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Abstract

Women with polycystic ovary syndrome (PCOS) have an increased risk of developing type 
2 diabetes. FGF19, FGF21 and lipocalin-2 have emerged as important markers of metabolic 
risk. This study aims to compare the levels of FGF19, FGF21 and lipocalin-2 between 
subjects with or without PCOS, and to investigate the relationship between proteins and 
diabetes progression. In this nested case–control cohort study, 128 Chinese PCOS women 
and 128 controls were recruited and followed-up. All subjects underwent the oral glucose 
tolerance test for the evaluation of glycaemic status. Baseline serum protein levels were 
measured using ELISA. Compared with controls, PCOS subjects had higher levels of FGF19 
(P < 0.001) and FGF21 (P = 0.022), but had lower lipocalin-2 (P < 0.001). In total, 20.8% of 
PCOS and 9.2% of controls developed diabetes over a mean duration of 10.4 ± 1.2 and 
11.3 ± 0.5 years, respectively. Logistic regression analyses suggested FGF19 was positively 
associated with diabetes progression in controls, after adjusting for age, follow-up 
duration, waist and fasting glucose (P = 0.026, odds ratio (OR) (95% CI): 7.4 (1.3–43.6)), 
and the positive relationship between FGF21 and diabetes progression in controls was 
attenuated by adjusting for age and follow-up duration (P = 0.183). Lipocalin-2 was 
positively correlated with diabetes progression in PCOS group (P = 0.026, OR (95% CI)):  
2.5 (1.1–5.6)); however, this became attenuated after adjusting for waist and fasting 
glucose (P = 0.081). In conclusion, there is differential expression of FGF19, FGF21, and 
lipocalin-2 in PCOS. The serum level of FGF19, and FGF21 is associated with diabetes 
progression in women without PCOS, while lipocalin-2 was related to diabetes progression 
in PCOS women.

Introduction

Polycystic ovary syndrome (PCOS) is a common 
endocrine disorder among women of reproductive age, 
affecting about 6–12% of the overall female population 
(1). A large community-based study in China reported a 
prevalence rate of 5.6% in women aged 19–45 years old (2).  

Women with PCOS have several clinical characteristics 
including hyperandrogenism, obesity, insulin resistance 
(IR), pancreatic β-cell dysfunction and abnormal  
glucose metabolism, which may explain the increased risk 
of type 2 diabetes (T2DM) in PCOS patients (3, 4).
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To date, some studies have reported the high 
progression rate of T2DM in PCOS patients. Gambineri 
et  al. followed a total of 255 PCOS women for a mean 
duration of 10 years and found the incidence rate of T2DM 
was 1.05 per 100 person-years (5). The age-standardized 
prevalence of diabetes at the end of follow-up was 39.3%, 
which was significantly higher than that of women of a 
similar age in the general population in Italy (5.8%) (5). 
In another study from Denmark, over a median 11.1 years’ 
follow-up, the incidence rate of T2DM was 8.0 per 1000 
person-years in PCOS, compared to 2 per 1000 person-
years in controls (P < 0.001) (6). The authors found that 
BMI, glucose, IR, lipids and sex hormone-binding globulin 
(SHBG) were associated with the development of T2DM 
in PCOS patients (5, 6). In a long-term follow-up study 
from Hong Kong, the incidence rate of diabetes in PCOS 
was 22.12 per 1000 person-years, which was more than 
doubled that of women without PCOS (10.09 per 1000 
person-years) (7).

In addition to established clinical risk factors, other 
biomarkers have emerged as important predictors of 
diabetes risk (8, 9). Two members from the fibroblast 
growth factor (FGF) family, FGF19 and FGF21, have been 
shown to be associated with obesity and diabetes (10, 11, 
12). Moreover, serum FGF21 can predict the development 
of T2DM in the normal population, as well as being 
associated with incident coronary heart disease (CHD) and 
kidney disease in diabetes (13, 14). Besides, lipocalin-2, a 
well-recognized biomarker of inflammation, infection, as 
well as kidney damage, may accelerate the development 
of diabetes by promoting IR and inflammation (15). 
However, although FGF19, FGF21, and lipocalin-2 have 
been linked with diabetes risk, whether they are associated 
with progression of diabetes in patients with PCOS is  
not known.

The aims of our study include (1) to compare the levels 
of FGF19, FGF21, and lipocalin-2 between PCOS and healthy 
controls, and (2) to investigate for any possible association 
between baseline FGF19, FGF21, and lipocalin-2 with the 
progression of diabetes in PCOS subjects and controls.

Materials and methods

Subjects

In this nested case–control cohort study, 128 Chinese 
women with PCOS were included from the PCOS registry 
at the Prince of Wales Hospital (PWH), recruited between 
July 2003 and April 2007. The diagnosis of PCOS was 

based on the 2003 Rotterdam consensus (at least two of 
the following criteria: oligo- or anovulation, biochemical 
and/or clinical androgen excess, and polycystic ovary 
appearance by ultrasound) (16). We also included 128 
controls from a population-based healthy women cohort 
recruited between 2003 and 2006 (17). All control subjects 
had regular menstrual cycles and had no hirsutism or 
ultrasound features of polycystic ovaries. Exclusion criteria 
for both groups included the use of oral contraceptives 
or corticosteroids within the past 3 months, and subjects 
who were previously diagnosed with hypothyroidism, 
prolactinoma, non-classical adrenal hyperplasia and 
Cushing’s syndrome. Between January 2016 and December 
2017, all PCOS controls were recalled to visit the Diabetes 
Mellitus & Endocrine Research Centre at PWH for detailed 
clinical and metabolic evaluation as described previously 
(7). Control subjects were invited to participate in a 
similar follow-up evaluation approximately 10 years after 
the baseline assessment. Nine control subjects failed to 
complete the follow-up assessment because of refusal 
(n = 8), or failure to be contacted (n = 1). The study was 
approved by the Joint Chinese University of Hong Kong-
New Territories East Cluster Clinical Research Ethics 
Committee (CREC ref. no. 2015.040), and informed written 
consent was obtained from all subjects.

Clinical, anthropometrical and 
biochemical parameters

All subjects at baseline and follow-up were assessed by 
well-trained research nurses. A standard questionnaire 
was used to document personal records including medical 
and drug history. Blood pressure and anthropometric 
measurements, including height (cm), weight (kg), waist 
circumference (cm) and hip circumference (cm), were 
obtained from both groups at baseline and follow-up. BMI 
and waist-to-hip ratio (WHR) were calculated accordingly.

Overnight fasting blood was obtained in all women 
to measure fasting plasma glucose (FPG), total cholesterol 
(TC), triglycerides (TG), low-density lipoprotein cholesterol 
(LDL-C), high-density lipoprotein cholesterol (HDL-C) 
and estimated glomerular filtration rate (eGFR) using the 
Chronic Kidney Disease Epidemiology Collaboration 
(CKD-EPI) formula: eGFR = 141 × min (Scr/κ, 1) α × max 
(Scr/κ, 1)−1.209 × 0.993 age × 1.018 (if female) × 1.159 (if 
black) (18). Fasting insulin, female sex hormones, and anti-
Müllerian hormone (AMH) were also measured. A standard 
75 g oral glucose tolerance test (OGTT) was conducted in 
all subjects, unless they had already been diagnosed with 
T2DM earlier. Insulin resistance was estimated using 
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the homeostasis model assessment for insulin resistance 
(HOMA-IR) by dividing the product of fasting insulin 
and glucose by 22.5. HOMA-β was calculated by the 
following formula: (20 × fasting insulin (mIU/mL)), (FPG 
(mmol/L)−3.5). The diagnosis of T2DM and dysglycaemia 
was according to the 2009 ADA diagnostic criteria (19): 
(1) impaired fasting glucose (IFG), fasting plasma glucose 
5.6–6.9 mmol; (2) impaired glucose tolerance (IGT), 2-h 
plasma glucose 7.8–11.0 mmol; (3) DM, FPG ≥ 7.0 mmol, 
or symptoms of hyperglycaemia and a random plasma 
glucose ≥ 11.1 mmol, or 2-h plasma glucose ≥ 11.1 mmol 
during OGTT, or self-reported history of DM. The diabetes 
converters were defined as the occurrence of diabetes in 
normal (or IFG, IGT) subjects. Hypertension was diagnosed 
for subjects with systolic blood pressure (SBP) ≥ 140 mm 
Hg, or diastolic blood pressure (DBP) ≥ 90 mm Hg, or if 
on anti-hypertensive medications. Subjects with TC ≥ 5.2 
mmol, TG ≥ 1.7 mmol, LDL-C ≥ 3.4 mmol, HDL-C ≤ 1.3 
mmol, or those on lipid-lowering therapies were diagnosed 
as having dyslipidaemia. Signs of hyperandrogenism were 
noted in the physical examination, and the modified 
Ferriman–Gallwey score was used to diagnose clinical 
hirsutism. The cut-off point was defined as ≥3 based on the 
guideline (20, 21).

Laboratory analyses

Plasma glucose, TC, TG, LDL-C, and HDL-C concentration 
were measured by DP Modular Analytics (Roche 
Diagnostics Corp.). Serum levels of luteinizing hormone 
(LH), follicle-stimulating hormone (FSH), total 
oestradiol, and total testosterone levels were measured by 
electrochemiluminescent immunoassays on the Roche 
E170 system (Roche Diagnostics Corp.). SHBG was measured 
using Immulite 1000 Analyser (Siemens Healthcare 
Diagnostics Inc.). Free androgen index was calculated by 
100 × (total testosterone (nmol)/, SHBG (nmol)). AMH was 
measured using Elecsys® AMH electro-chemiluminescent 
immunoassay Roche Cobas E411 analyser (Roche 
Diagnostics Corp.). Insulin levels in the PCOS group 
were tested using an automated chemiluminescent 
immunoassay analyser (Siemens Healthcare Diagnostics 
Inc.), while ELISA kits (Dako Denmark A/S) were used to 
measure the insulin levels of the control group). The levels 
of FGF19, FGF21, and lipocalin-2 were measured by the 
corresponding ELISA kits (Antibody and Immunoassay 
Services, Hong Kong). These measurements were performed 
using standard reagent kits supplied by the manufacturers. 
The analytical performance of these assays was within the 
specifications of the analysers.

Statistical analysis

Data are expressed as mean ± s.d., or median (Q1–Q3), 
according to the distribution of each variable. Covariates 
were categorized or natural logarithm transformed if 
needed. Comparison between groups was performed using 
Student’s t-test or Mann–Whitney U-test, as appropriate. 
When comparing the difference of baseline characteristics 
between PCOS women and healthy controls, all analyses 
were adjusted for the baseline age in either general linear 
regression (for continuous data) or logistic regression 
(for categorical data). Chi-square (χ2) or Fisher’s exact 
tests were used as appropriate for categorical variables to 
examine the difference of frequencies between groups. 
The paired t-test or Wilcoxon signed ranks test was used to 
compare continuous variables between the baseline and 
follow-up visit.

To test the joint effects of biomarkers on PCOS risk, 
we defined the threshold using the median level of FGF19, 
FGF21 and lipocalin-2 in the control group, and assigned 
a score of 1 to each of (i) increased FGF19, (ii) increased 
FGF21, and (iii) decreased lipocalin-2, to generate a score 
with a maximum of 3, representing the total number 
of abnormal biomarkers in the combined analysis. We 
also applied regression analyses (linear regression for 
continuous variables or logistic regression for categorical 
variables) to test the relationship between the total 
number of abnormal biomarkers and clinical variables 
in combined datasets, after adjustment for age and BMI  
at baseline.

General linear models were used to compare the 
differences in the levels of FGF19, FGF21 and lipocalin-2 
between diabetes converters and non-converters in 
PCOS women and controls, respectively. Multivariate 
logistic regression analysis was used to explore the 
independent effects of the biomarkers on diabetes 
progression among subjects with or without PCOS. Due 
to our limited sample size, we adjusted for age and waist 
circumference in our main analysis for the association 
between the biomarkers and PCOS (model 2), and 
included adjustment for age and follow-up duration 
for incident diabetes as the outcome (model 2), but we 
have also undertaken exploratory analyses adjusting 
for additional covariates. The Q-Test of heterogeneity 
was used to investigate if the effect sizes of the different 
biomarkers derived from PCOS and control groups are 
different from each other. P ≤ 0.05 (two-tailed) was 
considered to be statistically significant. All statistical 
analyses were performed with the Statistical Package for 
the Social Sciences for Windows, version 24.0 (SPSS Inc.).
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Results

Comparison between women with or without PCOS 
at baseline

As the recruited PCOS subjects were significantly younger 
than the healthy controls (30.0 ± 6.4 vs 42.8 ± 7.2, P < 0.001), 
all comparisons of baseline characteristics between PCOS 
and controls were adjusted for age. After adjustment, 
PCOS women at baseline were more obese, with higher 
BMI, waist, and WHR, as well as with higher TG, FPG, 2-h 
glucose, HOMA-IR, AMH and eGFR, but lower LDL-C, 
compared to controls. There was no significant difference 
in blood pressure, TC, HDL-C, insulin levels, and HOMA-β 
between PCOS and controls (Table 1).

Comparison between baseline and follow-up

After 10.4 ± 1.2 years’ follow-up, PCOS women became 
more overweight with increased BMI and WHR. There 
was a significant tendency towards an increase in blood 
pressure, while TC TG and LDL-C were also increased 
along with FPG 2-h glucose and FSH. However, insulin 
and HOMA-β were decreased at the follow-up. The same 
tendency of increased BMI WHR blood pressure lipids FPG 
2 h glucose and decreased HOMA-β were also observed in 
the control group (Supplementary Table 2, see section on 
supplementary materials given at the end of this article).

In total, 9.2% (11,119) healthy subjects developed 
diabetes during follow-up, whilst others remained normal. 
Meanwhile, among 128 PCOS subjects, 6.3% (8128) were 
diagnosed with diabetes at baseline. During the follow-up 
period, 79.2% (95,120) remained free of diabetes, while 
20.8% (25,120) progressed to diabetes. Compared with 
the corresponding non-converters, both converters in the 
control and PCOS groups were more overweight at baseline, 
with higher baseline BMI and waist, as well as higher FPG.

Novel biomarkers in PCOS vs controls

Adjustment of age and waist were included in the 
subsequent analyses, given the significant differences in 
age and obesity between PCOS and control group. PCOS 
subjects showed significantly higher levels of FGF19  
(192 (105–308) vs 124 (61–191), P < 0.001) and FGF21 
(154 (74.5–266) vs 103.7 (50–173), P = 0.022), but lower 
levels of lipocalin-2 (56.1 (35.7–75.9) vs 94.0 (63.1–162.4),  
P < 0.001) (Table 1).

In logistic regression analyses of the relationship 
between the levels of the three serum proteins and 

PCOS status, FGF19 and FGF21 were both positively 
associated with PCOS status (odds ratio (OR) (95% CI): 
2.0 (1.5–2.7) and 1.4 (1.1–1.8), respectively, P < 0.001 and 
P = 0.010), while lipocalin-2 showed negative association  
(OR (95% CI): 0.2 (0.1–0.3), P < 0.001). After adjusting 
for variables with a significant difference at baseline 
(including age, waist, FPG and TG, AMH, hypertension, 
and dyslipidaemia at baseline), the difference of FGF19 
and lipocalin-2 between PCOS and control remained 
significant. However, the association between FGF21 and 
PCOS status became attenuated after further adjusting for 
FPG and lipids (Table 2).

We also explored the joint effects of FGF19, FGF21 
and lipocalin-2 on PCOS risk in the combined cohort. 
The median level of each protein in the control 
population was used as the cut-off point, and we assigned 
either FGF19 > 123.7 pg/mL, FGF21 > 103.7 pg/mL or 
lipocalin-2 < 94.0 ng/mL as one abnormal biomarker 
and calculated the total number of abnormal biomarkers 
for each subject, which was linearly associated with a 
diagnosis of PCOS (OR (95% CI): 2.2 (1.6–3.0), P < 0.001). 
The association was still significant (OR (95% CI): 3.7 
(2.1–6.5), P < 0.001) even after adjusting for age and waist 
at baseline. When subjects were stratified according 
to the number of abnormal biomarkers, namely ≤1, 2 
and 3, with similar sample sizes in each group, those 
with the maximum number of abnormal biomarkers, 
which accounted for 28.5% of the study population, had 
5.2-fold higher risk for PCOS compared to those with 
abnormal biomarkers ≤ 1 (P < 0.001, Table 3). Increased 
number of abnormal biomarkers was associated with SBP 
(P = 0.034), hypertension (P = 0.035), hyperandrogenism 
(P = 0.017) and AMH (P = 0.003, Supplementary Table 3) in 
exploratory analyses.

FGF19, FGF21 and lipocalin-2 in diabetes converters 
vs non-converters

Compared with non-converters in the control group, 
DM converters had significantly higher baseline FGF19  
(189 (77–374) vs 122 (57–187), P = 0.036) and FGF21  
(232 (142–315) vs 90 (48–159), P = 0.002). After adjusting 
for age, waist and HOMO-IR, the difference in FGF21 was 
still significant (P = 0.010), but the difference in FGF19 was 
rendered non-significant (P = 0.063). In the PCOS group, 
DM converters had significantly higher levels of lipocalin-2 
at baseline (70.6 (42.3–99.2) vs 51.9 (33.5–65.6), P = 0.022); 
however, after adjusting for age, waist and HOMO-IR, this 
became non-significant (P = 0.056).

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International License.

https://doi.org/10.1530/EC-21-0082
https://ec.bioscientifica.com © 2021 The authors

Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1530/EC-21-0082
https://ec.bioscientifica.com


F Cheng et al. Biomarkers for diabetes risk 
in PCOS

124710:10

Binary logistic regression found that the level of serum 
FGF19 was positively associated with the progression of 
diabetes in the control group (P = 0.029, OR (95% CI): 
2.4 (1.1–5.3)). When further adjusting for age, follow-up 

duration, baseline waist and FPG, the association was 
still significant (P = 0.026, OR (95% CI): 7.4 (1.3–43.6)). 
Serum FGF21 concentration also suggested positive 
relationship of diabetes progression in women without 

Table 1 The comparison of clinical characteristics between PCOS and control group at baseline. Data are expressed as  
mean ± s.d., median (Q1–Q3), or proportion in percentage. All comparison was adjusted for the differences of age by using either 
general linear model for continuous data or logistic regression model for categorical data. Ln transformation were used in 
triglyceride, insulin, HOMA-IR, HOMA-β, AMH, FGF19, FGF21 and lipocalin-2.

Baseline variables Control (n = 128) PCOS (n = 128) P value

Age (years) 42.8 ± 7.2 30.0 ± 6.4 –
BMI (kg/m2) 23.1 ± 3.6 25.9 ± 5.8 0.001
waist (cm) 75.3 ± 8.3 82.5 ± 13.0 <0.001
Waist-to-hip ratio 0.8 ± 0.1 0.8 ± 0.1 <0.001
SBP (mmHg) 111 ± 15 111.2 ± 15 0.140 
DBP (mmHg) 71 ± 10 71 ± 10 0.253 
Total cholesterol (mmol/L) 5.1 ± 1.1 4.8 ± 1.1 0.196 
Triglyceride (mmol/L) 0.8 (0.6–1.2) 0.9 (0.7–1.5) 0.005 
HDL-C (mmol/L) 1.7 ± 0.5 1.6 ± 0.6 0.767 
LDL-C (mmol/L) 2.9 ± 1.0 2.6 ± 0.9 0.016 
Glu-fast (mmol/L) 4.8 ± 0.5 5.1 ± 1.1 0.002 
Glu-2 h (mmol/L) 6.3 ± 1.8 7.3 ± 2.8 0.011 
Insulin (µU/mL) 7.4 (4.9–10.8) 10.5 (6.2–22.6) 0.054 
HOMA-IR 1.6 (1.0–2.4) 2.3 (1.3–5.5) 0.019 
HOMA-β 121 (76–203) 153 (93–296) 0.749 
eGFR (mL/min/1.73 m2) 95 ± 16.3 111.9 ± 13.2 0.046 
AMH (pmol/L) 1.8 (0.1–7.6) 27.5 (19.4–45.2) <0.001
LH (IU/L) – 8.6 ± 6.5
FSH (IU/L) – 5.6 ± 2.0
LH/FSH – 1.6 ± 1.1
Testosterone (nmol/L) – 1.6 (1.2–2.3)
Hirtusim (%) 16/126 (12.7)
Oestrogen (pmol/L) – 141 (112–222)
Use of metformin (%) 0/128 12/128 (9.4)
Use of anti-hypertension drugs (%) 0/128 5/128 (3.9)
Use of lipid-lowering drug 0/128 0/128
IGR (%) 19/128 (14.8) 32/128 (25.0) 0.057
DM (%) 0/128 8/128 (6.3)
HT (%) 11/128 (8.6) 23/128 (18.0) 0.013
Dyslipidaemia (%) 86/128 (67.2) 64/128 (50.0) 0.285
FGF19 (pg/mL) 124 (61–191) 192 (105–308) <0.001 
FGF21 (pg/mL) 104 (50–173) 154 (75–266) 0.022
Lipocalin-2 (ng/mL) 94.0 (63.1–162.4) 56.1 (35.7–75.9) <0.001 

AMH, anti-Mullerian hormone; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; FSH, follicle-stimulating hormone; Glu-2h, 2-h 
glucose; Glu-fast, fasting glucose; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment of insulin resistance; HOMA-β, 
homeostasis model assessment of beta-cell function; HT, hypertension; IGR, impaired glucose regulation; LDL-C, low-density lipoprotein cholesterol; LH, 
luteinizing hormone; SBP, systolic blood pressure.

Table 2 Logistic regression models for the relationship between FGF19, FGF21 and lipocalin-2, and PCOS status.

Biomarkers
Model 1 Model 2 Model 3 Model 4

OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P

Ln (FGF19) 2.0 (1.5–2.7) <0.001 2.5 (1.5–4.0) <0.001 3.1 (1.5–6.6) 0.003 3.4 (1.5–7.3) 0.002
Ln (FGF21) 1.4 (1.1–1.8) 0.010 1.7 (1.1–2.5) 0.018 1.5 (0.9–2.6) 0.108 1.6 (0.9–2.7) 0.096
Ln (lipocalin-2) 0.2 (0.1–0.3) <0.001 0.2 (0.1–0.3) <0.001 0.2 (0.1–0.5) <0.001 0.2 (0.1–0.5) 0.001

Ln, natural logarithm; Model 1, no adjustment; Model 2, Model 1 + adjusted for age and waist at baseline; Model 3, Model 2 + adjusted for fasting glucose, 
LN (triglyceride), and AMH at baseline; Model 4, Model 3 + adjusted for hypertension and dyslipidaemia at baseline.
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PCOS (P = 0.004, OR (95% CI): 3.9 (1.5–10.1)); however, the 
association became attenuated after adjusting for baseline 
age and follow-up duration (P = 0.183, OR (95% CI): 3.4 
(0.6–19.9)). No significant association between FGF19  
(or FGF21) and diabetes progression was observed in the 
PCOS group (Table 4).

The relationship between serum level of lipocalin-2 
and progression of diabetes was positive in the PCOS 
group (P = 0.026, OR (95% CI): 2.5 (1.1–5.6)), but was 
negative in the control group, though not statistically 
significant (P = 0.396, OR (95% CI): 0.6 (0.2–1.8)). After 
adjusting for age and follow-up duration, the relationship 
remained significant (P = 0.025 and 0.005, respectively). 
When further adjusting for baseline waist and FPG, the 
relationship in the control group still existed (P = 0.042,  
OR (95% CI): 0.1 (0–0.9)), but was no longer significant in 
the PCOS group (P = 0.081). The Q-test of heterogeneity 
showed the OR of serum lipocalin-2 was significantly 
different between women with and without PCOS 

(P = 0.009), even after adjusting for age, follow-up duration, 
baseline waist and FPG (Table 4).

Sensitivity analysis

Logistic regression models were also constructed to explore 
the relationship between FGF19, FGF21 and lipocalin-2, 
and progression to pre-diabetes or diabetes in women with 
or without PCOS. A total of 26.6% subjects in the control 
group and 37.5% subjects in PCOS developed diabetes from 
normal, pre-diabetes, or pre-diabetes from normal status. 
FGF21 was significantly associated with progression to 
pre-diabetes or diabetes in the control group (P = 0.038, OR 
(95% CI): 1.6 (1–2.6)). When further adjusting for baseline 
waist circumference, the association became attenuated 
(P = 0.061). In the PCOS group, lipocalin-2 was positively 
associated with progression to dysglycaemia, which persisted 
even after adjusting for age, waist and FPG (P = 0.047,  
OR (95% CI): 2.6 (1–6.7)) (Supplementary Table 4).

Table 3 Logistic regression for the relationship between joint effects of FGF19, FGF21 and lipocalin-2, and PCOS status.

Model 1 Model 2 Model 3 Model 4
OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P

No. of abnormal 
biomarkers

2.2 (1.6–3.0) <0.001 3.7 (2.1–6.5) <0.001 4.4 (2.0–9.9) <0.001 4.4 (1.9–9.9) <0.001

No. of abnormal 
biomarkers (≤1)

Reference Reference Reference Reference

No. of abnormal 
biomarkers (2)

3.0 (1.6–5.6) 0.001 5.3 (1.9–14.7) 0.001 4.3 (1.1–17.3) 0.041 4.4 (1.0–18.8) 0.043

No. of abnormal 
biomarkers (3)

5.2 (2.6–10.4) <0.001 14.1 (4.3–46.8) <0.001 17.0 (3.3–88.5) 0.001 16.5 (3.1–87.0) 0.001

Model 1, no adjustment; Model 2, Model 1 + adjusted for age and waist at baseline; Model 3, Model 2 + adjusted for fasting glucose, LN (triglyceride), and 
AMH at baseline; Model 4, Model 3 + adjusted for hypertension and dyslipidaemia at baseline. Abnormal biomarkers were defined as FGF19 > 123.7 pg/mL, 
FGF21 > 103.7 pg/mL, or lipocalin-2 < 94.0 ng/mL using the median level of control group. The number of abnormal biomarkers was counted for each 
subject and categorized by ≤1, 2 and 3. Group with abnormal biomarkers ≤ 1 was used as a reference in logistic regression models.

Table 4 Logistic regression models for the risk of progression to diabetes in women with or without PCOS.

Model Biomarkers
PCOS Control Q-test

OR (95% CI) P OR (95% CI) P P

Model 1 Ln (FGF19) 0.8 (0.5–1.3) 0.299 2.4 (1.1–5.3) 0.029 0.016
Ln (FGF21) 1.3 (0.8–2.2) 0.334 3.9 (1.5–10.1) 0.004 0.040
Ln (lipocalin-2) 2.5 (1.1–5.6) 0.026 0.6 (0.2–1.8) 0.396 0.042

Model 2 Ln (FGF19) 0.8 (0.5–1.3) 0.388 6.0 (1.4–26.5) 0.018 0.012
Ln (FGF21) 1.1 (0.6–2.0) 0.651 3.4 (0.6–19.9) 0.183 0.258
Ln (lipocalin-2) 2.9 (1.1–7.3) 0.025 0.2 (0–0.9) 0.043 0.005

Model 3 Ln (FGF19) 0.9 (0.5–1.6) 0.730 6.3 (1.4–29.1) 0.019 0.020
Ln (FGF21) 1.3 (0.7–2.4) 0.376 3.3 (0.6–19.7) 0.189 0.333
Ln (lipocalin-2) 2.4 (0.9–6.4) 0.081 0.1 (0–0.9) 0.034 0.008

Model 4 Ln (FGF19) 1.0 (0.5–2.1) 0.892 7.4 (1.3–43.6) 0.026 0.043
Ln (FGF21) 1.4 (0.7–2.6) 0.330 2.6 (0.5–13.8) 0.267 0.489
Ln (lipocalin-2) 2.6 (0.9–7.7) 0.081 0.1 (0–0.9) 0.042 0.009

Ln, natural logarithm; Model 1, no adjustment; Model 2, Model 1 + adjusted for age and follow-up duration; Model 3, Model 2 + adjusted for waist at 
baseline; Model 4, Model 3 + adjusted for fasting glucose at baseline. Q-Test of heterogeneity to investigate if effect sizes of biomarkers derived from 
PCOS and control are significantly different from each other.
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Discussion

In this study, we demonstrated that serum levels of FGF19, 
FGF21 and lipocalin-2 were significantly different between 
women with or without PCOS, and the joint effects of 
these biomarkers being associated with the risk of PCOS. 
We also showed that the effects of lipocalin-2 on diabetes 
risk might be different in PCOS and control subjects. 
Meanwhile, we also replicated the relationship between 
FGF19 and FGF21 with diabetes progression in normal 
individuals.

Our findings are in agreement with previous reports 
on the same tendency of increased FGF21 concentrations 
in PCOS women (22), even after adjusting for age and 
waist. FGF21 was positively associated with diabetes 
incidence or progression in the control group. However, 
both associations were attenuated after adjusting for 
baseline waist and FPG, which may be due to the limited 
sample size and strong association between FGF21 and 
the two variables. A meta-analysis of 28 studies reported 
elevated FGF21 concentration was associated with diabetes 
progression (hazard ratio (HR): 1.35, 95% CI: 1.06–1.72, 
P < 0.05) (23). FGF21 has multiple beneficial effects on 
metabolism, insulin sensitivity and lipid homoeostasis in 
animal models. Increased FGF21 levels under metabolic 
stresses may result from increased circulating free-fatty acids 
and insulin (24). Moreover, adipose tissue inflammation 
in obesity, which involves the c-Jun NH2-terminal kinase 
1 pathway, could result in the suppression of b-Klotho 
expression by TNF-α and hence impaired FGF21 action in 
adipocytes (25). FGF21 is also the upstream regulator of 
adiponectin. It can induce the expression and secretion 
of adiponectin in adipocytes to confer glucose-lowering 
and insulin-sensitizing effects (26). It is believed that the 
association between elevated FGF21 and risk of diabetes 
may reflect compensatory changes or a state of resistance 
to FGF21 (27, 28, 29).

A similar relationship between FGF19 and diabetes 
incidence was also observed in the control group, though 
this was not found in the sensitivity analysis for pre-diabetes. 
Several studies reported the tendency towards reduced 
FGF19 in people with diabetes (30, 31), but others reported 
there was no difference between T2DM and control (32). 
There are limited data from longitudinal studies on FGF19 
and the prediction of diabetes. Serum FGF19 concentration 
was increased in our PCOS group, which was inconsistent 
with another study with decreased levels in PCOS women, 
but their sample size was comparatively small, and only 12 
PCOS women were recruited (33).

Compared with controls, lipocalin-2 was decreased 
in PCOS subjects. Logistic regression analyses showed a 
strong negative association between serum lipocalin-2 
levels and PCOS status. Previously, some studies reported 
similar effects with decreased lipocalin-2 in PCOS (34, 35), 
while others showed a tendency towards the opposite (36) 
or even no difference (37). Meanwhile, lipocalin-2 was 
associated with carotid intima-media thickness (35), waist, 
BMI (37) and insulin resistance (36); thus a difference in 
lipocalin-2 levels is plausible among different studies. Our 
study also identified novel associations between lipocalin-2 
and diabetes progression in PCOS women. PCOS women 
had lower serum lipocalin-2 concentrations compared 
with those without PCOS, but lipocalin-2 was positively 
related to the incidence of T2DM in PCOS women, while 
negatively associated with diabetes in the control group. 
The different effects of lipocalin-2 in the PCOS group vs the 
control group are intriguing, and may be due to different 
underlying mechanisms, including the effects of androgen 
and different body fat distribution.

Lipocalin-2 was associated with free testosterone; 
however, the trend of the association was inconsistent: 
Yilmaz et  al. found that serum lipocalin-2 and free 
testosterone levels were positively correlated (38), 
while Diamanti-Kandarakis et  al. reported a negative 
correlation (34). One study reported sexual dimorphism 
of lipocalin-2 expression in adipose tissue, and found 
that compared to control women, PCOS women (with 
androgen excess) had higher expression of lipocalin-2, 
with levels similar to those of men (39). Another animal 
study using mice with C57BL/6 background also found 
that lipocalin-2 had altered expression according to 
gender, as well as displaying age-related differences in 
expression in white adipose tissue (40). Moreover, in a 
large Chinese population-based cohort (median follow-up 
duration, 74 months), researchers could only find an 
association between baseline elevated lipocalin-2 and 
incident cardiovascular disease events among men, but 
not among women (41). All these studies are in line with 
the differential effects of lipocalin-2 according to levels 
of sex hormones, as observed in the current study. In 
the aforementioned animal study (40), the authors also 
found that lipocalin-2 had important effects on oestradiol 
biosynthesis and oestrogen receptor signalling in female 
mice, as mice with lipocalin-2 deficiency had significantly 
reduced expression levels of aromatase, which plays a 
key role in regulating oestradiol biosynthesis in adipose 
tissue, and these mice also showed lower levels of serum 
17 β-oestradiol and downregulated expression of oestrogen 
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receptor α in adipose tissue after high-fat diet feeding or 
at old age (40). Nevertheless, despite these studies which 
support the differential effects of lipocalin-2 according to 
sex hormones, further studies are needed to investigate the 
specific mechanism of lipocalin-2 in PCOS women.

Importantly, subjects with elevated FGF19 and FGF21, 
together with decreased lipocalin-2, had 5.2-fold higher 
risk of PCOS than those with no more than one abnormal 
biomarker. After adjusting for common risk factors, the 
total number of abnormal biomarkers was still significantly 
associated with PCOS status in our cohort. Meanwhile, 
the increasing number of abnormal biomarkers were 
related to hypertension, hyperandrogenism and AMH. 
Taken together, these findings support the possible utility 
of these biomarkers to identify subjects with PCOS. Our 
study has several strengths including the long-term 
follow-up and prospective data on incident diabetes in 
PCOS women and in normal Chinese women; the detailed 
phenotyping included evaluation of glycaemic status 
using an oral glucose tolerance test in each subject and the 
measurement of several novel biomarkers for metabolic 
risk. However, there are several limitations including the 
sample size being moderate with the limited number 
of incident diabetes during the follow-up period and 
the potential for over-fitting in our regression models. 
Our study is also limited by the drawback of a long-term 
follow-up study, whereby it is unavoidable that some 
participants were lost to follow-up due to various reasons. 
An immunoassay was used to measure insulin in the PCOS 
group while ELISA kits were used in the control group. 
The different measurements used in the two groups may 
have limited the opportunity to compare fasting insulin 
and HOMA-IR between the PCOS and control groups but 
should not affect the association between biomarkers and 
diabetes progression in those separate analyses. Besides, 
all data were from Chinese women lacking data from age-
matched men or women from other age groups, and hence 
replication in other studies with larger sample sizes and 
comparisons with other groups are needed.

In summary, our present results suggest altered 
circulating levels of FGF19, FGF21 and lipocalin-2 between 
PCOS women and healthy controls, and the combined 
effects of these biomarkers on the association with PCOS 
risk. We also highlighted the potential contribution of 
these biomarkers to established models for the prediction 
of diabetes progression in Chinese women with or without 
PCOS. Further studies in other populations may be needed 
to validate their use as possible biomarkers to identify 
high-risk subjects for interventions to prevent diabetes 
development.
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