corner.

FIGURE 2 | Trajectory optimization results, in solid lines, for (A) the COM position [x, y] and (B) the leg angles [αl0 , αr0] of trial 1802− j30 closely match the empirical
data, in dashed lines. The fitting result shows whole stride, starting from the apex transition, when t ∈ [0, T] in the flight phase (white background). The single stance
phases are indicated by the lighter gray background and the double stance phases are indicated by the darker gray background. Compared to the rotational motion of
the left leg (dark blue), the right leg rotations are translated anteriorly (light blue), which is reflected in our model by setting the neutral leg swing angles to φl
=0.032 rad and φr =0.137 rad, marked by horizontal dotted lines in (B). The difference between φl and φr is the offset in uncoupled leg models.
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used to indicate the moments right after and before the touch-
down event of a leg, respectively.

_q
→

ttd+i( ) � h �q ttd−i( ), _q
→

ttd−i( )( ). (5)

Posterior neutral leg swing angles usually induced a premature
touchdown event during anterior swing leg motion, causing the
leg to immediately rotate posteriorly and inducing a large angular
velocity reset (Eq. (5)). Because this behavior is rarely seen in
jerboa locomotion, we terminated the numerical search when this
phenomenon was detected.

2.4 Gait Finding and Continuation
Due to the nonlinearity and the hybrid nature of the EOM
presented in Section 2.3, it was not possible to find explicit
periodic solutions of the proposed model. Therefore, in this
work we identified gait patterns as numerical solutions
dictated by the initial condition of the continuous states �qo,

_q
→

o and system parameters �p
T
. Because a gait of the system is

a periodic motion, finding a bipedal gait in this model was
equivalent to solving a root of the following set of constraint
equations:

find �qo, _q
→

o,
�t

such that :
�q T( ) − �qo � 0,

_q
→

T( ) − _q
→

o � 0,
y tji( ) − lo cos αi t

j
i( )( ) � 0 for every i ∈ l, r[ ], j ∈ td, lo[ ].

⎧⎪⎪⎨⎪⎪⎩
(6)

This is a passive model with no additional controllers or
actuators. When the parameters of the proposed model were
fixed, there were 13 variables ( �qo, _q

→
o,
�t) and 12 constraints

(equalities listed in Eq. (6)). For such a conservative model,
the total energy stored in the system can be calculated as
E � 1

2m _x2
o + 1

2m _y2
o +mgyo, so varying the initial conditions is

equivalent to changing the total energy. As a result, periodic
solutions formed one-dimensional manifolds (hereafter referred
to as branches) as the total energy stored in the system varied. We
integrated the system over a complete stride using the Runge-
Kutta-Fehlberg Method (RKF) (Fehlberg, 1969) and solved for
roots of the above equalities using the fsolve function of Matlab.
Finding the first periodic motion (gait) of the proposed model
requires a good estimation of the initial states. It is the easiest to
start with a solution of zero forward speed in which the horizontal
position of COM, the leg angles, and leg angular velocities remain
at zeros during the whole stride. Once one periodic motion was
found, we ran numerical continuations using the predictor and
corrector method (Gan et al., 2018a) to quickly explore the
adjacent periodic solutions and their transitions to other gait
patterns. Because most of the gait transitions appeared from the
numerical search as a bifurcation point, at which one of the
Floquet multipliers of the system is equal to +1, the
corresponding eigenvector was approximately directed towards
the solution with the new gait pattern (Gan et al., 2018b).

In nature, jerboas move with step-to-step changes in stride
length, direction, gait, and speed and rarely demonstrate exact

periodic gait patterns. In this work, we assume they are utilizing a
stabilizing controller for a desired limit cycle, which is changed
discretely each step. We also assume that the state of the jerboa is
always within the region of attraction of the controller and the
desired limit cycles. Additionally, we only explored gaits with a
left-leg phase advance because the motions of the left-advanced
gaits and right-advanced gaits were identical when the leg
parameters were the same and the two legs were switched.
Thus, although they occurred in the animals, we did not
mathematically explore gait transitions between left-advanced
and right-advanced skipping gaits.

2.5 Parameter Identification
To reduce the number of free parameters and identify their values
in the proposed model, we normalized all values in the model in
terms of the total mass of the system, m, the uncompressed leg
length, lo, and the gravity on Earth, g (Hof, 1996). The estimation
of leg stiffness was based on the assumptions that legs were
massless and that they behaved as simple linear springs. The
period of the oscillation around the leg was therefore dictated by
the spring stiffness, according to

����
k/m

√
. To estimate the swing leg

oscillation frequency ω, and to determine how well the proposed
model can explain the empirical motions of jerboas, we proposed
the following optimization framework.

By solving Equation (6), the simulated model trajectories of
positions and velocities of a periodic solution can be represented
by a 3-tuple �X: � ( �q+, _q

→+
, �t

+). For the nth experimental trial,
the residual function Cn( �X, �p) quantifies how well the model
with a specific parameter set �p predicted the kinematics of the
locomotion pattern in jerboas. The empirical positions and
velocities of jerboas from the nth experimental trial were
denoted by �q

e

n and _q
→e

n, respectively. The value of this cost
function was minimized as a nonlinear optimization problem
with an optimal set of parameters, �p:

Copt � min
X, p

Cn: � ∫
T+

0

�q
+

t, p( ) − �q
e

n t( )‖2 + _q
→+

t, p( ) − _q
→e

n t( )
�������

�������
2

dt}.
��������

⎧⎪⎨⎪⎩ (7)

This algorithm was implemented in Matlab using sequential
quadratic programming (SQP). Each optimization problem
can be solved on a regular desktop computer with an Intel
Core i7 3.4 GHz processor in a few minutes.

3 RESULTS

In this study we created a high-fidelity template model that can
accurately reproduce jerboa gait transitions. First we demonstrate
a simulated skipping gait pattern from the template model using
the proposed optimization algorithm. Next, Section 3.2 formally
defines the symmetric and asymmetric jerboa gaits, including the
first description of the asymmetrical running gait. Then, we
analyze the effects of varying NLSA in two different scenarios.
In Section 3.3, the NLSA of both legs are varied together and
thereafter referred as the coupled leg model. In Section 3.4, we
allow offset, or differences, in the right and left NLSA and call it
the uncoupled leg model. In the last section, we validate our
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TABLE 1 | Optimized initial states and system parameters of the proposed model associated with all 12 empirical trials of jerboa skipping locomotion are listed in this table. The optimized trajectory of trial 1802-j30
corresponds to Figure 2. All states and parameters are normalized with respect to the total mass of the system, m, the uncompressed leg length, lo, and the gravity on Earth, g.

Jerboa j30 j38 j44 j61

Recording 1802 1826 1827 1828 2007 2018 2029 2035 1138 1317 1320 1940

States sim exp sim exp sim exp sim exp sim exp sim exp sim exp sim exp sim exp sim exp sim exp sim exp

_xo
���
glo

√
2.86 2.22 4.27 4.05 5.01 5.47 4.07 3.61 3.88 4.73 3.83 4.06 4.64 5.09 3.64 3.52 1.79 1.53 1.82 1.99 2.08 2.30 2.15 2.13

yo lo 1.04 1.11 0.96 1.01 0.90 0.96 0.86 0.88 1.15 1.26 1.16 1.22 0.98 1.09 1.08 1.11 1.33 1.36 1.19 1.34 1.07 1.17 1.10 1.15
_yo

���
glo

√
0.01 0.15 0.01–0.21 0.00–0.04 0.00–0.26 -0.12–0.16 0.00 0.03 -0.07–0.91 -0.09 0.07 -0.18 0.12 -0.02–0.33 0.00–0.10 0.00–0.82

αl0 rad 0.35 0.36 0.27 0.30 0.55 0.55 0.15 0.06 0.36 0.47 -0.17–0.64 0.17 0.08 0.19 0.13 -0.32–0.38 0.01–0.06 -0.15–0.36 0.23 0.24

_αl0
����
g/lo

√
3.18 3.90 5.18 7.72 4.07 4.33 5.14 7.41 3.61 2.28 3.21 4.39 5.16 8.12 4.47 4.72 2.52 2.87 1.84 2.20 1.79 2.89 2.33 1.27

αr0 rad 0.12 0.03 0.66 0.76 0.68 0.69 0.45 0.33 0.36 0.32 -0.24–0.32 -0.08–0.29 -0.21–0.45 0.56 0.29 0.41 0.44 0.49 0.41 -0.30–0.33
_αr0

����
g/lo

√
4.15 7.09 3.59 1.92 2.21 1.33 4.49 7.79 2.83 2.80 4.61 5.52 5.66 6.89 4.33 5.52 -0.21 1.56 0.91 0.89 1.67 3.11 3.33 2.28

Timing sim exp sim exp sim exp sim exp sim exp sim exp sim exp sim exp sim exp sim exp sim exp sim exp

ttdl
����
lo/g

√
0.45 0.32 0.44 0.50 0.53 0.49 0.49 0.54 0.47 0.43 0.38 0.36 0.30 0.28 0.48 0.47 0.43 0.51 0.45 0.50 0.52 0.52 0.27 0.31

tlol
����
lo/g

√
0.60 0.56 0.63 0.68 0.68 0.67 0.61 0.74 0.59 0.60 0.52 0.56 0.47 0.44 0.64 0.66 0.68 0.78 0.65 0.71 0.65 0.74 0.68 0.66

ttdr
����
lo/g

√
0.45 0.45 0.29 0.36 0.29 0.33 0.46 0.43 0.64 0.60 0.48 0.47 0.43 0.48 0.61 0.61 0.44 0.31 0.26 0.29 0.37 0.30 0.60 0.49

tlor
����
lo/g

√
0.81 0.68 0.49 0.57 0.56 0.51 0.62 0.61 0.72 0.78 0.60 0.65 0.62 0.69 0.85 0.79 0.57 0.50 0.47 0.46 0.51 0.52 0.85 0.77

Duty Factor 0.26 0.24 0.19 0.20 0.21 0.18 0.14 0.19 0.12 0.17 0.13 0.19 0.18 0.19 0.20 0.18 0.19 0.23 0.21 0.19 0.14 0.22 0.33 0.31
Stride Time

����
lo/g

√
0.93 0.97 0.91 0.79 0.68 0.69 0.84 0.81 0.91 0.90 1.27 1.24 0.90 0.88 0.90 0.92 1.77 1.70 1.66 1.60 1.51 1.44 0.83 0.87

Stride Length lo 2.69 2.73 3.89 3.30 3.38 3.34 3.37 3.13 3.52 3.38 5.01 4.84 4.17 4.11 3.28 3.40 3.05 2.97 3.13 2.93 3.18 2.88 1.91 2.01
Average Speed

���
glo

√
2.88 2.81 4.26 4.13 4.99 4.85 4.00 3.83 3.86 3.76 3.99 3.88 4.64 4.70 3.64 3.71 1.73 1.75 1.91 1.83 2.12 1.99 2.32 2.44

R-squared

X 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99
Y 0.88 0.97 0.90 0.94 0.83 0.92 0.84 0.93 0.95 0.89 0.88 0.95
αl 0.99 0.98 0.99 0.99 0.99 0.90 0.99 0.99 0.99 0.97 0.86 0.97
αr 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.99 0.97 0.98

Parameters

ω
����
g/lo

√
6.49 6.87 6.99 6.75 5.86 4.84 6.37 5.94 3.27 3.63 4.08 7.17

φl rad 0.02 0.23 0.32 0.28 0.03 -0.17 -0.45 -0.12 -0.15 0.18 0.26 -0.10
φr rad 0.17 0.03 0.00 0.22 0.40 -0.01 -0.09 0.07 0.16 -0.10 -0.04 -0.05

Frontiers
in

B
ioengineering

and
B
iotechnology

|w
w
w
.frontiersin.org

A
pril2022

|V
olum

e
10

|A
rticle

804826
6

D
ing

et
al.

A
M
odelExplains

Jerboa
Transition

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


model by comparing our predictions to empirical gait transition
data from jerboas. The framework we created and a video
showing the jerboa gait transitions have been included in the
Supplementary Material.

3.1 Optimized Model Parameters Recreate
Empirical Observations
As mentioned in the previous sections, the full set of parameters
of the proposed model was denoted as
�p
T
: � [m, lo, g, k,ω,φl,φr]. All values were normalized and m,

the uncompressed leg length, lo, and the gravity on Earth, g which
were all set to a value of one. Based on the methods in Section 2.5,
the mean value and the standard deviation of the leg spring
stiffness was estimated at k = 19.24 ± 2.43 mg/lo. Swing leg
oscillation frequency ω varied minimally across trials for each
jerboa (e.g., 6.77 ± 0.18

����
g/lo

√
for j30, 5.75 ± 0.65

����
g/lo

√
for j38).

Because the deviations of both leg stiffness and swing leg
oscillation frequency were relatively small in our entire data
set, we assumed they were not the major contributors to the
gait transitions in jerboas. Thus, we set leg stiffness to 20mg/lo for
the subsequent simulations and used 6.5

����
g/lo

√
. For a given set of

parameters, we exhaustively searched for solutions, which
resulted in a maximum forward speed of 29

���
glo

√
. Although

these branches included unrealistic speeds, all gait transitions
emerged below 8

���
glo

√
. The optimized parameters (Table 1)

produced trajectories that closely match the empirical jerboa
COM location and both leg angles (coefficient of determination
0.83 < R-squared < 0.99, Figure 2).

3.2 Symmetrical and Asymmetrical Gaits Lie
on Two Distinct Continua
Based on the numerical search described in Section 2.4, we found
periodic solutions for five different gait patterns: walking, hopping,
skipping, symmetrical running, and asymmetrical running
(Figure 3). The definitions of the first four gait patterns follow
the conventions described in Section 2.1 and in previous research
(Happold, 1967; Eilam and Shefer, 1997; Moore et al., 2017), while
asymmetrical running is a novel gait presented this study
(Section 3.2.2).

3.2.1 The Nominal Model has Neutral Leg Swing
Angles of Zero
All the identified locomotion patterns formone-dimensional branches
connected to one another through bifurcation points on the Poincaré
section (Figure 4). These solution branches are hereafter referred
to as the gait structure. Just as in our previous SLIP model (Gan
et al., 2018a), setting both the neutral leg swing angles to zero results
in a nominal gait structure symmetric about the plane αl0 � 0 rad.

Symmetrical gaits, walking and running, form one continuum
(purple and yellow in Figure 4). For symmetrical gaits, identical

FIGURE 3 | The apex transitions, touchdowns, and liftoffs for one stride of four different gait patterns are demonstrated by jerboas on the left, with inset gait
diagrams showing footfall patterns, the corresponding simulated gait patterns using our model are shown on the right. The right leg of jerboa is shown in white and the left
leg is in the same color as the corresponding gait branches shown in the inset gait diagram and in Figure 4. The left leg of the model is shown in grey and the right leg is in
white (A) shows hopping in which both feet strike and lift off simultaneously (B) shows skipping with overlapping but non-simultaneous foot strikes (C) shows
asymmetrical running with two different aerial phases (D) shows symmetrical running which contains two aerial phases with approximately the same duration. Blue
curved arrows indicate leg touchdown (ttdi ) and the gray curved arrows denote liftoff events (tloi ).
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leg movements are out of phase by half a stride (|tjl − tjr| � T/2)
(Hildebrand, 1967). Walking (purple in Figure 4) appears only at
low speeds and is characterized by a lack of aerial phase
(i.e., 0< ttdr < tlol < ttdl < tlor <T). When the forward speed
reaches _xo � 1.21

���
glo

√
(diamonds in Figure 4), one leg strikes

the ground at the exact moment when the other leg leaves the
ground, i.e. ttdi � tlo�i where i ∈ [l, r] and �i denotes the index of the
opposite leg. As speed further increases, liftoff of one foot occurs
before touchdown of the other foot and walking smoothly
transitions to running with aerial phases between each footfall,
i.e. 0< ttdr < tlor < ttdl < tlol <T (Figure 3D, yellow in Figure 4).

A distinct continuum connects the three asymmetrical gaits:
hopping, skipping, and asymmetrical running (red, blue, and green
lines in Figure 4), for which the phase shift between legs is not
equal to half a stride (|tjl − tjr|≠ T/2) (Hildebrand, 1977). Along the
hopping branch (Figure 3A, red in Figure 4), leg motions are
synchronized, i.e. 0< ttdr � ttdl < tlor � tlol <T. This synchronization
is broken, via hopf bifurcations (Hassard et al., 1981, Chapter 1), at
two different speeds (circles in Figure 4B), both leading to skipping
(Figure 3B, blue in Figure 4B) with overlapping footfall patterns
(i.e. 0< ttdr < ttdl < tlor < tlol <T).

3.2.2 Definition of Asymmetrical Running
At skipping speeds _xo � 7.72

���
glo

√
or 28.06

���
glo

√
(triangles in

Figure 4), previously overlapping touchdown and liftoff
events occur simultaneously (e.g., ttdl � tlor ). At intermediate
speeds, a short aerial phase emerges in the middle of the stride.
As opposed to symmetrical running, gaits in which two aerial
phases are unequal in duration (Figure 3C) are asymmetrical
running, with distinct contact angles for each leg and footfall
pattern 0< ttdr < tlor < ttdl < tlol <T. In the following sections we
will show that the asymmetrical running gait plays an
important role in gait transitions and appears ubiquitously

in the gait structure as we sweep the parameter space spanned
by neutral leg swing angles.

3.3 Coupled Changes in Neutral Leg Swing
Angle Shift the Speeds of Existing Gait
Transitions
3.3.1 Anterior Shifts in Coupled Neutral Leg Swing
Angle Preserve Symmetrical Gait Structure
As we increased the values of φl = φr, the legs immediately
rotated anteriorly at liftoff (see the inset at the top right
corner of Figure 5A). After reaching the maximum anterior
position, the legs would rotate posteriorly prior to ground
contact, i.e. swing leg retraction (Seyfarth et al., 2003).
Despite this change in kinematics, the transitions to
walking (diamonds in Figure 6) remained approximately
at the same speed, 1.2

���
glo

√
.

On the other hand, negative neutral leg swing angles
(posteriorly shifted) induced changes in the shape of the gait
branches. As shown in Figure 5B, at low speeds, there were no
viable solutions for walking or running because the swing legs
failed to maintain a positive leg angle at the moment of touch-
down, which is required to keep moving in the positive horizontal
direction.

At higher speeds, the curved regions of the branches,
corresponding to solutions that include swing leg retraction,
disappeared. Instead, higher speed running solutions
involved swing legs rotating forward at the moment of
touch-down, which induced an angular velocity reset and
large plastic collision losses. When we further decreased the
value of neutral leg swing angles, the entire running branch
shrank towards the mid-speed region, eventually vanishing
at approximately φi = −0.8 rad.

FIGURE 4 | The nominal model with neutral swing leg angles of zero, φl = φr =0[rad], results in symmetrical gait structures (all other parameters were fixed as
described in Section 3.1). Each point on the branches represents a distinct periodic motion, or a stationary point on (A) a 3D projection and (B) a 2D projection of the
Poincaré section ( _y � 0)with respect to the apex height yo, forward speed _xo, and left leg angle αl0 . Hopping to skipping, skipping to asymmetrical running, and walking
to symmetrical running transition are represented by circles, triangles, and diamonds respectively. For gait solutions with a negative leg angle, the opposite leg has a
phase advance.
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3.3.2 As Coupled NLSA Varies, the Speed of Higher
Speed Transitions Changes More Than Lower Speed
Transitions
Hopping solutions were found in the range of −0.8 < φi < 1.5 rad
(Figure 7A). Minor changes in the shape of hopping branches
were observed as we varied φi in the positive direction. However,
as we gradually decreased the values of the NLSA, periodic
hopping gaits were only identified at mid-speed ranges with
reduced landing impact. As in running gaits, hopping with
emergent swing leg retractions were identified only at
moderate speeds.

For all hopping branches with different NLSA values (red
curves in Figure 7A), there was always at least one hop - skip
transition point (circles in Figure 7A,B) and no transitions to

asymmetrical running. As the hopping branch crosses a
bifurcation point, the symmetry in the leg motions is broken,
desynchronizing motions of the leg pair to generate skipping gaits
with a staggered timings of touchdown events (see Figure 3A,B).
One hop - skip transition usually occurred at lower speeds and
another at higher speeds, near the turning points. The location of
the low speed hop - skip transition point varied minimally as the
NLSA were altered. In contrast, the higher speed hop - skip
transition point showed more variation in speed with changes in
NLSA than the lower speed transition point (Figure 7A). For
negative φi, the swing leg angular velocity reset occurred before
the high speed transition points could be found.

Starting from the hop - skip transitions points (circles),
skipping gaits bifurcated from the hopping branches and
emerged at discontinuous locations on the Poincaré section
(Figure 7B). The lower speed branch was shorter than the
higher speed branches for positive neutral leg swing angles.
The branches with higher average forward speeds disappeared
very quickly because of the impractical swing leg behavior with a
maximal forward speed around 29

���
glo

√
. The asymmetrical

running gait provided a smooth transition branch that bridged
the two isolated skipping branches for the same neutral leg swing
angle (Figure 7C).

Skipping solutions were found in the range of−0.7<φi< 1.0 rad.
However, when the NLSA were larger than +0.4 rad, the maximum
value during swing motion of the legs exceeded a value of 1.7 rad (π/
2), which would be biologically unrealistic. Therefore, only results
fromφl � φr ∈ [−0.4,+0.4] are shown. The skip - asymmetrical run
transitions showed a similar pattern to the hop - skip transitions. The
lower speed skip - asymmetrical run transitions always occurred
when the forward speed reached approximately 8

���
glo

√
. For the

higher speed transitions, the locations varied more with positive
changes in neutral leg swing angle. As soon as the neutral leg swing
angles became negative, higher speed transitions between skipping
and asymmetrical running were no longer viable.

FIGURE 5 |Coupled changes in the neutral leg swing angles affect the gait structure of the nominal model (transparent lines) on the Poincaré section with respect to
the apex height, yo, forward speed, _xo, and left leg angle, αl0 (A) A positive neutral leg swing angle, φl = φr =0.4 rad, preserves and translates gait structure (B) A negative
neutral leg swing angle, φl = φr =−0.2 rad, alters gait structure. All other parameters including leg stiffness, k, and swing leg oscillation frequency, ω, were fixed as
described in Section 3.1. In both plots, only gaits with left-leg-advanced are shown because symmetry is preserved. The inset model diagrams show the range of
leg rotational motions (dark grey sector for αr0 , light grey sector for αl0 ) and the neutral leg angles.

FIGURE 6 | Symmetrical gait structures for φl � φr ∈ [−0.4,−0.2, 0,+
0.2,+0.4] rad. Positive neutral leg swing angles retain the running branch
shape and transition speed. Negative neutral leg swing angles shrink the
running gait structure towards the mid-speed region, eliminating
walking.
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3.4 Uncoupled Changes in Neutral Leg
Swing Angle Introduce New Transitions
Uncoupling the neutral swing angles for each leg, i.e. φl ≠ φr,
resulted in drastic changes in both gait structure and the locations
of gait transitions (Figure 8). Without symmetry, skipping and

asymmetrical running became the only two feasible gait patterns.
Furthermore, the model symmetry between left-leg-advanced
and right-leg-advanced solutions were no longer preserved for
more offset values, |φl − φr| > 0, of the uncoupled model because
simply switching the leg angles would not result in identical COM
motion. For clarity, only the left-leg-advanced solutions for small
offset values were included in the analysis.

With uncoupled neutral leg swing angles, more skipping and
asymmetrical running gait solutions became possible by slightly
disrupting the symmetry of the symmetrical running and
hopping gaits. With positive offset in the left neutral leg swing
angle (φl − φr > 0), the asymmetrical running branch elongated by
closely matching the symmetrical running gait (see Figure 8A).
In contrast to the skipping branch of the coupled leg model,
which connected directly to the hopping branch (opaque blue
curve in Figure 8A), the uncoupled skipping branch continued to
the lower speed regions in which the flight phases became shorter
and shorter until they were replaced by a double stance phase.

On the other hand, with negative offset, the skipping branch
(blue curve in Figure 8B) higher speed regions closely resemble
the symmetrical hopping gait (red curve). When speeds were too
fast or too slow, these skipping gaits joined with the asymmetrical
running branch and formed the 1-dimensional manifold as a
closed loop. The size of this loop decreased with the value of the
left neutral leg angle. No solutions were found past φl = −0.14 rad,
where the solution branch became a single dot.

Combining positive and negative variations in neutral leg
angle offset shows that asymmetrical gaits spanned the gaps
between symmetrical running branches (Figure 9). Thus,
changing the offset between left and right neutral leg angles
effectively enables transitions between symmetrical and
asymmetrical gaits. Even within the asymmetrical gait
structure, skipping-asymmetrical running transition points
(triangles in Figure 9) spanned nearly the entire range of
speed in response to small variations in neutral leg swing
angles. Specifically, the forward speed of transition points
varied from 1.30 to 29.26

���
glo

√
, while the left leg neutral leg

swing angle only varied from −0.06 to 0.14 rad (Figure 9B). In
comparison to the large gaps between gait transitions in the
coupled model (Section 3.3), the uncoupled model finds
abundant solutions for gait transitions throughout the full
range of speeds (Figure 10).

3.5 Validation
To validate our model, we compared our predictions to empirical
gait transition data from jerboas. We found that jerboas swing
each leg with a different, non-zero neutral leg swing angle.
Specifically, jerboas tend to fix the neutral swing leg angle of
one leg while varying the neutral swing leg angle of the other leg.
For instance, for j38 (column 5–8 in Table 1) the neutral swing
leg angle φr for its right leg was −0.08 ± 0.31 rad while φl was
0.00 ± 0.06 rad. As shown in Figure 4, with the same set of
parameters, �p

T � [m, lo, g, k,ω,φl,φr], our model can reproduce
five bipedal gaits simply by regulating the initial states and
altering the total energy. From our experimental data set,
there were four gait transitions between skipping and
asymmetrical running (T1 to T4 in Figure 11) and four

FIGURE 7 | Hopping (A), skipping (B), and asymmetrical running gait
branches (C) with φl � φr ∈ [−0.4,−0.2, 0,+0.2,+0.4] rad. Thicker colored
lines represent the nominal gait structure (Figure 4). Hop-skip transitions are
circles in (A) and (B), skip-running transitions are triangles in (C). Thin
black lines trace gait transitions across varying neutral leg swing angles. The
higher speed hop - skip transition point showed more variation in speed with
changes in NLSA than the lower speed transition point.
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transitions from hopping to other gaits (T5 to T8 in Figure 11).
These transitions occurred when the NLSA (φr) were close to
0.2 rad and were thus compared tomodel predictions with similar
NLSA values (shaded region in Figure 9C). In both T1 and T3,
neither the uncoupled nor the coupled model accurately predicts
the behavior of the transition (i.e., the empirical transition line
from cross to circle does not cross the model transition line). A
closer examination of the video data revealed that these trials
involved a jerboa decelerating to a stop, which could be a multiple
- step process and is a behavior that has not been investigated by

our model. The other two transitions from skipping to
asymmetrical running (T2 and T4), however, clearly fell into
the regions predicted by our uncoupled model and crossed the
uncoupled transition line as expected. Four transitions from
hopping to other gaits (T5 to T8) were observed through the
range of speeds from 4.19 to 5.47

���
glo

√
. Because of the short

recording window and the large stride lengths of the jerboas at
higher speeds, the apex transitions of the stride after hopping are
not visible, but the kinematic data suggest that these are
transitions either to skipping or asymmetrical running. All of

FIGURE 8 | Uncoupling the neutral leg swing angles (φl ≠ φr) resulted in drastic changes in 3D gait branch shape with respect to the nominal model (transparent
curves from Figure 4) (A) An anterior shift, φl =+0.06 rad, caused the asymmetrical running branch to subsume portions of the previously symmetrical running branch
(yellow) (B) A posterior shift, φl =−0.03 rad, caused the skipping branch to subsume portions of the previously symmetrical hopping gait (red) to form a closed loop. The
inset model diagrams show the range of leg rotational motions (dark grey sector for αr0 , light grey sector for αl0 ) and the neutral leg angles.

FIGURE 9 | The fixed neutral leg swing angle, φr, and the varying neutral leg swing angle, φl, interact to affect asymmetrical gait structure in uncoupled models. In all
plots, the coupled φl � φr ∈ [−0.2, 0,+0.2] rad gait structures are shown as transparent curves. In all cases, skipping and asymmetrical running spanned the gap
between the hopping and symmetrical running branches. The gait transitions points (triangles) spanned almost the entire speed range. Comparing (A), (B), and (C),
demonstrates that gait structure varies greatly with neutral leg swing angle offset. The shadowed region in Figure 9C is shown in Figure 11 as a comparison
between simulation solutions and experimental data.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 80482611

Ding et al. A Model Explains Jerboa Transition

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


these trials passed the gait transition line suggested by our
uncoupled leg model within one stride (the black line
connected through hollow triangles) rather than the coupled
leg model (black line connected through the solid triangles),
matching our observation that jerboas tend to uncouple leg NLSA
during locomotion. These results suggest that for non - stopping
behaviors, our proposed model dynamics generate biologically
relevant predictions of gait transitions.

4 DISCUSSION

We present the first computational model to reproduce the
locomotion patterns and gait transitions of the non-cursorial
jerboa. By adding a torsional spring to a unified SLIP-like model,
we varied the model swing leg dynamics to match jerboa locomotion
patterns. This model accurately reproduced previously described
hopping, symmetrical running, and skipping gaits and enabled the
formal characterization of walking and asymmetrical running gaits
for the first time. The discovery of the asymmetrical running gait
describes previously unused data recorded of jerboa locomotion that
did not fit into the pre-existing gait categories. Furthermore, the
results of this study suggest there exist two distinct mechanisms
(i.e., coupled legmotions in Section 3.3 and uncoupled legmotions in
Section 3.4) for gait transitions. This modeling approach can be used
to shed light on the underlying dynamics of other non-cursorial or
previously uncharacterized locomotion and can inform the design of
robotic controllers capable of smoothly transitioning between gaits.

In the coupled leg model, the number of gait transitions and
the unique pairs of gaits between which transitions can occur
remain invariant to changes in neutral leg angle. Because they lie
on distinct continua, symmetrical and asymmetrical gaits can
only transition to gaits of the same type, rather than across types.

The existing high-speed transition between asymmetrical gaits
occurs at a slightly broader range of speeds when the coupled
neutral leg swing angle changes. For asymmetrical gaits, all
transitions involve the skipping gait; there are no smooth
transitions directly between hopping and asymmetrical running.

Our model suggests that by uncoupling the motions of a leg pair,
jerboas can greatly vary the range of speeds atwhich gait transitions can
occur and introduce novel transitions between asymmetrical and
symmetrical gaits. As shown in Figure 10 C, by varying the φl by
merely +0.08 rad (4.6°), the speed at which the skip - asymmetrical run
transition occurs increases from0 to 7.5

���
glo

√
. This demonstrates how

at any speed, a jerboa can change its swing leg behavior and
instantaneously transition to another gait pattern within one step.
Moreover, changing the neutral leg angle anteriorly causing a shift of
the whole gait branch to low speed regions and vice versa. This
uncoupled swing leg strategy provides a mechanistic explanation for
the observation that jerboas use gait transitions to quickly accelerate,
decelerate, or regularize its forward speed (Moore et al., 2017). Another
key observation of this study is that the skipping gait and asymmetrical
running gait played critical roles in bridging the symmetrical gaits and
asymmetrical gaits. For example, inFigure 8A, when the left neutral leg
angle shifted anteriorly, the asymmetrical running (green curve)
approached the vicinity of the running branch (opaque yellow
curve). With posterior shifts in neutral leg swing angle, as shown in
Figure 8B, the skipping gait (blue curves) approached the bipedal
hopping gait (red transparent curve) across a broad range of speeds.
Throughout this process, skipping and asymmetrical running
remained on the same continuum with each other.

FIGURE 10 | The skip - asymmetrical run (AR) transitions for the coupled
model, φr � φl ∈ [−0.5, 0.5], vary slightly with speed and occur in two narrow
ranges of speed. The uncoupled model, φr =[−0.2,0,0.2], finds far more
solutions for the same type of gait transition throughout a broader
speed range.

FIGURE 11 | Transitions observed from the jerboa experiments (crosses
to circles) in comparison to the predicted gait structure in uncoupled models
(colored branches and triangles from Figure 9C) and the predicted transition
lines (solid triangles represent coupled transitions and hollow triangles
represent uncoupled transitions, the intersection of coupled and uncoupled
transition is shown in half-solid and half-hollow). The crosses indicate the apex
states before the transition, the hollowed circles are the apex state after
transition, and the arrows show the transition directions on the Poincaré
section. T1 to T4 show skip - asymmetrical run (AR) transitions, while T5 to T8
show transitions from hopping. The arrows pass through, or near, hollow
triangles, showing that the model with the uncoupled, rather than the coupled,
NLSA mechanism accurately predicts gait transitions that are observed in
empirical data.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 80482612

Ding et al. A Model Explains Jerboa Transition

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


The results from our model reflect two mathematical definitions
of gait asymmetry (Ian and Golubitsky, 1993, Chapter 8)
— temporal asymmetry creates phase desynchronization between
the legs (which can occur either with coupled or uncoupled changes
in NLSA), while model asymmetry (e.g., uncoupled changes in
NLSA) generates distinct leg behaviors. The model behaviors that
arise from this mathematical distinction provide a useful framework
to identify the mechanisms by which genes control motion
coordination (Andersson et al., 2012).

Although previous work with conventional SLIP models
succeeded in eliciting gait transitions (Geyer et al., 2006), a gait
identified by providing a pre-defined leg contact angle provides no
intuitive explanation for the system dynamics that generate the
necessary changes in contact angle. In our proposedmodel, we add a
torsional spring so that changes in leg contact angles become
governed by the passive dynamics of the system. Thus, gait
structure emerges as a result of model parameters, which provide
a mechanistic explanation for the resulting gait transitions. This
distinction can further enhance our understanding of animal gaits
and lay the foundation for better legged robot controller design.

For example, as shown in Figure 11, in some cases (Figure 11,
T4 & T7) jerboas may transition from one fixed point to another
fixed point on the same gait structure. This would mean that the
jerboa kept using the same set of parameters (including the same
NLSAs) and only altered the total energy in a single step. In other
cases (Figure 11, T3 & T5), transitions between branches would
indicate that both the total energy and the NLSAs have been
altered to facilitate these transitions.

Our work can also inform controller design because it suggests
that we can use virtual constraints (Westervelt et al., 2018,
Chapter 1) that control leg swing behavior by modeling it as a
pendulum with a torsional spring. Then we can modulate the
total energy in the system to accelerate, decelerate, or switch gaits,
while compensating for energy losses through joint friction or
collisions. One can also use our solution branches as “a lookup
table” in the design of locomotion controllers as proposed in
our previous work (Cnops et al., 2015). To dynamically and
efficiently change locomotion pattern at any desired gait or speed,
if the current states of the application are known, the controller
can search for an optimal trajectory to plan either a one - step or
multiple - step process without performing any expensive
calculation.

Many of the solutions found in the proposed bipedal model
can be directly applied to quadrupedal locomotion. According to
the idea of dynamic similarity (Alexander and Jayes, 1983), when
quadrupedal animals synchronize their leg motions in pairs
(i.e., trotting, pacing, and bounding), the leg pair behaves as a
unified leg with a greater stiffness. As discussed in our previous
work (Gan et al., 2018a), the running and hopping branches in
the gait structure of the bipeds are functionally identical to the
trotting and pronking gaits of quadrupeds. Similarly, the shapes
of skipping and asymmetrical running branches in the bipedal
model will closely resemble bounding and galloping in the
quadrupedal model. However, in the quadrupedal model,
because legs pairs are connected to the torso at different
locations, the asymmetrical gaits with different sequences of
leg touchdowns will create unbalanced moments about the

COM of the main body and cause the torso to rotate. As a
result, the actual bounding and galloping branches of the
quadrupedal model will also depend on the inertial properties
of the torso. In general, when the quadrupedal model shares
similar parameter values to those of the proposed bipedal model,
we expect similar transitions will happen among these
quadrupedal gaits, based on the gait structure shown in
Section 3.2.

In our future work, we plan to extend our model by adding
another pair of legs to find transitions between quadrupedal
and bipedal locomotion, as observed in the escape behaviors of
lizards, rodents, cockroaches, and during the locomotor
development of jerboas (Marlow, 1969; Full and Tu, 1991;
Eilam and Shefer, 1997; Clemente, 2014). A combined
quadrupedal and bipedal model can provide novel insights
into the neurological changes that likely facilitate the evolution
of ephemeral and obligate bipedal locomotion.
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