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Simple Summary: Muscle-invasive bladder cancer (MIBC) accounts for the majority of bladder
cancer mortality worldwide. Clinical assessment of MIBC mainly relies on the TNM staging system
to provide guidance for both prognosis and therapy planning. Based on standardized quantification
of tumour-immune features across whole slide images, and in conjunction with clinical information,
we construct an ensemble machine learning model that correctly classifies 71.4% of the patients who
succumb to MIBC, significantly higher than the 28.6% of TNM staging system. Post-hoc analysis of
our model reveals clinically relevant, immunological features for MIBC prognosis, thereby further
supporting their adoption into the clinic.

Abstract: The clinical staging and prognosis of muscle-invasive bladder cancer (MIBC) routinely
includes the assessment of patient tissue samples by a pathologist. Recent studies corroborate the
importance of image analysis in identifying and quantifying immunological markers from tissue
samples that can provide further insight into patient prognosis. In this paper, we apply multiplex
immunofluorescence to MIBC tissue sections to capture whole-slide images and quantify potential
prognostic markers related to lymphocytes, macrophages, tumour buds, and PD-L1. We propose a
machine-learning-based approach for the prediction of 5 year prognosis with different combinations
of image, clinical, and spatial features. An ensemble model comprising several functionally different
models successfully stratifies MIBC patients into two risk groups with high statistical significance
(p value < 1× 10−5). Critical to improving MIBC survival rates, our method correctly classifies 71.4%
of the patients who succumb to MIBC, which is significantly more than the 28.6% of the current
clinical gold standard, the TNM staging system.

Keywords: immuno-oncology; tumour microenvironment; tumour budding; PD-L1; macrophages;
lymphocytes; prognosis; survival analysis; machine learning; digital pathology

1. Introduction

Urothelial cancer of the bladder (bladder cancer) is one of the most prevalent cancers
worldwide, with approximately 430,000 new diagnoses each year [1]. The high morbid-
ity and mortality rates, as well as the high socioeconomic burden, make bladder cancer
a debilitating and often fatal disease [2,3]. Even though the majority of bladder cancer
patients are diagnosed with non-muscle-invasive bladder cancer (NMIBC), recurrence and
progression of the disease may lead to muscle-invasive bladder cancer (MIBC) [4]. Approxi-
mately 25% of newly diagnosed patients have MIBC, and unlike NMIBC, these tumours
are biologically aggressive with limited therapeutic options. Although radical cystectomy
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with bilateral pelvic lymph node dissection is the current gold-standard treatment for MIBC,
more than 50% of MIBC patients die from metastatic disease within 5 years [5]. To decrease
the mortality rates, patients with a high risk of disease-specific death need to be identified
more precisely, thereby allowing for better patient management and new treatments to be
tested in the high-risk group.

Due to the intra- and inter-tumoural heterogeneity of MIBC, which is evident from the
phenotypic and molecular diversity of tumour cells, choosing the most effective treatment
for each patient is very challenging [6,7]. Currently, clinical assessment of bladder uses
the Tumour-Node-Metastasis (TNM) staging system [8], where T describes the depth of
invasion into the bladder wall, and N and M the presence or lack of node and distant
metastasis, respectively. MIBC ranges from tumours which invade the detrusor muscle (T2),
to tumours which spread to nearby organs (T4) [1,9]. Although TNM plays a critical role in
guiding treatment planning, it remains an anatomy-based classification tool with patients
of the same tumour stage experiencing a high variability in disease outcome [10,11].

The tumour mass comprises a heterogeneous population of cancer cells, and, together
with a diverse group of resident and infiltrating host cells, they make up the tumour-
immune microenvironment [12,13]. With the emergence of immuno-oncology, many cancer
researchers have investigated the importance of the intra-tumoural host immune response
within what is often an immunosuppressive tumour microenvironment [14,15]. Analysing
the location, density, functional state, and organisation of the immune cell populations within
the tumour landscape, often termed as the immune contexture, has become a fundamental
step in identifying immune system characteristics that may be beneficial to patients [16].
In particular, an increasing number of studies has shown the critical role of the immune
contexture (not yet included in the TNM guidelines) in patient survivability, suggesting
that it could be a valuable determinant of patient prognosis [15,17]. Motivated by multiple
papers [18–21], we have investigated the prognostic role of tumour-infiltrating lymphocytes
(TILs), tumour-associated macrophages (TAMs), tumour buds (TBs), and programmed cell
death-ligand 1 (PD-L1) in MIBC patients.

Lymphocytes and macrophages are generally found either infiltrating into or surround-
ing the tumour mass, both the core and the invasive front. TILs can be divided into sub-
populations by virtue of their specialised functions, surface cluster of differentiation (CD)
molecules and, in certain circumstances, morphological features. Cytotoxic T-cells are the
main effector cells in the anti-tumour T-cell response, with a large volume of studies showing
that their presence in the tumour-immune microenvironment is strongly associated with
prolonged survival in various types of cancer [22,23]. TAMs have also been identified as
decisive factors in the orchestration of the tumour-immune microenvironment [24]. They can
exhibit polarised phenotypes, with classically activated M1 and alternatively activated M2
subpopulations possessing anti-tumoural and pro-tumoural abilities, respectively [25]. In par-
ticular, during metastasis, M2 macrophages are recruited at distinct pre-metastatic niches,
where they can promote tumour cell dissemination and disrupt the function of TILs [24].

Tumour budding is generally considered to be the first step of cancer metastasis,
defined as the dissociation of isolated single cancer cells or discrete clusters of up to four
cancer cells, predominantly from the invasive front of the tumour [26]. In the last decade,
tumour budding has been widely investigated as a marker of aggressive tumour behaviour,
due to its association with adverse clinicopathological characteristics and the epithelial–
mesenchymal transition [27,28]. As a result, tumour budding has been added to TNM as
a supplementary prognostic factor for colorectal cancer [29]. However, without reliable
quantitative methods, tumour-budding quantification is challenging, due to poor inter-
observer consistency [30,31].

Immune checkpoints are cell-surface receptors expressed by immune cells that modu-
late immune responses [32]. Complex interactions between the immune system and cancer,
including the manipulation of immune checkpoints such as programmed cell death 1
(PD-1), enable tumour cells to evade immune surveillance. Specifically, PD-L1, which is
secreted by tumour cells, binds to PD-1 expressed on the surface of TILs and suppresses
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their function to ensure the growth and development of tumour cells [33]. Although our
understanding of the intricate and dynamic relationship between tumour cells and host
cells is increasing, further characterization of the precise impact of tumour cells on their
surroundings is needed.

In recent years, machine learning (ML) methodologies have been widely utilized for
the construction of predictive models based on biological features [34–36]. Nevertheless,
the number of papers which have adopted ML methodologies for survival analysis is lim-
ited [34,36–38]. In this paper, we employ an ML methodology to investigate the prognostic
role of TILs, TAMs, TBs, PD-L1, and other clinicopathological factors in MIBC. The con-
tribution of this paper is fourfold. To the best of our knowledge, this is the first study
reporting the labelling of entire MIBC tissue sections with multiple fluorescence immune
markers as well as the quantification of immunological features across both the tumour
core and the invasive front of whole-slide immunofluorescence images. In addition, using
image, spatial, and clinical features, our ML methodology improves the accuracy of the
5 year prognosis for MIBC patients by a large margin when compared to the current gold
standard, TNM. Lastly, our findings reinforce the importance of the immune contexture in
cancer prognosis, thereby further supporting its adoption in the clinic.

2. Materials and Methods
2.1. Patients and Tissue Samples

Tissue specimens from patients with MIBC who underwent radical cystectomy at
Royal Infirmary and Western General Hospital in Edinburgh between the years 2006 and
2013 were collated into a cohort. Patients were excluded from this study either due to
incomplete clinical records, extensive tissue section artefacts, or data censoring. The final
study cohort was comprised of 78 patients. Archived formalin-fixed paraffin-embedded
(FFPE) tissue blocks presenting the deepest invasion of cancer were selected for each
patient based on both macroscopic and microscopic examination of haematoxylin and
eosin (H&E)-stained slides by a pathologist and a research scientist. The corresponding
unstained tissue sections were collected from the NHS Lothian NRS BioResource Research
Tissue Bank, conforming to protocols approved under the ethical status granted by the East
of Scotland Research Ethics Service (Ethical Approval Ref: 10/S1402/33) and with written
informed consent from all the patients. All experiments were performed in accordance
with the relevant guidelines and regulations. Clinicopathological data that included age,
sex and TNM stage status, along with survival data, were retrieved from the available
electronic medical records. Patients were followed-up for a total time of 113 months, with
a median survival time of 23.6 months. In order to maintain the anonymity of the patient
information, the samples were de-identified prior to conducting this study.

2.2. Multiplex Immunofluorescence and Whole Slide Imaging

For each patient, automated tyramide-based immunofluorescence was performed on
two de-paraffinised serial 3 µm thick sections of FFPE tissue mounted on superfrost plus
slides using a Dako link 48 autostainer (Dako, Agilent Technologies). Primary antibod-
ies against Pan-cytokeratin (PanCK), CD3, CD8, CD68, CD163 and PD-L1 were used to
label urothelial cells, general T-cells, cytotoxic T-cells, M1/M2 (total) macrophages, M2
macrophages and immune checkpoint ligand PD-L1, respectively (see Supplementary
Table S1 for further details about the primary antibodies). To increase the detection sen-
sitivity and to visualise the target protein, tyramide signal amplification (TSA) reagents
FITC, CY3 and CY5 were used for CD3 or CD68, PD-L1, and CD8 or CD163 respectively.
Alexa Fluor 750 conjugated streptavidin antibody was used for the detection of PanCK. See
Supplementary Table S2 for the detection and visualization reagents. Nuclei were counter-
stained with Hoechst (Hoechst 33342, Cat# H3570, ThermoFisher Scientific) and ProLong
Gold Antifade mountant (Cat# P36930, ThermoFisher Scientific) applied directly to the
tissue samples. The multiplex immuno-labeled tissue slides were scanned at 20×magnifi-
cation and digitized into whole-slide fluorescence images using a Carl Zeiss AxioScan.Z1
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scanner (Zeiss, Göttingen, Germany). Examples are shown in Figure 1. Supplementary
Table S3 and Figure S1 show the excitation and emission wavelengths, along with the
exposure time for each antibody used for multispectral imaging.

(a)

(b)

Figure 1. Examples of (a) TILs (Nuclei: Cyan, Cancer: Red, PD-L1: Green, CD3: Purple, CD8: Yellow) and (b) TAMs (Nuclei:
Cyan, Cancer: Red, PD-L1: Green, CD68: Purple, CD163: Yellow) visualized using multiplexed immunofluorescence.
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2.3. Detection of Cell Nuclei

For nucleus detection, the methodology described by Brieu and Schmidt [39] was
adopted. For completeness, a high-level description of this methodology is provided.
The methodology is comprised of four distinct stages: (a) A classification random forest (RF)
was trained with long-range spatial context features [40] that were extracted from manually
annotated foreground and background regions, where a foreground region contained the
cell nucleus and vice-versa (n = 4, resolution = 1200× 1200 pixels). Subsequently, the RF
generated a mask for all immunofluorescence (IF) images [41]. (b) A regression RF was
trained to generate proximity maps using coordinates from manual annotations of cell
nuclei (n = 750 from 19 fields of view, resolution = 1485× 1485). Intuitively, a proximity
map enclosed the distance to the closest nucleus center for each pixel of the input image.
(c) A regression RF was trained to generate surface area maps using manual annotations
(n = 250 from 8 fields of view, resolution = 580× 580 pixels) [39]. A surface area model
provides a mask of the initial image wherein each pixel is either zero, if it is not a part of
a nucleus, or a positive real number, if it is part of a nucleus. The positive real number is
the area of the corresponding nucleus. (d) At this stage, nuclei centers (see Supplementary
Figure S2) are localized based on the proximity and surface area maps that were generated
in (b) and (c) [39]. Note that both the original image and the corresponding mask (produced
in (a)) are given as inputs to the models in (b) and (c), using only the PanCK and Hoechst
IF channels. Data augmentation with varying scale, rotation, as well as intensity for both
PanCK and Hoechst IF channels, was implemented in all stages. Finally, regions with
necrotic tissue and any type of artefact, such as autofluorescence, were not included in any
of the training data.

2.4. Segmentation of Epithelial Cells for the Identification of Tumour Buds

For the quantification of tumours buds, segmentation of the epithelial cells was required.
The CNN-RF methodology described by Brieu et al. [42], and extended in [30], was adopted.
Briefly, a convolutional neural network (CNN) was trained on an annotated dataset of ep-
ithelium and non-epithelium IF images. The dataset comprised 142× 142 pixel regions,
selected by an expert. The Hoechst, PanCK, CD3 and CD8 IF channels were normalised
following the approach described by Brieu et al. [42]. An intensity interval was imposed
on the PD-L1, CD163, and CD68 IF channels by computing the minimum and maximum
values from the segmented epithelium regions of each slide. Once trained, the CNN pro-
duced a coarse segmentation mask of epithelium regions. Normalized PanCK, Hoechst,
CD3, and CD8 channels of the IF images were used as input to the CNN. The predicted
epithelium probability layer was used, together with the original IF channels, as input to a
RF. Finer-grained segmentation masks were produced by the RF, enabling a more accurate
segmentation of the epithelium. As detailed in previous work [30], the output of the CNN-RF
is finally ensembled with the output of a semantic segmentation network [43] to generate the
final epithelium segmentation results. TBs were classified as epithelium objects containing
from one to four nuclei [30]. A total number of 97,262 patches were used for training and
9742 patches for validation of the CNN-RF model. The semantic segmentation network was
trained with 19,093 patches and validated with 6987 patches of 256× 256 pixels.

2.5. Cell Classification

For cell classification, given the normalised IF channels, a circular neighbourhood
of each cell nuclei is defined (11× 11 pixel radius) and the mean normalised intensity of
the neighbourhood is computed for each IF marker (CD3, CD8, CD68, CD163, PD-L1 and
PanCK). Cells are classified as positive or negative for a given IF marker if the correspond-
ing mean normalized intensity is above or below a determined threshold, respectively.
In our experiments, the threshold for all the IF markers was set to 32/256 = 0.125.
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2.6. Pairwise Spatial Distributions of Lymphocytes, Macrophages, Tumour Buds and PD-L1

The point coordinates of cell nuclei and immune checkpoint ligand PD-L1 expression
were localized across the whole slide images (WSIs), as shown in Figure 2. The Ripley’s K
function [44] was adopted to investigate how TBs, PD-L1, and the different populations of
immune cells are distributed around each other. In particular, given two populations X and
Y, Ripley’s K function estimates the density of Y within a circle of radius r around points
X. As illustrated in Figure 3, assuming a Poisson distribution, the Ripley’s K function can
identify whether a population Y is dispersed, randomly distributed, or clustered around
another population X. The K function is given as

Kxy(r) =
1

λy
E[number of points y within a distance r around a point x] (1)

where E[·] encloses all of the points of type y within a distance r of a randomly selected
point of type x and λy is the number of points y per unit area in the region of interest.

(a)

(b)

Figure 2. Nuclei localization of (a) TILs (CD3+PanCK+: Brown, CD3+PanCK−: Red, CD8+PanCK+: Green, CD8+PanCK−:
Blue, TB: black, PD-L1+PanCK+: Pink, PD-L1+PanCK−: Yellow) and (b) TAMs (CD163+PanCK+: Brown, CD163+PanCK−:
Red, CD68+PanCK+: Green, CD68+PanCK−: Blue, TB: Black, PD-L1+PanCK+: Pink, PD-L1+PanCK−: Yellow) across
the WSI.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. Schematic representation of different immune cell distributions from the nuclear centre of a tumour bud (a,c,e),
and their corresponding L function values at different radii (b,d,f). The immune cell population is either (a,b) dispersed,
(c,d) randomly distributed, or (e,f) clustered around the tumour bud.
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Theoretically, if the point pattern of points Y around X follows complete spatial random-
ness, also known as a homogeneous Poisson process, the value of K function is πr2. The L
function [45] is a modification of Equation (1), so that the expected output value is r, i.e.,

Lxy(r) =

√
Kxy(r)

π
(2)

This enables a more intuitive interpretation of the function’s output value in relation
to r. The L function was calculated for TAMs, TILs, and PD-L1 surrounding TBs, as well
as the PD-L1 surrounding TAMs and TILs, for a series of increasing distances r, where
r ∈ {20, 50, 100, 150, 200, 250} µm. While some approaches calculate the area under the
curve of the L function against different r values [46], we provided the pairwise spatial dis-
tributions between PD-L1, TBs, and the immune populations, directly to the ML classifiers
as distinct features.

2.7. Binary Survival Analysis

Survival analysis is broadly defined as the analysis of data that involve the time to
the occurrence of an event of interest [47]. Herein, the event of interest was the death of an
individual due to MIBC. A characteristic of survival analysis is censoring. In our cohort,
some patients were right-censored, either because the end of study was reached and the
event of interest did not occur, or because the patients succumbed to a cause other than
MIBC (abbreviated as OTD-censoring) [47].

Patient survivability was binarized based on a specific time cut-off. Similar to previous
works, a 5 year prognosis was investigated [36,48,49]. Patients that succumbed to MIBC
within 5 years were denoted as patients with a bad prognosis, whereas those that survived
the 5-year cut-off were denoted as patients with a good prognosis. Inevitably, patients that
died due to an unrelated cause prior to the prognostic cut-off, i.e., they were part of the
OTD-censored data, had to be excluded (19% patient exclusion). It is worth mentioning
that removing these patients does not introduce bias, since time to censoring was random,
i.e., OTD-censoring was not known a priori. A consequence of this approach is that survival
analysis was turned into a binary classification problem. Furthermore, due to the removal
of censoring, traditional ML models were readily employable.

2.8. Model Selection, Algorithm Selection, and Performance Evaluation

Both model selection and algorithm selection attempt to collectively maximize the
predictive performance of the final ML model. However, ML algorithms are prone to
overfitting, i.e., in finding and using patterns which arise from noise in the data. Such
noisy patterns do not generally extend beyond the specific dataset, since noise is typically
random. With both a small dataset and a complicated model, the likelihood of overfitting
increases. Testing the performance of a trained ML model on unseen data constitutes the
mainstay of evaluating the generalizability of an ML model and, therefore, in identifying
whether a model has overfitted. As such, a subset of the initial cohort was kept aside
as the testing dataset. In particular, using stratified random sampling, two subsets were
created: the training set with 75% of the initial data (58 patients), and the testing set with
25% (20 patients). The testing set was only used at the performance evaluation stage to
avoid introducing bias to the generalization performance estimate.

Traditionally, model selection is the process by which a ML algorithm is configured.
Most ML algorithms come with a number of configuration variables, commonly referred
to as hyperparameters. Even though common hyperparameter configurations can be
employed, it has been observed that hyperparameter tuning for a specific task can be the
key between chance and state-of-the-art models [50]. Since manual tuning can be time-
consuming and counter-intuitive in high-dimensional spaces, most ML methodologies
adopt automated hyperparameter tuning.
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One of the most popular approaches in model selection constitutes a grid search,
where each hyperparameter is given a predefined list of values, and the best hyperparam-
eter configuration is selected after evaluating all the combinations. For example, given
hyperparameters A and B, and lists VA = [1, 10, 100] and VB = [0.1, 0.5], the following com-
binations were evaluated under grid search: ∀(A, B) ∈ [(1, 0.1), (1, 0.5), (10, 0.1), (10, 0.5),
(100, 0.1), (100, 0.5)]. However, as shown by Bergstra and Bengio [51], random sampling
provides a better tuning strategy.

In random search, a number of hyperparameter configurations are evaluated by
sampling from predefined hyperparameter distributions and densities. For example,
given hyperparameters A and B with DA ∼ N(0, 1) and VB = [0.1, 0.5], where DA is a
standard Gaussian distribution, the following five combinations could have been sampled
and evaluated under a random search: ∀(A, B) ∈ [(−0.12, 0.1), (−0.14, 0.5), (−0.94, 0.5),
(0.44, 0.1), (−1.3, 0.5)]. In our methodology, 200 hyperparameter configurations were
randomly sampled and evaluated for each ML algorithm. A table of the distributions and
densities used is provided in Supplementary Table S4.

Not every ML algorithm will perform equally well in different problems and with
different data. In addition, there is no theoretical ranking suggesting that one algorithm is
better than another [52]. Hence, similar to hyperparameter tuning, algorithm selection is
yet another meta-optimization task that needs to be performed for maximizing predictive
performance. However, as argued by Bergstra et al. [50]: “Since the performance of a given
technique depends on both the fundamental quality of the algorithm and the details of
its tuning, it is sometimes difficult to know whether a given technique is genuinely better,
or simply better tuned.” Consequently, algorithm selection should involve model selection.
Therefore, each ML algorithm was first tuned using five-fold cross-validation and then
compared against each other using two-fold cross-validation. This nested cross-validation
translates to optimization of the hyperparameters of each ML algorithm twice, and then
measurement of their performance on the corresponding evaluation folds (see Figure 4).
Subsequently, the ML algorithm which performed better than the others across two different
training and validation folds is selected. It is important to highlight how, in most cases,
each ML algorithm is evaluated based on two different hyperparameter configurations.
Nevertheless, once the ML algorithm was selected, yet another hyperparameter-tuning
phase is implemented to find an optimal hyperparameter configuration based on the whole
training dataset. Five ML algorithms with different theoretical underpinnings were selected
to compete against each other: decision tree (DT), RF, support vector machine (SVM), linear
regression (LR), and k nearest neighbours (KNN). Finally, a preprocessing step of feature
normalisation was added to all classifiers, except DT and RF.

2.9. Stratified Sampling

In order to avoid sampling subsets with different class distributions (classes are based
on survival with a 5-year cut-off) to the original cohort, stratified sampling was used.
Intuitively, when sampling from a dataset with stratification, proportionally, many patients
from each class were sampled.—as an example, given a dataset with 75 patients of class C1
and 25 patients of class C2, a 20% sample would contain 15 patients from class C1 and 5
patients from class C2.
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Figure 4. Pictorial representation of nested cross-validation with an independent testing set. (A) Performance Evaluation:
The best ML algorithm (selected by the outer cross-validation; see (B)) was trained on the training dataset and subsequently
evaluated on the testing dataset. (B) Algorithm Selection: Each ML algorithm (with hyperparameters tuned based on the
inner cross-validation; see (C)) was trained and tested on the corresponding training and evaluation folds, respectively.
The best ML algorithm was selected based on the average performance of both evaluation folds. (C) Model Selection:
ML models with randomly sampled hyperparameter configurations were trained and tested based on a five-fold cross-
validation. The best hyperparameter configuration for each ML algorithm was selected based on the performance on all five
evaluation folds.

3. Results
3.1. Patient Characteristics

A total of 78 patients diagnosed with MIBC were included in this study. The median
age of the patients was 68 years (range 29–87 years), with 43 males and 35 females. Accord-
ing to the TNM staging system guidelines [8], our cohort consists of 17 stage II, 29 stage
IIIA, 5 stage IIIB, and 27 stage IV patients. Twenty-seven patients had distant metastasis at
time of surgery. No positive lymph nodes were found in 57 patients, and 1–2 lymph nodes
contained tumour cells in 21 patients. Of the 78 patients, 53 patients died due to bladder
cancer. Follow-up information was available for all the patients (range 1–113 months).
The clinicopathological characteristics of the cohort are summarised in Table 1.

3.2. Fully Automated Feature Extraction

The entire FFPE tissue section of each MIBC patient was digitized into a WSI, encom-
passing both muscle-invasive urothelial carcinoma and adjacent benign tissue. Multiplex
immunofluorescence, using TSA, enabled the detection of TILs (general CD3 and cytotoxic
CD8 T-cells), TAMs (total CD68 macrophages and M2 CD163 macrophages), PD-L1+ cells,
cell nuclei (Hoechst), and epithelial cancer cells (Pancytokeratin) including TBs across the
WSI of each patient. Machine-learning-based image analysis allowed for the localization of
each cell, which was subsequently classified depending on its IF signal as either a: (1) TB, (2)
M1 macrophage, (3) M2 macrophage, (4) total macrophage, (5) general T cell, (6) cytotoxic
T cell, or (7) PD-L1+ cell. Based on the above seven classes, a total of 186 quantitative
features were extracted from the tumour core and invasive front of each WSI, including the
number and density of different cell types, the total size of tumour areas, and the pairwise
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spatial distributions between immune and cancer cells. The tumour core is defined as the
main tumour mass and the invasive front as the border of the tumour core, with a width of
1000 µm (500 µm inside and 500 µm outside of the border, defining the invasive frontin
and frontout, respectively), as shown in Figure 5. Feature extraction was performed using
Definiens Tissue Phenomics® software (Definiens AG, Munich, Germany) [53–55]. A list of
all extracted features is provided in Supplementary Table S11.

Table 1. Patient cohort characteristics.

Characteristics Summary

MIBC patients N = 78
Median survival (range) 19 (1–113) months

Age 66± 11 years
Gender 55% Male; 45% Female

TNM stage
II 17 (22%)

IIIA 29 (37%)
IIIB 5 (6%)
IV 27 (35%)

Tumour (T)
T2 18 (23%)
T3 39 (50%)
T4 21 (27%)

Node (N)
N0 57 (73%)
N1 13 (17%)
N2 8 (10%)

Metastasis (M)
M0 51 (65%)
M1 27 (35%)

(a)

Figure 5. Cont.
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(b)

Figure 5. (a) Whole-slide immunofluorescence image based on the PanCK channel, (b) Segmentation of the corresponding
tissue (a) into tumour core (blue), invasive frontin (red) and frontout (green) using the PanCK channel.

3.3. Feature Space and Feature Selection

In order to capture multiple aspects of the disease, features from both clinical reports
and whole-slide immunofluorescence images were quantified. Herein, the number and
density of PD-L1-positive and -negative immune cell populations, as well as of TBs from
the WSIs are labelled as “image features”. The pairwise spatial distributions between
immune cells and TBs are termed “spatial features”. Finally, clinicopathological features
such as age, gender, and TNM stage are termed “clinical features”. Information regarding
the administration of chemotherapy before or after cystectomy (neoadjuvant or adjuvant)
was not provided in a sufficient degree of detail in the authorised release of deidentified
clinical records. To maintain the reproducibility of our methodology, chemotherapy was
not included as a clinical feature. Altogether, 201 features were quantified—126 image,
60 spatial, and 15 clinical features (the complete feature list is given in Supplementary
Table S11). To investigate whether smaller feature spaces result in better ML models, we
ran the same ML workflow over different feature sets. In particular, our experiments were
based on the following seven feature sets: (i) image, (ii) spatial, (iii) clinical, (iv) image and
spatial, (v) image and clinical, (vi) spatial and clinical, (vii) image, spatial, and clinical.

3.4. Machine Learning Models and Optimizing Metric

Five ML algorithms with different theoretical underpinnings were selected to investi-
gate whether the extracted features could predict 5-year survivability in MIBC patients; DT,
RF, SVM, LR, and KNN. The optimizing metric throughout experimentation was the area
under the receiver operating characteristic (AUROC). At the final evaluation phase, classifi-
cation accuracy, sensitivity, specificity, F1 score, and hazard ratios were also computed for
ease of comparative analysis, as shown in Table 2. In order to compute the aforementioned
metrics, the optimal threshold values were automatically selected at the final stage based
on the training set performance. Hazard ratios and the associated confidence intervals
were calculated using univariate Cox regression.
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Table 2. Comparison between our ensemble model and TNM staging. The better performance
between the ensemble model and TNM staging for each evaluation metric is shown in bold. * 95%
Confidence Interval.

Training Set Testing Set

Evaluation
Metrics

Ensemble
Model TNM Staging Ensemble

Model TNM Staging

AUROC 98.3 71.6 89.3 64.3
Accuracy 94.8 65.5 80.0 50.0
Sensitivity 89.5 89.5 100.0 100.0
Specificity 97.4 53.8 71.4 28.6
F1 score 83.3 67.7 83.3 44.0

Hazard ratio 45.9 4.4 32.5 3.3
(6.2, 341.1) * (2.3, 8.6) * (3.9, 270.3) * (1.0, 11.0) *

3.5. Proposed Ensemble Model

Nested cross validation was implemented to avoid overfitting while maximizing the
predictive performance of ML classifiers. In addition, a separate test set was held aside to
estimate the generalization performance of the final classifier.

For each of the tested feature sets, the classifier with the highest average AUROC was
selected. In case of similar average AUROC between two ML classifiers using the same
feature set, we selected the one exhibiting the least variance. The results are shown in
Supplementary Table S5. Since multiple classifiers exhibited a similar performance across
the different feature sets, instead of employing a single classifier, we combined the best ones
into an ensemble model. In particular, our ensemble model consists of a linear support
vector machine (LSVM) that uses image features (72.8 ± 0.3 AUROC), a DT that uses
image and clinical features (68.8± 0.8 AUROC), an LR that uses image and spatial features
(70.2± 14.7 AUROC), and an RF that uses all features (67.3± 5.8 AUROC). Following
hyperparameter tuning for each one of the selected classifiers on the whole training set,
without cross-validation, our ensemble model was evaluated on the independent testing
set, achieving 89.3% AUROC and a highly significant separation of patients into low- and
high-risk groups (p value= 7× 10−6). Patients were classified as high-risk by the ensemble
model if two or more of the submodels predicted a bad prognosis.

3.6. Pessimistic Bias

The large difference between the generalization estimates of algorithm selection and
performance evaluation (see Tables S1 and 2) can be mostly attributed to pessimistic bias [56].
Given the already small dataset, withholding half of the training dataset for evaluation,
due to two-fold cross-validation, increases the chance that an ML model will underfit, i.e.,
its maximum representation capacity will not be reached [56]. Therefore, the generalization
estimate from performance evaluation (Table 2) is more reliable, since the whole training
set was used.

3.7. Comparing against TNM Staging

In order to compare this against the gold standard in clinical practice, TNM, patients
had to be stratified into low- and high-risk groups. Based on a pairwise log-rank test
comparison in the training dataset (results shown in Supplementary Tables S6–S8), stage II
and III patients were considered as the low-risk group, whereas stage IV patients were
considered as the high-risk group. The Kaplan–Meier and ROC curves of TNM staging and
our ensemble model on the testing set are shown in Figure 6. To allow further comparative
analysis, Kaplan–Meier curves of other clinicopathological features, such as age and gender,
are shown in Supplementary Figure S3. In addition, the Kaplan–Meier and ROC curves of
each submodel of the ensemble model are shown in Supplementary Figure S4.
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(a) (b)

(c) (d)

Figure 6. Kaplan–Meier and ROC curves on the testing set for our ensemble model and TNM. Separation was significant
based on the (a) ensemble model (p value = 7× 10−6, NLowRisk = 10 & NHighRisk = 10) and (c) TNM (p value = 0.04,
NLowRisk = 16 & NHighRisk = 4). A better AUROC was achieved by (b) the ensemble model (AUROC = 0.893) than (d) the
TNM (AUROC = 0.643).

3.8. Post-hoc Analysis of Features

For each classifier of the ensemble model, post-hoc analysis was conducted to reveal
the features guiding the survivability prediction. The feature considered at each node of
a DT is readily interpretable (see Supplementary Figure S5). For the LR, its coefficients
determine the importance, as well as the positive or negative effect, of each feature in
patient prognosis. The mean decrease in the Gini index was calculated for each feature of
the RF, based on the underlying decision trees [57]. Finally, since the selected SVM had a
linear kernel, feature-ranking coefficients were readily available [58]. A threshold was set
to filter out features with low feature importance. In particular, the threshold was set to
two times the mean importance of all features for the DT, LR, and RF, whereas two times
the median importance was used for the LSVM. There were 8, 10, 25, and 16 important
features for DT, LR, RF, LSVM, respectively, which are listed in Supplementary Tables S9
and S10. For completeness, Supplementary Tables S12–S14 provide the feature importance
values of all features used by LR, RF, and LSVM prior to thresholding. A visualization of
the number of intersecting features between the various submodels of our ensemble model
is shown in Supplementary Figure S6.
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For the LR and LSVM submodels, the high density of TBs in both the invasive frontin
and tumour core is highlighted as an indicator of bad prognosis. On the contrary, a high
density of CD8+, CD3+ and CD68+ cells is consistently identified as a marker of good
prognosis. In addition, a high number of CD3+, CD68+PD-L1+ and CD163+PD-L1+ cells in
the invasive front, as well as the presence of CD3+ cells within a distance of 20 µm from
TBs, are associated with good prognosis.

For the DT submodel, a low density of CD68+, high PD-L1+ expression, and high number
of TBs (all in frontout) lead to bad prognosis, whereas, given a low density of CD68+ and
PD-L1+ expression in frontout, the prognosis depends on the number of CD68+ in frontin.
Finally, the majority of the patients with good prognosis had high CD68+ in frontout, nonzero
PD-L1+ expression in core, low CD163+ in frontout, and high CD3+ in frontout.

Similar to the previous submodels, TBs and CD68+ cells were the most important
predictors of 5-year prognosis for RF. In addition, RF employed more spatial features than
any of the other submodels, including, but not limited to, PD-L1+ expression within a
distance of 20 µm from TBs and 150 µm from M2 macrophages and the presence of CD3+

and CD8+ cells within a distance range of 20–50 µm from TB.

4. Discussion

In the last decade, advances in the rapidly growing field of tumour immunology
have provided further insights into the dynamic nature of the multifaceted immune re-
sponse throughout the various stages of cancer initiation, evasion, and progression. Con-
comitantly, multiple research groups have successfully leveraged this new knowledge to
improve cancer prognosis, thereby providing evidence for the clinical relevance of immuno-
oncology [11]. Accurate patient prognosis is crucial for improving the survival rates of
cancer patients, since it is a prerequisite to delivering the most effective treatment for
each patient. In fact, multiple papers have shown that the quantitative characterization of
the tumour-immune microenvironment components, including TILs, TAMs, and immune
checkpoints, can yield information of prognostic relevance [59–61]. Particularly, tumour
cells surrounded by a large number of prominent intra-tumoural and peri-tumoural TILs
and M1 macrophages have been related to better prognosis in several types of cancer [62],
whereas a high content of M2 macrophages and TBs has been associated with poorer out-
come [60]. In addition, related research has reported the significance of PD-L1 expression
on tumour tissues as an independent poor prognostic factor [63]. In this paper, we have in-
vestigated, for the first time, the prognostic relevance of immune system biomarkers, TILs,
TAMs, TBs, and PD-L1, across whole slide immunofluorescence images of MIBC patients.

H&E is still the most important and commonly used histochemical staining method
for studying and diagnosing tissue diseases in histopathology. However, the imaging of
H&E stained FFPE tissue has limitations, including the inability to quantify the complex
cellular states as well as identify distinct cell populations in the tumour-immune microen-
vironment. With the advent of whole-slide imaging and the increasing adoption of digital
pathology in the clinic [64], multiplex methodologies have the potential to provide signifi-
cantly more information about the underlying tumour-immune microenvironment than
single-marker (i.e., single-label immunohistochemistry) and conventional histochemical-
staining-based methodologies [65]. The development of single-protein-based biomarkers
to explain patient-level behaviour is hindered by the vast signalling network mediating the
heterotypic cell–cell crosstalk between cancer, stromal and immune cells. Instead, with mul-
tiplexed methodologies, various proteins can be simultaneously captured on a single tissue
sample, encapsulating the tumour-immune architecture from the cellular level down to the
subcellular, and ultimately providing more information about the microenvironment.

In our approach, multiplexed immunofluorescence was used to visualize TBs, general
and cytotoxic T-cells, M1, M2, and total macrophages, and their co-expression of immune
checkpoint ligand PD-L1, in order to quantify their numbers and densities, as well as
their pairwise spatial distributions across defined areas (tumour core, invasive frontin and
frontout) within a WSI. In the last decade, multiple studies have investigated the topo-
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graphical distribution of the immune cells within the tumour microenvironment [66,67].
It is known that tumour-infiltrating immune cells are scattered in the tumour core and
the invasive front, whereas their density in each tumour region is correlated with patient
outcome [68]. Furthermore, the analysis of multiple tumour regions (tumour core and
invasive front) was shown to improve the prediction accuracy of patient survival compared
to single-region analysis [10,68]. In addition, Immunoscore, a classification system based on
the quantification of two lymphocyte populations (CD3 and CD8) within the tumour core
and the invasive front of tumour, has been shown to have a prognostic significance superior
to that of the TNM staging system in patients with colorectal carcinoma [10,69]. The image,
spatial, and clinical features contain a large amount of information about the state of the
disease, and collectively portray a more holistic view of each patient’s pathophysiology.
We hypothesized that these features can predict the aggressiveness of MIBC, and therefore
suggest whether a patient should be considered at low or high risk of disease-specific death.

ML contains a plethora of classifiers that have been employed with success in multiple
instances, including diagnosis, segmentation, prognosis, and even therapy planning [35].
In our methodology, survival analysis is turned into a binary classification problem, thus
enabling traditional ML algorithms and workflows to be readily employable. In addition,
to counter the possibility of overfitting due to having a small dataset and high-dimensional
feature space, nested cross-validation with a separate testing set was adopted. The pro-
posed ensemble model significantly surpasses all metrics—AUROC, Accuracy, Specificity,
F1 score, Hazard ratio—(89.3%/80.0%/71.4%/83.3%/32.5) the gold standard, TNM stag-
ing (64.3%/50.0%/28.6%/44.0%/3.3), as summarized in Table 2. It consists of an LSVM
that uses image features, a DT that uses image and clinical features, an LR that uses image
and spatial features, and an RF that uses all features.

The results of our study suggest that the characterization of a broad immune cell
population, as well as their spatial organization in relation to cancer cells, enables a better
estimation of survival compared to the TNM staging system in MIBC patients which, in turn,
provides further biological insights. Most of our findings based on whole-slide immunoflu-
orescence images are novel for MIBC, and also corroborate the existing literature on other
types of cancer [19,28,31,61,70,71]. In particular, we found that the high content of TBs in
the invasive frontin, frontout, and tumour core as well as the low number of CD68+ cells and
high PD-L1 expression in the invasive frontout, are indicators of bad prognosis [28,30,61,70].
The high density of CD8+, CD3+, and CD68+ cells in the invasive frontin, frontout, and tu-
mour core was associated with good prognosis by our models [19,71]. In addition, the high
number of CD3+ and CD68+ cells, as well as the high number of CD3+ cells clustered within
a distance of 20 µm from TBs, were linked to good prognosis [31]. Finally, we found that the
high density of CD163+ cells without PD-L1 expression in frontout is associated with bad
prognosis by the DT submodel, whereas the LSVM submodel employed a high number of
CD163+PD-L1+ cells in frontout as an indication of good prognosis.

5. Conclusions

In summary, we have demonstrated that ML classifiers using image and spatial
features from WSIs, combined with clinical features from medical records, can separate
MIBC patients into low- and high-risk groups for 5-year prognosis. The present approach
outperforms the current clinical staging system, TNM, reinforcing the importance of the
standardized quantification of immunological features across WSIs, as well as the adoption
of ML in the clinic. Moreover, our findings show that investigating features from the
tumour-immune microenviroment in relation to survival can provide further insights into
histopathological studies, thereby contributing to better ways of predicting survivability
and enabling a better quality of care.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/7/1624/s1, Figure S1: Tyramide signal amplification spectra for antibody visualisation,
Figure S2: Nuclei detection and epithelium segmentation, Figures S3–S4: Kaplan–Meier curves for
MIBC prognosis, Figure S5: Diagram of the DT model, Figure S6: Intersecting features between
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the submodels of the ensemble model, Tables S1–S3: Immunofluorescence primary antibodies and
visualization reagents, Table S4: The search space of hyperparameter tuning, Table S5: Nested cross-
validation results on the training data set, Tables S6–S8: Pairwise comparison between TNM staging
groups, Table S9–S10: Most important features for MIBC prognosis per classifier. Table S11: The
complete list of all image, spatial and clinical features, Table S12: The coefficients of logistic regression
for all image and spatial features, Table S13: The mean decrease in Gini index for each feature based on
the random forest, Table S14: The feature ranking coefficients of linear support vector machine for all
image features.
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