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Burn is a common traumatic disease with high morbidity and mortality. The treatment of burns requires accurate and reliable
diagnosis of burn wounds and burn depth, which can save lives in some cases. However, due to the complexity of burn wounds,
the early diagnosis of burns lacks accuracy and difference. Therefore, we use deep learning technology to automate and
standardize burn diagnosis to reduce human errors and improve burn diagnosis. First, the burn dataset with detailed burn area
segmentation and burn depth labelling is created. Then, an end-to-end framework based on deep learning method for advanced
burn area segmentation and burn depth diagnosis is proposed. The framework is firstly used to segment the burn area in the
burn images. On this basis, the calculation of the percentage of the burn area in the total body surface area (TBSA) can be
realized by extending the network output structure and the labels of the burn dataset. Then, the framework is used to segment
multiple burn depth areas. Finally, the network achieves the best result with IOU of 0.8467 for the segmentation of burn and no
burn area. And for multiple burn depth areas segmentation, the best average IOU is 0.5144.

1. Introduction

A burn is a common traumatic disease, usually caused by
physical or chemical factors, such as heat, chemicals, electric-
ity, or radiation. Small burns may cause damage to the skin
and mucous membrane. Major burns may cause different
degrees of functional, metabolic, and morphological changes
in various systems of the body, resulting in severe pathologi-
cal reactions, visceral damage, and other complications, with
high mortality. Meanwhile, treatment process of burns is
complex and takes a long time. Early treatment of burns
has been proved to reduce the medical cost of patients [1].
With more and more attention paid to early burn treatment,
early diagnosis of burn depth is more and more necessary.
Accurate assessment of the burn area and depth to support
reliable diagnosis is critical to the success of treatment and,
in some cases, may save life of patients. In general, the depth
of burns can be divided into superficial (first degree), super-
ficial partial thickness (second degree), deep partial thickness
(second degree), full thickness (third degree), and fourth
degree [2]. The percentage of partial-thickness or full-

thickness burns in the total body surface area (TBSA) is used
to measure the burn size.

Usually, burn depth diagnosis is difficult to ordinary
nurses or doctors but needs to be completed by clinical
experts in burns. Doctors who are not burn experts may
achieve less accuracy in assessing the depth of burns [3].
Clinical diagnosis by eye observation and physical examina-
tion is the most commonly used method to evaluate the
depth of burns [4]. The visual assessment attempts to deter-
mine the depth of the burns and estimate the burn size in
terms of TBSA. In order to achieve precise burn depth assess-
ment, laser Doppler imaging [5], harmonic ultrasound imag-
ing [6], optical coherence tomography [7], and high-
resolution infrared thermography [8] have been developed
and introduced into limited clinical diagnosis of burns. How-
ever, these devices are usually expensive and difficult to use
and will not be widely adopted in clinic. A simple way to
get burn images is through common cameras and smart
phones. Then, the deep learning methodmay be used to diag-
nose and evaluate the depth of burn area. So far, the deep
learning method has achieved excellent results in image
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classification and segmentation. Through deep learning tech-
nology, the burn image segmentation and burn depth classi-
fication can realize the automatic process of burn assessment,
reduce the impact of human error, and improve the accuracy
of visual assessment. Also, deep learning may reduce the cost
of burn depth assessment and the time of diagnosis.

In this paper, in order to solve the problem of detecting
the burn wound area and diagnosing burn depth from burn
images obtained by using a camera or smartphone, an end-
to-end framework for burn area segmentation and burn
depth classification is proposed. The main contents of this
paper are the establishment of the burn database, preprocess-
ing and labelling of burn images, data augmentation of burns,
and segmentation and classification networks of burn depth.
The segmentation and classification models adopt fully con-
volutional networks and consist of an encoder and decoder.
The encoder networks are used to extract the feature map
of burn images, and the decoder networks are used to fuse
and restore the feature map to input image size. Different
backbone networks have been used to the encoder and
decoder networks. Then, we use data augmentation and
fusion loss function to train backbone networks. The net-
works are used for the segmentation and classification of
burns. Finally, several metrics are used to evaluate the perfor-
mance of burn image segmentation and depth classification.
The results of the networks are visualized to analyze the per-
formance on the test dataset.

The main contributions of this paper are as follows: (1)
building a large labelled and segmented burn images dataset,
(2) using novel data augmentation methods to improve the
performance of the network, (3) using hybrid loss functions
to train the networks, and (4) creating an end-to-end burn
image segmentation and classification system, which has
more clinical application.

2. Related Work

In the early study of burn depth, Serrano et al. [9] used the
fuzzy-ARTMAP neural network to classify superficial der-
mal, deep dermal, and full-thickness burns. An average clas-
sification success rate of 88% was achieved. Wantanajittikul
et al. [10] used h-transformation and texture analysis to
extract feature vectors. Then, the support vector machine
(SVM) was applied to identify the depth of burn and yielded
the best results of 89.29% correct classification on the valida-
tion sets. Acha et al. [11] proposed a k-Nearest Neighbor (k
-NN) classifier and obtained a success rate of 83.8% when
classifying burns into three burn depths by using 74 images.

Recently, the convolutional neural network (CNN) has
achieved great success in the task of general visual recogni-
tion and detection [12]. Therefore, more and more
researchers try to apply CNN to burn images.

Badea et al. [13] proposed a convolutional neural net-
work to identify burn areas from color image patches. And
the network was proven to match the expected average preci-
sion of a trained burn surgeon. They split the burn area into
32 × 32 sized patches and trained the network to categorize
each patch. They achieved overall precision of 75.91%. Despo
et al. [14] proposed a fully convolutional network- (FCN-)

[15] based network for automatic assessment and diagnosis
of burn depth. Firstly, the image area was divided into the
burn area and no burn area to verify the performance of
the network in binary classification. By adding conditional
random field (CRF) layer to based FCN and data augmenta-
tion, they achieved a pixel accuracy of 0.85 and intersection-
over-union of 0.67. Then, the network was applied to multi-
burn segmentation. The multiburn network achieved pixel
accuracy of 0.6 and mean intersection-over-union of 0.37.
Finally, Despo et al. adopted the method of upsampled.
And mean intersection-over-union was increased to 0.39,
but the pixel accuracy was reduced to 0.57. Jiao et al. [16]
designed a deep learning segmentation framework based on
the mask regions with the convolutional neural network
(mask R-CNN). They labelled 1150 images with the format
of the Common Objects in Context (COCO) dataset and
trained the model on 1000 images. And Jiao et al. compared
different backbone networks in the framework. Finally, they
used the Dice coefficient value to evaluate the model and
achieved the average Dice coefficient of 84.51.

3. Methods

The framework of deep learning burn diagnosis is shown in
Figure 1. It contains the following parts: the dataset of burn
images, data augmentation, end-to-end burn depth segmen-
tation networks, and result visualization. First, the burn
images dataset is created. And we preprocess the burn images
(crop and resize) and use data augmentation before network
training. Then, the images are fed into the segmentation net-
works for training. Finally, we evaluate the performance of
the networks on the testing set and visualize the prediction
results.

3.1. Dataset. In this paper, a large-scale burn dataset was cre-
ated. We worked with The People’s Hospital of Jianggan Dis-
trict, Hangzhou and got 516 unprocessed burn wound
images. These images were taken by using cameras and
smartphones. The burn images used in this study have been
approved by the patients. The privacy parts of the images
have also been processed through blurring. The average
width of the original images is 3130 pixels, and the average
height is 2531 pixels. Because the original size of the images
is large, and some of the images contain different burn parts
of the patients, we cut the original burn images to expand the
burn dataset. And the total number of burn images in the
burn dataset was expanded to 1200. Then, the experienced
clinical doctors from the hospital labelled the burn areas
and the burn depths of the burn images by using LabelMe
software developed by Wada [17]. For burn wounds, 5 types
were labelled: superficial (S), superficial partial thickness
(ST), deep partial thickness (DT), full thickness (FT), and
undebrided burn (U). The rest of burn images were classified
as the background (B). Considering that most of the burn
images collected from the hospital are from patients with
severe burns, the labelled areas of superficial and superficial
partial thickness are merged into superficial partial thickness.
Finally, we got 1200 labelled images of burn wounds. Among
them, 960 images are used for training the model and 240
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images for testing. Figure 2 shows part of the burn dataset.
Figure 3 shows an image labelled with LabelMe, and the dif-
ferent colored polygons represent different burn depths. The
details of burn depth images and pixels in the training set and
testing set are shown in Table 1. The size of each image is
resized to 320 × 320 pixels. It can be seen that background
pixels occupy the majority, followed by undebrided pixels
and deep partial thickness pixels.

3.2. Data Augmentation. In the process of model training, we
used data augmentation to expand the burn images. Firstly, we
flipped the burn images, including horizontal and vertical
flips. After that, bilateral filtering, Gaussian blur, and sharpen-
ing were used for burn images. Finally, the pseudolabel
method [18] was also used for data augmentation. In order
to use the pseudolabel method, we first trained a model with-
out data augmentation and then used it to predict the training

Burn dataset

(a) (b) (c) (d) (e) (f)

Data
augmentation

Segmentation
networks

Encoder network Decoder network

Feature
fusion

Network
output

Visualization

Figure 1: The deep learning burn diagnosis framework.

Figure 2: Examples of burn images in the burn dataset.
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set. After that, the prediction results (pseudolabels and the
pseudolabels of the model were float numbers) and the labels
marked by the doctors were averaged as the labels of burn
images during training. In this paper, we have designed a total
of 6 data augmentation methods for training networks. In the
model training process, we used a random number generator
to randomly choose whether to use or not to use each data
augmentation method for each batch of burn images.

3.3. Network Architecture. The network architectures are
similar to FCN. The network consists of two main parts:

the encoder network and the decoder network. Different
backbone networks are selected for the encoder and decoder,
including the high-resolution network (HRNetV2) with C1
(one convolution module), residual network-50-dilated
(ResNet-50-dilated) with pyramid pooling module (PPM),
residual network-101-dilated (ResNet-101-dilated) with pyr-
amid pooling module, residual network-50 (ResNet-50) with
unified perceptual parsing network (UPerNet), and residual
network-101 (ResNet-101) with unified perceptual parsing
network. The encoder networks perform downsampling
through convolution to extract semantic feature maps with

Figure 3: A burn image annotated with LabelMe.

Table 1: The number of pixels and images corresponding to each burn depth category in the burn dataset. Because each image may contain
different burn depths, the total number of images in the table is larger than the number of images in the burn dataset.

B ST DT FT U

Training set pixels 46,074,508 5,810,773 15,340,840 9,384,514 21,693,365

Training set images 947 168 685 374 510

Testing set pixels 12,906,802 1,874,803 2,908,626 2,758,834 4,126,935

Testing set images 239 44 100 82 97
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different resolutions. The decoder networks fuse semantic
information of different resolutions through the upsampling
operation. And the last layer of the original backbone net-
work (ResNet-50 and ResNet-101) as the encoder is
removed. In this paper, bilinear upsampling is used for
simplicity.

Figure 4 shows the segmentation network composed of
HRNetV2 and C1. HRNetV2 is proposed by Sun et al. [19],
and they demonstrate the effectiveness of strong high-
resolution representations and multilevel representations
learned by the modified networks on semantic segmentation,
facial landmark detection, and object detection. We choose
HRNetV2 as the decoding network and then connect C1 as
the decoding network. The structure of C1 network consists
of a convolution layer (kernel size is 3, stride is 1, and pad-
ding is 1) and a batch normalization layer with ReLU activa-
tion function. From Figure 4, it can be seen that the feature
maps of different resolutions are merged at each stage of
the HRNetV2 network. Then, the HRNetV2 network outputs
4 feature maps of different sizes in the fourth stage. These fea-
ture maps are connected after upsampling and sent to the C1
network. Finally, the output prediction of the C1 network is
upsampled to the size of the input image.

Residual networks are presented by He et al. [20].
Through the residual module, they built a series of residual

networks. In this paper, we choose ResNet-50 and ResNet-
101 as the encoder networks. At the same time, we introduce
dilated convolution [21] into ResNet-50 and ResNet-101.
The difference between a standard convolution kernel and a
dilated convolution is shown in Figure 5. The dilated convo-
lution kernel can get a larger field of view and aggregate mul-
tiscale contextual information without loss of resolution. In
the original ResNet-50/ResNet-101, the convolution layers
(27, 30,…, 42/27, 30,…, 93) are replaced by dilated convolu-
tion layers with 2 dilation and the convolution layers (45,
48/96, and 99) are replaced by dilated convolution layers with
4 dilation.

Figure 6 shows the segmentation network composed of
ResNet-50-dilated/ResNet-101-dilated and PPM. Pyramid
pooling module is a part of the pyramid scene parsing net-
work (PSPNet) which is proposed by Zhao et al. [22] for
global scene prior construction upon the final-layer-feature-
map of the deep neural network. In this paper, PPM is con-
nected with ResNet-50-dilated/ResNet-101-dilated as the
decoding network. PPM performs pooling and convolution
operations on the output feature map of the last layer of the
ResNet-50-dilated/ResNet-101-dilated network (the last fully
connected layer of the original network is removed) at differ-
ent scales. Then, these feature maps are upsampled and con-
nected to the last layer’s feature map of the encoder network.

Conv Upsample

Upsample

Input image

(a) (b) (c) (d) (e) (f) (g)

The 1st stage
of HRNetV2

The 2nd stage
of HRNetV2

The 3rd stage
of HRNetV2

The 4th stage
of HRNetV2

The C1
module

Network
output

Figure 4: HRNetV2 and C1 networks. (b–e) The 1st, 2nd, 3rd, and 4th stages of HRNetV2, respectively,. The upward arrow refers to the
upsampling process, the horizontal arrow refers to the size of feature maps remaining unchanged after convolution, and the downward
arrow refers to the downsampling convolution.

Kernel size: 3×3
Dilation rate: 1

(a)

Kernel size: 3×3
Dilation rate: 2

(b)

Kernel size: 3×3
Dilation rate: 4

(c)

Figure 5: Dilated convolution with 3 × 3 kernel size and different dilation rates. The standard convolution kernel can be regarded as a dilated
convolution with dilation rate of 1. The expansion rate from (a) to (c) is 1, 2, and 4.
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Finally, we perform convolution and upsampling operations
on this feature map to obtain the final prediction results.

In the end, we choose the ResNet-50/ResNet-101 as the
encoding network and the UPerNet as the decoding network.
The unified perceptual parsing network is designed by Xiao
et al. [23], which is based on the feature pyramid network
(FPN) [24] and pyramid pooling module. FPN uses a top-
down architecture with lateral connections to fuse high-
level semantic information into middle and low levels. They
apply a pyramid pooling module on the last layer of the back-
bone network before feeding it into the top-down branch in
FPN. So, the encoding network does not need dilated convo-
lution which is time and memory consuming [25]. From
Figure 7, the four feature maps of ResNet-50-dilated/Res-
Net-101-dilated are horizontally connected to FPN, and the
top feature map is connected to PPM. Finally, the feature
maps of different resolutions are connected after upsampling.

3.4. Loss Function. In this paper, cross-entropy (CE) loss and
focal loss (FL) are used for the training networks. Focal loss
was proposed by Lin et al. [26], which applies a modulating
term to the cross-entropy loss in order to focus learning on
hard negative examples in one-stage object detectors. The
cross entropy (CE) loss is

CE ypred, ytrue
� �

= − 〠
classes

ytrue log ypred
� �

: ð1Þ

In the above, ytrue ∈ f±1g denotes the ground truth class,
ypred ∈ ½0, 1� denotes the network’s estimated probability for
the class. The focal loss is

FL ypred, ytrue
� �

= −α 1 − ypred
� �γ

〠
classes

ytrue log ypred
� �

, ð2Þ

where α ∈ ½0, 1� denotes a factor, which balances the
importance of positive and negative examples. γ ∈ ½0, 5� is
also a modulating factor. α = 0:25 and γ = 2 are chosen in this
paper. For superficial partial-thickness, deep partial-thick-
ness, full-thickness, and undebrided burn, the number of
pixels of each burn depth category is unbalanced. Therefore,
we use the method of median frequency (MF) balancing [27]
to weight each burn depth (including the pixels of the back-
ground area, because the number of background pixels
occupies the majority of the burn dataset). The calculation
formula of MF is

MFc =
median_freq

freqc
, ð3Þ

where freqc denotes the number of pixels of class c divided by
the total number of pixels in images where c is present and
median_freq denotes the median of these frequencies.
Finally, the weighted CE loss and FL are added as total loss
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Input image

(a) (b) (c) (d) (e)

ResNet backbone
network

Pyramid pooling module Concatenation Network output

Conv Pool

Conv
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ConvUpsample UpsampleConv

Conv

Figure 6: The network structure composed of ResNet-50-dilated/ResNet-101-dilated and PPM.
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Figure 7: The segmentation network composed of ResNet-50/ResNet-101 and UPerNet. The four feature maps of ResNet-50/ResNet-101 on
the left feature pyramid are the output of the 10th, 22nd, 40th and 49th/10th, 22nd, 91st, and 100th convolutional layers. The sizes of the four
downsampling feature maps, respectively, are 1/4, 1/8, 1/16, and 1/32 of the original input image size.
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(TL):

Totalloss ypred,ytrueð Þ = − 〠
classes

MFcytrue log ypred
� �

− α 1 − ypred
� �γ

〠
classes

MFcytrue log ypred
� �

:

ð4Þ

3.5. Metrics. We use three main metrics to evaluate perfor-
mance of networks: pixel accuracy (PA), intersection-over-
union (IOU), and Dice coefficient (DC). PA measures the
proportion of pixels with correct categories to all pixels.
IOU, also known as the Jaccard similarity coefficient, mea-
sures the ratio of intersection and union between the ground
truth area and predicted area of networks. We use mean IOU
to evaluate networks for multiple burn depth. Mean IOU is
the average of the IOU of each category, which measures
the overall performance of networks. DC, or F1 score, mea-
sures the similarity between the ground truth and the net-
work’s estimated probability. The formulas of three metrics
are as follows:

Mean PA = 1
n
〠
n

i=1

pii
pi
,

Mean IOU = 1
n
〠
n

i=1

pii
pi +∑n

j=1pji − pii
,

DC =
2TP

FP + 2TP + FN
, ð5Þ

where n is the number of all classes excluding the back-
ground class, pi is the total number of pixels for class i, pii
is the number of pixels correctly classified for class i, and pji
is the number of pixels of class i classified as class j. TP is
the true positive, which represents the correct pixels of each
class. FP is the false positive, which represents the incorrectly
pixels of each class. FN is the false negative, which represents
the pixels of other classes classified into the class.

4. Results

4.1. Experiment Setup. Our experiments are carried out on a
computer with a NVIDIA GEFORCE RTX-2080Ti GPUwith
11GB memory. The Pytorch deep learning framework is used
for training different networks. Part of the training code refers
to [28]. The stochastic gradient descent (SGD) is chosen as the
optimizer during training, and the initial learning rate of both
the encoder and decoder is 0.02. The weight decay is 0.0001,
and the learning rate the learning rate will be reduced after
each epoch. Before network training, the size of each image
is resized to 320 × 320 pixels. The batch size is 8 for training
HRNetV2-C1 and ResNet-50-UPerNet. The batch size is 4
for training ResNet-101-UPerNet and ResNet-50-dilated-
PPM. And the batch size only is 2 for training ResNet-101-
dilated-PPM. Each network is trained for 100 epochs. The ini-
tial weights of each network use the pretraining weights on the

ImageNet dataset to shorten the training time. For the decoder
backbone networks, we remove the last full connection layer of
the original networks. For the encoder networks, the size of the
output segmentation map is the size of the input size 320 ×
320 pixels, and each pixel has multiple channels. The number
of the channels is the total number of classes including the
background class. The Softmax activation function then is
used for each output pixel. During network training, the loss
calculation of the output segmentation map and label is per-
formed. In network prediction, the class corresponding to
the max value of each pixel channels in the segmentation
map will be taken as the predicted class.

4.2. Burn or No Burn.We firstly evaluate the performance of
the networks in segmenting burn or no burn areas. ST, DT,
FT, and U are merged into the burn area. The reason for this
is that when labelling the images, the overall burn area is
labelled first and then different burn depths are subdivided
in this area. The no burn area includes the patient’s normal
skin pixels and background pixels (the patient’s clothes and
other pixels are also included). First of all, we want to verify
the impact of different loss functions on the network perfor-
mance. Therefore, we trained the HRNetV2-C1 network with
different losses to filter the better loss function. At this stage,
no data augmentation strategy is used. The results of the net-
works on the testing set are shown in Table 2. From Table 2,
it can be seen that the performance of the HRNetV2-C1 net-
work with FL is poor. This may be that the attenuation of FL
is faster. When the network has not reached the optimum
during training, the FL has been reduced to a trivial value that
is difficult to optimize. The performance of CE is slightly
worse than TL from Table 2. Because TL performs best, we
use TL to train the different backbone networks in the subse-
quent training process.

Table 3 shows the performance of different backbone net-
works with or without data augmentation. It can be seen that
the performance of different backbone networks with data
augmentation are better than that without data augmenta-
tion. Specifically, the network that performs best on IOU
and DC metrics is HRNetV2-C1 with data augmentation.
The performance of ResNet-50-dilated-PPM and ResNet-
50-UPerNet with data augmentation is slightly inferior to
HRNetV2-C1. But ResNet-101-UPerNet without data aug-
mentation achieved the best results on the PA metric, which
shows that the network may overpredict the pixels of the
burn area. So, we observed the confusion matrix of the two
networks ResNet-101-UPerNet no-Aug and HRNetV2-C1
Aug (Tables 4 and 5). It can be seen that ResNet-101-
UPerNet no-Aug does over predict the pixels of the burn
area. And HRNetV2-C1 is more balanced. Therefore,

Table 2: Results of HRNetV2-C1 networks trained with different
loss on testing set.

Loss IOU PA DC

CE 0.8288 0.9301 0.9064

FL 0.7905 0.9000 0.8830

TL 0.8308 0.9331 0.9076
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HRNetV2-C1 is used as the backbone network in the subse-
quent experiments of multiple burn depths.

After that, we visualize the prediction results of the
HRNetV2-C1 Aug network on a part of the testing set, as
shown in Figure 8. First of all, the predicted burn area of
our network will slightly deviate from the labelled burn area
(1, 2, and 3 in Figure 8). In this case, the edges of the burn
area are obvious on the whole, but when the burn experts
use tools to accurately label, they will find that the edge of
the burn area will have a transition from the burned skin to
the normal skin. This will produce some human error. And
we may not get a very precise label on the edge of the burn
area. Secondly, the network will overpredict the burn areas
(4, 5, and 6 in Figure 8). Some of the overpredicted areas
actually are the burn areas which are not labelled. Some areas
are less obvious burn areas with slight redness and some
areas with no obvious burn edges. Considering that labelling
the burn images may cost a lot of time, it is unlikely that the
experts will label all the burn areas. On the other hand, for
some burn areas whose edges are difficult to define, burn
experts can only subjectively label these areas which are not
accurate enough.

4.3. Multiple Burn Depth. The best performing network
HRNetV2-C1 which is in the previous section is chosen as

the backbone network to train a multiburn depth segmenta-
tion network. From the burn depth class statistics of the burn
dataset (see Table 1), it can be seen that the number of pixels
for each burn depth is unbalanced. Therefore, the median
frequency-weighted loss function trick is adopted to balance
the burn classes. And another initial weight trick is used to
train the networks. Specifically, we first train a basic network
that does not use data augmentation and weighted loss. Then,
the data augmentation and weighted loss is used to retrain
the basic network that retains the weights of the first training.
The performance of the networks in multiburn depth seg-
mentation is shown in Table 6. It can be seen that when using
the data augmentation strategy to train the network, the per-
formance of the network on the metrics of mean IOU, mean
PA, and mean DC is better than the basic network without
data augmentation. When the weighted loss function is used
or the weight of the basic network is used to retrain a new
network, the performance of networks does not improve sig-
nificantly. Although the network trained by using data aug-
mentation and basic model weight achieves the best
performance in different metrics, it cannot widen the gap
between the models trained with other strategies.
Figure 9(a)–9(c) show the performance of the networks on
IOU, PA, and DC in each burn depth class. The performance
of the networks with different strategies in each burn depth
class is not much different. Although we want to improve
the imbalance of different burn depth classes by using a
weighted loss strategy, the results of experiment show that
the effect of this strategy is not obvious. And when using
the strategy of the basic model weight to retrain a network,
the new network does not perform better than others in test-
ing set.

Table 7 shows the confusion matrix of the Aug & Basic_
Weight network on testing set pixels. From Table 7, we find
that the incorrectly predicted pixels of superficial partial
thickness burns are mainly classified as background, deep
partial-thickness burns, and undebrided burns, but there
are fewer pixels that are incorrectly classified as full-
thickness burns. The incorrectly predicted pixels of deep par-
tial thickness are mainly classified as undebrided burns. And
the incorrectly predicted pixels of full-thickness burns are
mainly classified as deep partial thickness. As a result, the
network is better at distinguishing superficial partial thick-
ness from full thickness and superficial partial thickness from
undebrided burns, which may be the characteristics of these
classes with obvious differences. However, the network
poorly distinguishes superficial partial thickness from deep
partial thickness, deep partial thickness from full thickness,
and deep partial thickness from undebrided burn, which
may be because the characteristics between them are similar.

Figure 10 shows the visual prediction results of the
HRNetV2-C1 network (Aug & Basic_Weight) on a part of
the testing set. First, the network performs better in segment-
ing burn areas, but the prediction of burn depth in some
areas is sometimes wrong (1 in Figure 10). Secondly, for burn
areas with complex depths (2–6 in Figure 10), the boundaries
between different burn depths are not clear, which more is
the transition from superficial burns to deep burns. In this
case, burn experts are more inclined to label entire burn area

Table 3: Results of different backbone networks on testing set.

IOU PA DC

HRNetV2-C1 no-Aug 0.8308 0.9331 0.9076

HRNetV2-C1 Aug 0.8467 0.9403 0.9170

ResNet-50-dilated-PPM no-Aug 0.8136 0.9231 0.8972

ResNet-50-dilated-PPM Aug 0.8412 0.9374 0.9138

ResNet-50-UPerNet no-Aug 0.8147 0.9321 0.8979

ResNet-50-UPerNet Aug 0.8341 0.9375 0.9096

ResNet-101-dilated-PPM no-Aug 0.7864 0.9215 0.8804

ResNet-101-dilated-PPM Aug 0.7913 0.9128 0.8835

ResNet-101-UPerNet no-Aug 0.8162 0.9459 0.8988

ResNet-101-UPerNet Aug 0.8259 0.9172 0.9046

Table 4: The confusion matrix of ResNet-101-UPerNet no-Aug on
the testing set pixels.

Predicted
No burn Burn

Actual
No burn 10,919,332 1,872,931

Burn 637,499 11,146,238

Table 5: The confusion matrix of HRNetV2-C1 Aug on the testing
set pixels.

Predicted
No burn Burn

Actual
No burn 11,490,505 1,301,758

Burn 703,644 11,080,093
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and then diagnose the depth of the burn area as a whole.
However, the network will segment other burn depth areas
in the entire burn area. Therefore, this data annotation prob-
lem will have a negative impact on the network performance.
In fact, burn experts are unlikely to have enough energy to
label all burn areas in detail and diagnose the burn depth.
So, the entire training process needs to be shifted to a semisu-
pervised process. We can assume that the data annotation is
incomplete. After first training the networks, the segmenta-
tion results of the networks can be fed back to the burn
expert. Then, the burn expert can decide whether the predic-

tion results of the network can be used as a new segmentation
label. Finally, the new labelled dataset is used to train the
model to form a feedback loop.

5. Discussion

The foundation of automatic burn diagnosis is the segmenta-
tion of the burn image area. Accurate segmentation of the
burn area and prediction of burn depth provide important
help for the following clinical treatment. In this paper, we
propose an end-to-end advanced burn area segmentation
and burn depth diagnosis framework. First of all, our net-
work has achieved satisfactory results in segmenting the burn
or no burn areas. Furthermore, this network framework for
segmenting burn areas can be easily extended to a network
for segmenting normal skin and burned skin areas. If we label
the normal skin area in the burn dataset for network training,
the network will segment both the normal skin and the burn
skin. And, if a whole body burn image is taken from a patient,
we can calculate the percentage of the burn area in TBSA
through this network and then diagnose the severity of burn.

After that, we evaluate the performance of the network
on multiple burn depth segmentation. However, in the end-
to-end multiple burn depth segmentation, the performance
of the network did not surprise us. Although some strategies
can improve the performance of the network, the improve-
ment is limited. When we observe the confusion matrix

Images Ground truth
mask

Predicted
mask

Ground truth
visualization

Predicted
visualization
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Figure 8: Examples of burn areas predicted by the network. Blue indicates burn areas, and black indicates no burn areas.

Table 6: The performance of the HRNetV2-C1 networks trained
with different training strategies on the testing set. HRNetV2-C1
Base means that no training strategy is used. HRNetV2-C1 Aug
means that data augmentation is used. Aug & Weighted_Loss
means that data augmentation and weighted loss strategies are
used. Aug & Basic_Weight means that data augmentation and
basic model weight strategies are used. The background class is
not included when calculating mean IOU, mean PA, and mean DC.

Mean IOU Mean PA Mean DC

HRNetV2-C1 Base 0.4732 0.6389 0.6413

HRNetV2-C1 Aug 0.5118 0.6578 0.6757

Aug & Weighted_Loss 0.5106 0.6615 0.6739

Aug & Basic_Weight 0.5144 0.6684 0.6782
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(c) The performance of the networks on DC

Figure 9: The performance of the networks on IOU, PA, and DC in different burn depth classes.

Table 7: The confusion matrix of the Aug & Basic_Weight network on the testing set pixels.

Predicted
B ST DT FT U

Actual

B 11,765,286 188,437 188,241 76,533 688,305

ST 245,702 1,118,455 261,268 7,470 241,908

DT 169,071 101,038 1,924,161 252,898 461,458

FT 188,077 49,451 613,401 1,717,410 190,495

U 442,907 73,143 253,889 84,268 3,272,728
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predicted by the network, we find that the prediction results
are poor for areas with similar burn depths (such as deep par-
tial thickness and full thickness). Because of the imbalance in
the number of pixels of different burn depths, most of the
incorrect pixels predicted by the network are background
and undebrided burns. By visualizing the prediction results
of the network, we find that the semisupervised learning par-
adigm may improve the labelling of the burn dataset and the
training process of the network. When the labelling of the
burn dataset is more accurate, the performance of the net-
work may be further improved.

6. Conclusions

In this paper, an end-to-end framework for burn area seg-
mentation and burn depth diagnosis based on deep learning
is proposed. First, we build a large-scale burn dataset with
detailed segmentation and annotation. After that, data aug-
mentation and other strategies are used to improve the per-
formance of the network models. Then, the total loss
function is used to train the network models. Finally, the
IOU, PA, and DC metrics are used to evaluate the perfor-
mance of the network models. And the prediction results of
the network models are visualized. In the segmentation for
the burn and no burn areas, the networks have a good perfor-
mance and, respectively, achieve the best results of 0.8467,

0.9459, and 0.9170 on the IOU, PA, and DC metrics. And
only by simply expanding the network structure and labelling
the burn dataset, we may easily train a network of segmenting
burn skin and normal skin to calculate the percentage of
burns in TBSA, which has a high clinical value. After that,
the networks obtain a mean IOU of 0.5144, a mean PA of
0.6684, and a mean DC of 0.6782 in the multiple burn depth
segmentation. In total, this burn diagnosis framework will
provide important help for clinical burn diagnosis and
treatment.
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Figure 10: Examples of the network segmentation of multiple burn depth areas. Blue indicates superficial partial-thickness burn, green
indicates deep partial-thickness burn, red indicates full-thickness burn, yellow indicates undebrided burn, and black indicates background
area.
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