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Abstract: The parasite species of genus Plasmodium causes Malaria, which remains a major global
health problem due to parasite resistance to available Antimalarial drugs and increasing treatment
costs. Consequently, computational prediction of new Antimalarial compounds with novel targets
in the proteome of Plasmodium sp. is a very important goal for the pharmaceutical industry. We
can expect that the success of the pre-clinical assay depends on the conditions of assay per se, the
chemical structure of the drug, the structure of the target protein to be targeted, as well as on factors
governing the expression of this protein in the proteome such as genes (Deoxyribonucleic acid,
DNA) sequence and/or chromosomes structure. However, there are no reports of computational
models that consider all these factors simultaneously. Some of the difficulties for this kind of
analysis are the dispersion of data in different datasets, the high heterogeneity of data, etc. In
this work, we analyzed three databases ChEMBL (Chemical database of the European Molecular
Biology Laboratory), UniProt (Universal Protein Resource), and NCBI-GDV (National Center for
Biotechnology Information—Genome Data Viewer) to achieve this goal. The ChEMBL dataset
contains outcomes for 17,758 unique assays of potential Antimalarial compounds including numeric
descriptors (variables) for the structure of compounds as well as a huge amount of information
about the conditions of assays. The NCBI-GDV and UniProt datasets include the sequence of genes,
proteins, and their functions. In addition, we also created two partitions (cassayj = caj and cdataj = cdj)
of categorical variables from theChEMBL dataset. These partitions contain variables that encode
information about experimental conditions of preclinical assays (caj) or about the nature and quality
of data (cdj). These categorical variables include information about 22 parameters of biological
activity (ca0), 28 target proteins (ca1), and 9 organisms of assay (ca2), etc. We also created another
partition of (cprotj = cpj) including categorical variables with biological information about the target
proteins, genes, and chromosomes. These variables cover32 genes (cp0), 10 chromosomes (cp1),
gene orientation (cp2), and 31 protein functions (cp3). We used a Perturbation-Theory Machine
Learning Information Fusion (IFPTML) algorithm to map all this information (from three databases)
into and train a predictive model. Shannon’s entropy measure Shk (numerical variables) was
used to quantify the information about the structure of drugs, protein sequences, gene sequences,
and chromosomes in the same information scale. Perturbation Theory Operators (PTOs) with the
form of Moving Average (MA) operators have been used to quantify perturbations (deviations)
in the structural variables with respect to their expected values for different subsets (partitions) of
categorical variables. We obtained three IFPTML models using General Discriminant Analysis (GDA),
Classification Tree with Univariate Splits (CTUS), and Classification Tree with Linear Combinations
(CTLC). The IFPTML-CTLC presented the better performance with Sensitivity Sn(%) = 83.6/85.1,
and Specificity Sp(%) = 89.8/89.7 for training/validation sets, respectively. This model could become
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a useful tool for the optimization of preclinical assays of new Antimalarial compounds vs. different
proteins in the proteome of Plasmodium.

Keywords: Antimalarial compounds; Plasmodium proteome; NCBI-GDV; UniProt; ChEMBL; machine
learning; perturbation theory; complex networks

1. Introduction

Malaria is a major global health concern with cases reported in different regions. At
present, the risk areas for contracting this disease are Africa, Central and South America,
as well as in some parts of the Caribbean, Asia, Eastern Europe, and the South Pacific. The
World Health Organization (WHO) estimated 219 million worldwide reported cases of
malaria in 2017. It is an infection of the red blood cells by parasites of the genus Plasmodium
with the most severe and common forms caused by Plasmodium falciparum (P. falciparum or
Pf ) and related species such as Plasmodium vivax (P. vivax or Pv), Plasmodium malariae (P.
malariae or Pm), and Plasmodium ovale (P. ovale or Po). The most frequent and deadly form
is the Pf. According to WHO, malaria during pregnancy may cause severecomplications.
Emerging parasite resistance to available Antimalarial drugs poses great challenges to
treatment.Moreover, the costs have significantly increased in the last few years for the
determination and development of the new drug. Tufts Center for the Study of Drug
Development estimates an out-of-pocket cost per approved drug in $1861 million for
Antimalarial drugs [1–4].

TheChEMBL database lists >17,750 preclinical assays of Antimalarial compounds.
The ChEMBL database about Antimalarial compounds cover multiple biological activity
parameters (Inhibition, IC50, Activity, etc.), different unique assays only for the protein
target ofPf organism and is applied to different genes about proteome. In addition, the
ChEMBL database compiles datasets of very heterogeneous preclinical assays. We can
enrich ChEMBL data with NCBI-GDV and UniProt databases data to obtain information
about drug target proteins, chromosomes, and genes. For instance, UniProt includes
information related to sequence of proteins.Lastly, NCBI-GDV includes information related
to the sequence of genes and the structure of chromosome (DNA sequence, gene adjacency,
orientation, etc.) This information may be also relevant for the synthesis of proteins with
different functions in the Pf [5–11].

On the other hand, IFPTML models have been used in medicinal chemistry, pro-
teomics, nanotechnology, etc.,for modeling large datasets with Big Data features. IFPTML
models combine Information Fusion (IF) techniques with Perturbation Theory (PT) ideas
and Machine Learning (ML) algorithms (PT + ML = PTML models). IFPTML modeling is
also useful to carry out information fusion of data from diversesources. For instance, we can
include data about the protein sequence from GenBank, Metabolic networks, Nanoparticles,
or even information about epidemiology data in USA counties, etc. [12–14].

In order to develop IFPTML models, we need to use as input variable parameters
able to quantify the information about the structural and experimental conditions of
assay of all the systems involved (drugs, proteins, gene networks, etc.). In this sense,
Shannon’s Entropy information measures introduced by Claude E. Shannon could be
extremelyuseful [15]. In fact, Graham, Marrero-Ponce, Barigye, and other researchers,
have used different classes of Shannon information values to measure chemical and/or
biologically relevant information quantitatively [16–27]. González-Díaz and Munteanu
combined the idea of Shannon entropy with Markov chains to calculate the Sh(syst)k values,
stochastic Shannon’s Entropies of order kth, anddifferent molecular systems [28].

In previous work, we analyzed the proteome/genome and chromosomes of Pf using
data from NCBI-GDV and UniProt databases [29]. However, this previous work has not
considered the possibility of mapping this data vs. preclinical assays of compounds towards
the design of new Antimalarials. In addition, there are no reports IFPTML models for
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Antimalarial compounds considering information from NCBI-GDV, UniProt, and ChEMBL
databases at the same time. In this work, we develop a general-purpose IFPTML model
for the prediction of new Antimalarial compounds by fusing information from the three
different databases. Figure 1 illustrates all the different steps that are included in the
general workflow used to obtain this IFPTML model. Firstly, we downloaded all relevant
information from the ChEMBL, NCBI-DVG, and UniProt databases. These three datasets
were merged into one usingIF techniques. This new dataset wascleaned and pre-processed
by applying several criteria, e.g., eliminating preclinical assays that do not register values
in biological activities. Next, we calculated the Sh(syst)k of the different sub-systems
involved, such as, drugs, protein sequences, genes and chromosomes using Markov Chains
models. After that, PTOs with the form of MAs were used to quantify deviations in
the structural parameters Sh(syst)k (numerical parameters) concerning changes in the
experimental conditions (categorical variables). This allowed us to quantify it in simple
PTOs information from the structure and experimental conditions of assays of all the
sub-systems involved. Finally, we trained, validated, and compared the IFPTML models.
The role of the different sources of information was discussed as well. This kind of analysis
opens a new way to carry IF combined with ML modeling towards discovering new
antimalarial compounds using preclinical assays and proteome information.

Figure 1. General Workflow of the steps given in this work.

2. Results

We developed various IFPTML models using PTOs and the MMAs operators [14].
The model calculated the scoring function f (vij)calc for outcome of ith drug vs. jth protein in
preclinical assay multiple conditions of assay defined by the categorical variables cj. The
first model developed was the IFPTML-GDA linear model. The Equation (1) of this model
is the following:
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f
(
vij
)

calc = −20.12298 + 99.13885· f
(
vij
)

ref
+0.74880·∆Sh(Drug; Csat)5caj

−2.20919·∆Sh(Drug; Hetero)5caj

+3.36764·∆Sh(Drug; Hx)1caj

+2.39122·∆Sh(Drug; Csat)1cpj

+2.25745·∆Sh(Drug; Hetero)4cpj

−3.32408·∆Sh(Drug; Hx)4cpj

−2.88041·∆Sh(Drug; Csat)1cdj

+6.57931·∆Sh(Drug; Halog)1cdj

−6.84622·∆Sh(Drug; Halog)2cdj

−0.00877·∆Sh(Chr; Gen)5caj

+0.46021·∆Sh(Prot; Seq)5cdj

n = 17758χ2 = 6595.853 p < 0.05

(1)

The variables in this IFPTML model result from several procedures of pre-processing
and post-processing (after obtaining the model) of the input/output variables. For instance,
the output of the model is the scoring function f (vij)calc. This is a real value function
useful to quantify the possibilities with which the ith drug gives a positive outcome in
the jth with preclinical assay with categorical variables cj = caj, cpj and cdj (experimental
conditions, etc.).

In Figure 2, we give details of the procedures carried out for pre-processing and post-
processing of the variables. After the post-processing procedure, we were able to compare
inputs vs. outputs of the IFPTML model in order to obtain the classification matrix and
measure its performance.

Figure 2. Variables pre-processing vs. post-processing.

In addition in Table 1, we can see that the model is unbalanced with high values of
Sp(%) and Accuracy Ac(%) > 98 in training and validation, but the values of Sn(%) are low.
The other statistical parameters of the model are as follows: n is the number of cases used to
train the model equal to 17,758;χ2 is the Chi-square statistics equal to 6595.853; and p is the
p-level with a value less than 0.05. Multiple input variable encoding information related to
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the structure and conditions of assay of the drug is entered into the model using a forward
stepwise feature selection strategy [30]. The model also includes variables encoding
information about the protein sequence, gene sequence, and chromosome structure such as
∆Sh(Prot; Seq)5cdj and∆Sh(Chr; Gen)5caj.However, they seem to have a lower contribution.

Table 1. IFPTML-GDA model result.

Observed Statistical Predicted Predicted Sets

Sets a Parameter b Statistics nj f (vij)pred = 0 f (vij)pred = 1

Training Series

f (vij)obs= 0 Sp(%) 98.8 13,087 12,934 153
f (vij)obs = 1 Sn(%) 65.9 232 79 153

total Ac(%) 98.3 13,319

External Validation Series

f (vij)obs= 0 Sp(%) 98.7 4365 4310 55
f (vij)obs = 1 Sn(%) 66.2 74 25 49

total Ac(%) 98.2 4439
a The observed classification classes are two: drugs with a desired level of biological effect observed f (vij)obs= 1 or
f (vij)obs= 0 otherwise. b Sn (%) = Sensitivity, Sp (%) = Specificity and AC (%) = Accuracy.

In the classification matrix, we can see that the number of positive cases n(f (vij) = 1)
obtained after application of the cutoff values is very unbalanced with respect to the
number of cases n(f (vij) = 0) in the control series. In fact, we have n(f (vij) = 1) = 232 in
training and 74 in validation vs. n(f (vij) = 0) = 13,087 in training and 4365 in validation
for the control group. We carried out a cutoff scanning study to verify whether it could
be caused due to a very restrictive value of the cutoffs or not. As can be seen in Table 2,
the number of numbers of positive cases n(f (vij) = 1) do not vary notably and is in all very
low cases for all the ranges of cutoff which is interesting for antimicrobial chemotherapy
uses. For instance, in the case of Inhibition(%) the n(f (vij) = 1) < 230 for all values of
cutoff in the range Inhibition(%) = 75–100. The number of positive cases increases in
the range n(f (vij) = 1) = 300–9700 only for Inhibition(%) <50%, which is not a clinically
useful range. In other properties like IC50 (nM) and Ki (nM), the number of positive cases
n(f (vij) = 1) < 140, cases in all the cutoff 1–100 nM ranges and for all values of cutoff in the
range Inhibition(%) = 75–100. Due to all these problems, we tried toalso test non-linear
IFPTML models (see next section).

Table 2. Selected values of multi-condition averages for different combinations of assay conditions.

c0 = Activity
(Units)

Cut-off(c0)
Total

1 10 25 50 75 95 100 200

Inhibition (%) 9785 1535 564 376 228 78 39 - 13,469
IC50 (nM) 2 29 49 81 101 108 110 133 3715
Ki (nM) 24 78 100 120 132 134 138 160 369
Other

Activities 59 133 146 148 150 149 150 152 205

n(f (vij) = 1) 9870 1775 859 725 611 469 437 445
17,758

n(f (vij) = 0) 7888 15,983 16,899 17,033 17,147 17,289 17,321 17,313

One of the non-linear IFPTML models found was the Classification Tree (CT)—IFPTML
model (IFPTML-CTUS), which is a CT model based on a Univariate Splitting (US) rule [30].
In this model, the prior probabilities with which a compound is predicted as active were
set at π1 = 0.5. These probabilities are perfectly balanced compared with the unbalanced
prior probabilities of π1 = 0.7 used in the GDA-IFPTML model. In Figure 3, we show the
decision tree for the IFPTML-CTUS model.
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Figure 3. IFPTML-CTUS model decision tree.

In Table 3, we show the results and coefficients of all the variables in the differ-
ent splitting rules about the classification tree of this model. The variables that were
entered into the model are ∆Sh1 = ∆Sh(Drug;Halog)2cdj, ∆Sh2 = ∆Sh(Drug;Csat)1cpj,
∆Sh3 = ∆Sh(Drug;Hx)4cpj , ∆Sh4 = ∆Sh(Drug;Csat)1cpj , ∆Sh5 = ∆Sh(Drug;Hx)4cpj ,
Sh6 = ∆Sh(Drug;Csat)5caj.

Another model found was the IFPTML-CTLC, which is a IFPTML model based on CT
but using Linear Combinations (LC) as split rules. In Figure 4, we show the decision tree
for the IFPTML-CTLC model. In Table 4, we show the coefficients of all the variables in the
different LCs used as splitting rules.

In the first instance, we compared the models in terms of performance. In Table 5,
we can see a comparison of the three IFPTML models developed in this research: GDA,
CTUS, and CTLC. The IFPTML-GDA model showed the lowest value of Sn(%) = 65.9/66.2
and Sp(%) = 98.7/98.8 for training and validation, respectively. Both IFPTML-CT models
have balanced prior probabilities π1 = 0.5 with which a compound is predicted as active
(compared π0 = 0.5). These values are perfectly equilibrated, remember that the IFPTML-
GDA models presents important unbalance in this regard with π1 = 0.7 (compared π0 = 0.3).
In addition, both IFPTML-CT models achieved values of Sn (%) and Sp(%) greater than
80.0%. The values of IFPTML-CTUS are equal to Sn (%) = 81.0/82.4 and Sp(%) = 91.7/91.6.
The IFPTML-CTLCalso has high values of Sn (%) = 83.6/85.1 and Sp(%) = 89.7/89.8.
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Table 3. IFPTML-CTUS model coefficients.

Class Left Right Control Active Predict. Split Split

Node Branch Branch n(f(vij) = 0) n(f(vij) = 1) Class Constant Variable

1 2 3 13,087 232 0 0.11321607 f (vij)refi
2 4 5 12,903 72 0 0.02505894 f (vij)refi
3 184 160 1 –
4 6 7 12,542 56 0 0.00895431 f (vij)refi
5 361 16 1 –
6 2623 0 0 –
7 8 9 9919 56 0 −0.0982586 ∆Sh(Drug;Halog)2cdj
8 10 11 5006 38 0 2.55375728 ∆Sh(Drug;Csat)1cpj
9 12 13 4913 18 0 1.318866 ∆Sh(Drug;Hx)4cpj

10 14 15 4821 33 0 0.02739699 ∆Sh(Drug;Csat)1cpj
11 185 5 1 –
12 16 17 4809 17 0 1.01671015 ∆Sh(Drug;Hx)4cpj
13 104 1 0 –
14 2681 17 0 –
15 18 19 2140 16 0 1.87205633 ∆Sh(Drug;Csat)5caj
16 4726 15 0 –
17 83 2 1 –
18 1868 11 0 –
19 272 5 1 –

Figure 4. IFPTML-CTLC model decision tree.
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Table 4. IFPTML-CTLC model coefficients.

Var Coeff. f(vij)01 f(vij)02 f(vij)03 f(vij)04 f(vij)05 f(vij)06 Mean S.D.

Split const. a00 −0.005 −0.024 −0.024 −0.010 −0.071 −0.077 −0.04 0.03
f (vij)ref a01 0.044 0.762 0.751 0.818 2.678 2.881 1.32 1.17

∆Sh(Drug;Csat)5caj a02 0.000 0.008 −0.001 −0.003 −0.008 −0.007 0.00 0.01
∆Sh(Drug;Hetero)5caj a03 −0.001 −0.010 −0.042 −0.033 −0.103 −0.143 −0.06 0.06

∆Sh(Drug;Hx)1caj a04 0.001 0.020 0.047 0.047 0.120 0.160 0.07 0.06
∆Sh(Drug;Csat)1cpj a05 0.001 0.014 0.020 0.023 0.083 0.093 0.04 0.04
∆Sh(Drug;Hetero)4cpj a06 0.001 0.009 0.036 0.028 0.078 0.109 0.04 0.04
∆Sh(Drug;Hx)4cpj a07 −0.001 −0.017 −0.038 −0.037 −0.092 −0.117 −0.05 0.04

∆Sh(Drug;Csat)1cdj a08 −0.001 −0.019 −0.016 −0.017 −0.065 −0.079 −0.03 0.03
∆Sh(Drug;Halog)1cdj a09 0.003 0.057 0.087 0.088 0.713 0.577 0.25 0.31
∆Sh(Drug;Halog)2cdj a10 −0.003 −0.059 −0.094 −0.095 −0.740 −0.609 −0.27 0.32

∆Sh(Chr;Gen)5caj a11 0.000 0.000 0.002 0.002 0.039 0.075 0.02 0.03
∆Sh(Prot;Seq)5cdj a12 0.000 0.004 −0.002 −0.003 0.008 0.024 0.01 0.01

Table 5. Comparison of models with different algorithms.

Algorithm Set Class Stat Param. Value (%) f(vij)pred = 0 f(vij)pred = 1

IFPTML
GDA

π0 = 0.30
π1 = 0.70

Train
f (vij)obs = 0 Sp 98.8 12,934 153
f (vij)obs = 1 Sn 65.9 79 153

Validation
f (vij)obs = 0 Sp 98.7 4310 55
f (vij)obs = 1 Sn 66.2 25 49

IFPTML
CTUS

π0 = 0.50
π1 = 0.50

Train
f (vij)obs = 0 Sp 91.7 12,002 1085
f (vij)obs = 1 Sn 81.0 44 188

Validation
f (vij)obs = 0 Sp 91.6 3997 368
f (vij)obs = 1 Sn 82.4 13 61

IFPTML
CTLC

π0 = 0.50
π1 = 0.50

Train
f (vij)obs = 0 Sp 89.8 11,751 1336
f (vij)obs = 1 Sn 83.6 38 194

Validation
f (vij)obs = 0 Sp 89.7 3917 448
f (vij)obs = 1 Sn 85.1 11 63

Next, we would like to compare the models in terms of number of input variables, LCs,
and number of splitting rules. The IFPTML-GDA uses >10 input variables but only one LC
with one splitting rule. Interestingly, the IFPTML-CTUS model uses 5 input variables and
9 splitting constants without relying upon the use of LCs. Conversely, the IFPTML-CTLC
is by large the more complicated model of the three with >10 input variables and 6 LCs,
each one with its respective splitting constants. For instance, it includes information about
the sequence of the protein in the variable ∆Sh(Prot;Seq)5cdj and information about the
gene and chromosome of this protein with the variable ∆Sh(Chr;Gen)5caj. According to
these results, we can say that the last model is the best selection in terms of performance
and inclusion of biologically relevant information.

Last, we should compare the models regarding the relevance of the biological in-
formation included in the input variables. The IFPTML-GDA model contains relevant
information about drug structure, protein sequence, etc. By the contrary, the IFPTML-CTUS
model does not include information about protein sequence, gene sequence, or chromo-
some structure. The missing information about the sequence of the protein invalidates the
IFPTML-CTUS model for practical uses in the prediction of Antimalarial drugs against
a protein target with specific sequence changes (mutations). In fact, mutations in the
Malaria gene have been found to be important in the development of drug resistance
mechanisms [31,32]. Lastly, the IFPTML-CTLC model includes biological relevant vari-
ables related to the target protein, etc., as well as the IFPTML-GDA model. Overall, the
IFPTML-CTLC model is the most complex, but at the same time seems to be the more
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valuable because it is balanced, has high values of Sn(%) and Sp(%), and includes relevant
biological information.

3. Discussion
3.1. IFPTML Linear Model with Multi-Condition Combinatorial Moving Averages (MMAs)

In order to evaluate the performance of the model in terms of Specificity Sp(%) and
Sensitivity Sn(%), IFPTML-GDA transforms f (vij)calc into the Boolean variable f (vij)pred.
The variable f (vij)pred = 1 when the compounds arepredicted to be active in this assay;
f (vij)pred = 0 otherwise. This variable gets the value f (vij)pred = 1 when the posterior prob-
ability with the compound is active p(f (vij) = 1) ≥ 0.5. The IFPTML-GDA algorithm can esti-
mate the values of posterior probabilities as a sigmoidal function p(f (vij) = 1) = π1/(π1 + π0 ·
Exp(-f (vij)calc) of the prior probabilities π1 and π0 and the values of the score function.In
this model, the prior probabilities with which a compound is predicted as active have been
set π1 = 0.7 [30]. The deficient number of active compounds in ChEMBL datasetsomehow
justifies this relatively high value of prior probability, see next discussion.

The main advantage of this IFPTML algorithm is the obtention of a single global model.
It means that a unified model has been constructed for preclinical assay optimization of new
antimalarial compounds vs. the 28 protein sequences in many different assay conditions
cj. In fact, the modelproperly predicts the outcome of 17,758 assays in total. This model
will also be able to predict new antimalarial compounds for new protein sequences not
included in the previous dataset. Otherwise, if we construct one model for each target
protein, we will need to train/validate one model for each protein. It means, we need
to train/validate a total of 28 individual models, excluding all other variable conditions.
Consequently, the IFPTML algorithm can fit one model, performing the job of 28 classic
models. In addition, each classic model must be trained with a smaller number of assays.
In closing, the models for a single protein are unable to predict the results of one compound
for other proteins and/or protein mutants, as they are not sequence sensible.

3.2. IFPTML-CTUS and IFPTML-CTLC Models

The models made the main emphasis on input variables related to chemical informa-
tion about the structure of the drug and the conditions of assays.

3.3. IFPTML-CTLC Model Practical Use Example

In this section, we illustrate the use of the model with a practical example. We selected
the molecule with code CHEMBL264770. See details about this compound in the Supple-
mentary Materials. In Figure 5, we graphically depict all the steps necessary for processing
a known or new compound with the present model using CHEMBL264770 as an example.
In this figure, we illustrate the three main stages of the algorithm and their more important
steps. The IF stage involves steps (1) and (2), the PT stage includes only step (3), and the ML
stage includessteps (4) and (5). In step (1), all known information about molecule, target
protein, gen, chromosome, and/or assay conditionsis downloaded from three databases
ChEMBL, UniProt, and NCBI-GDV. In the case of a new compound, the value of biological
activity vij is unknown, but we know all other information about the assay. This informa-
tion includes numerical variables andcategorical variables that encode information on the
experimental conditions of the preclinical trials or on the nature and quality of the data. For
the molecule CHEMBL264770, the activity parameter is Ki (nM), the Uniprotaccession ID of
target protein is P39898, the assay organism is Plasmodium falciparum, the ChEMBL function
is Enzyme, the target mapping is a protein, the APD’s name and confidence are labeled
as ND (Not data), the assay type is B, the curated by Autocur, the number of Confidence
Score is 9, and Canonical SMILES. Other data downloaded from NCBI-GDV database are
the biological information about target proteins, genes, and chromosomes. Thus, for this
example the name of gene in the chromosome XIV is PF14_0075, the orientation of gene is
1 which means positive, the protein function is plasmepsin, the nucleotides recurrence of
gene and the Genes orientationsin thischromosome. All the information downloaded from
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these databases was copied into an .xlsx file. In step (2), we calculated the Shannon en-
tropies of the drugs, protein sequences, and chromosome in order to quantify the structural
information. For inputs, we used the Canonical SMILES of drugs, the sequence of proteins,
sequence of gene, and gene orientation networks (GOIN) of chromosomes. The software
MARCH-INSIDE was used to calculate the Shannon information entropy of drugs Sh(drug).
Other variables calculated werethe Shannon entropies of Amino Acids recurrence Sh(prot),
Nucleotides recurrence Sh(gene), and Gene orientation in the chromosome Sh(Chr). These
variables werecalculated using the S2SNetwork tool. After step (2) we finished the IF
phase and entered the PT phase. In step (3), we calculated PTOs with the form of Moving
Average (MA) operators. Up to this point, data cleaning and pre-processing hadbeen
performed together with the calculations of the operators applying Perturbation Theory. In
step (4), we used the software STATISTICA to run different ML algorithms. For the new
molecule, we substituted the values of the operators ∆Sh(Drugi)k,caj, ∆Sh (Proti)k,cpj, etc.,
into these models. Using the IFPTML-GDA modelfor instance, we can predict an output of
p(f (vij) = 1) = 0.99 for this example. This means that the model predicts that this compound
is expected to have a value Ki < 10 nM (cut-off) with a probability of 0.99. Finally in step (5),
we can conclude that the f (vij)pred = 1 (the compound can be considered active according
to this assay). As this compound is already known, we can corroborate that this prediction
coincides with the observed classification f (vij)obs = 1 which comes from a real value of
Ki = 0.3 nM. In the case of a compound not previously assayed, one would need to assay
the compound in order to corroborate this prediction.

Figure 5. An example of the IFPTML-CTLC model.

4. Materials and Methods
4.1. ChEMBL Dataset

We downloaded all the information about proteins and unique assays only for Pf.
The dataset does not contain another species of intracellular protozoa of the genus Plas-
modium. The dataset was obtainedfrom the ChEMBL database (https://www.ebi.ac.uk/
chembl/g/#browse/targets (accessed on 15 November 2018)) using the browser targets
tool [33–36]. Initially, the total proteins registered in ChEMBL was 33 for Pf. However,
the total was 28 proteins, after performing the data pre-processing, which is explained in
detail in the next section. The proteins werecategorized as follows: 21 Enzymes, 3 Trans-

https://www.ebi.ac.uk/chembl/g/#browse/targets
https://www.ebi.ac.uk/chembl/g/#browse/targets
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porters, 1 Epigenetic Regulator, 3 Others Cytosolic Proteins, and 5 Unclassified Proteins.
The total number of unique assays outcomes (endpoints) registered for the 33 proteins
was 18,381 (statistical cases). Each protein category contains mainly the following fields:
ChEMBLID, Preferred Name, UniProt Accession (used to obtain the protein sequences in
the UniProt Database), and other fields such as: Target Type, Organism, Compounds, and
Endpoints, also called Bioactivities (used to obtain the different assays in the ChEMBL
Database). For example, an enzyme ChEMBLID = “CHEMBL1697656” was registered-
with its Preferred Name = “Glutathione S-transferase”,UniProt Accession = “Q8MU52”,
Target Type = “Single Protein”, Organism = “Plasmodium falciparum”, Compounds = “4”,
and Endpoints = “6”. Additionally, each endpoint comes from a unique assay with the
following main fields: CMPD ChEMBLID, Molecule Name, SMILES, Activity ID, Standard
Type, Relation, Standard Value, and Standard Units. Other fields are Assay ID, Assay
ChEMBLID, Assay Type, Description, Protein Accession (UniProt Accession), Journal, Year,
Volume, and Issue, among others.

4.2. NCBI-GDV Dataset

The Pf genome used was originally reported in the Mapviewer database [7,8]. Cur-
rently, this dataset is available in the new NCBI-GDV database (https://www.ncbi.nlm.
nih.gov/genome/gdv/ (accessed on 15 November 2017)) [8]. Initially, the Pf genome had
14 different chromosomes. Each chromosome contains an average of 383 genes. In this
work, we used only 10 out of these 14 chromosomes because the proteins codified by the
remnant 4 chromosomes have no biological assays reported in ChEMBL. The genes have
a start-and-stop position within the chromosome. The database reports the position (Pik)
of each gene in the chromosome and a description of the biological function. The dataset
registered the biological sequence of nucleotides of each gene. Additionally, the dataset
reports the symbol, the orientation of the gene, as positive or negative (Oik= 1 or Oik = −1).
This information has been found to be somehow relevant to the biological activity of some
proteins in Pf proteome. Consequently, in this work we also used the Chromosome Gene
Orientations Inversion Networks (GOINs) of Pf proteome assembled with Pik and Oik
information in a previous work [29].

4.3. UniProt Dataset

We downloaded the biological sequence of amino acids of the 28 proteins registered
in ChEMBL in FASTA format. The dataset was obtained from UniProt database (https://
www.uniprot.org/ (accessed on 15 November 2018)) using the browser protein tool [9–11].
In turn, the FASTA format has two parameters that were used in this work: string of
characteristics and sequence of proteins.

4.4. ChEMBL, NCBI-GDV, and UniProt Information Fusion

We constructed a dataset based on the three previous datasets. In so doing, we carried
out an IF process [37–40]. After performing the IF process, the working dataset created
contained a total of 18,381 outcomes (rows). We added the canonical SMILE codes and
their respective Shannon’s Entropy values for each chemical compound. The simplified
molecular-input line-entry system (SMILES) codes downloaded from ChEMBLare a nota-
tion system used to codify information about the chemical structure of the compounds [41].
SMILES-like representations have been largely used in Cheminformatics [42–47]. We also
aggregated the protein sequence and the Shannon’s Entropies in each row according to the
respective Protein Accession ID. In addition, we added the parameters of each gene and
the Shannon’s Entropy values for each protein.

4.5. Pre-Processing of the Working Dataset

Firstly, we deleted rows where no values were reported for the variables vij, PSA, or
AlogPin order toclean the dataset. For this reason, the categories of the variable cp4are
reduced to 19 Enzymes, 2 Transporters, 1 Epigenetic Regulator, 2 Others Cytosolic Proteins,

https://www.ncbi.nlm.nih.gov/genome/gdv/
https://www.ncbi.nlm.nih.gov/genome/gdv/
https://www.uniprot.org/
https://www.uniprot.org/
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and 4 Unclassified Proteins. The total of proteins valid from ChEMBL were 28. Therefore,
the data removed represents only a 3.4% of all working dataset. Moreover, all the empty
cells of chain type were replaced with the tag ND (No Data). At the end, the dataset to
obtain the IFPTML based model had 17,758 rows. In Figure 6, we illustrate the different
steps given to pre-processing the data and carrying out the IF process.

Figure 6. IFPTML model development and IF process.

4.6. IFPTML Shannon Information Theory Models

In Figure 6, we illustrate details of the different steps given to pre-processing the
data and train/validate the IFPTML model. First, we performed the IF process, next we
calculated the Sh(Subsystems)k values, the f(vij)ref function values, and the PTOs values
(input variables), and then we proceeded to seek the IFPTML models. See more details
about the calculation of input/output variables in the next sections. The objective of the
IFPTML model is to predict a function f(vij)calc of the observed values f(vij)obs. In order
to develop the IFPTML model, we took into consideration both structural and functional
information for the calculation of the input variables. The structural information refers to
the chemical structure of the drug as well as structural features of the target protein, the
gene encoding for this target protein, and chromosome of this gene.
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We can approach the present problem from the point of view Shannon’s Information
theory and the theory of Complex Systems. In this sense, we can quantify the relevant
structural/functional information of the system with Sh(Syst)k values calculated using a
Markov Chain approach [28]. After that, we calculated the external property of the system
f (vij)calc as a function of a value of reference f (vij)ref and a function f (Sh(Syst)k,cj) of the
structural and functional information. In the Equation (2) we used an IFPTML additive
approach to include and separate the different parts of the system or subsystems.

f
(
vij
)

calc = a0 + a1· f
(
vij
)

ref +

smax,kmax,jmax

∑
s=0,k=0,j=0

as,k,j·PTO
[
Sh
(
Subsystems

)
k,cj

]
(2)

The function of reference f (vij)ref quantifies the expected value of probability of biolog-
ical activity for a compound measure under certain experimental conditions specified by
the partition cjof categorical variables. The subsystems considered are Subsystem0 = drug,
Subsystem1 = protein, Subsystem2 = gene, and Subsystem3 = chromosome. The infor-
mation about each subsystem will be quantified with the respective Shannon’s Entropy
information measure values of order kth for each subsystem Sh(Subsystems)k. For instance,
Sh(Subsystem0)k = Sh(Drug)k and Sh(Subsystem1)k = Sh(Prot)k, etc. The value kth can reg-
ister values from 0 to 5. In addition, the IFPTML model uses PTOs to quantify the deviation
(perturbations) in continuous variables (structural parameters, time, concentration, etc.)
with respect to functional information encoded by categorical variables cj (experimental
conditions), see details in next sections [14].

In this context, in the Equation (3), we can illustrate the general form of an IFPTML
model for the linear cases. In the Equation (4), we selected the linear cases for the sake
of simplicity, but in this work, we also reported non-linear models. We can extend the
previous equation of the model to write down a general form of the IFPTML model. In so
doing, we used MMA as PTOs operators as follows.

f
(
vij
)

calc = a0 + a1· f
(
vij
)

ref +

smax,kmax,jmax

∑
s=0,k=0,j=0

as,k,j·∆Sh
(
Subsystems

)
k,cj

(3)

f
(
vij
)

calc = a0 + a1· f
(
vij
)

ref +
kmax,jmax

∑
k=0,j=0

as,k,j·∆ Sh(Drug)k,cj
+

kmax,jmax

∑
k=0,j=0

as,k,j·∆ Sh(Prot)k,cj

+
kmax,jmax

∑
k=0,j=0

as,k,j·∆Sh(Gene)k,cj
+

kmax,jmax
∑

k=0,j=0
as,k,j·∆Sh(Chr)k,cj

(4)

4.7. Output Variable and Function of Reference

In this work, we developed a IFPTML model for the study of experimental values vij

of biological activity of the ith drug in jth preclinical assays of Antimalarialdrugs reported
in ChEMBL database. Due to the high number of different biological parameters with
different scales and levels of errors, we discretized them to obtain the Boolean function
f (vij)obs to develop a classification model. Firstly, we performed the pre-processing in
order to clean the dataset, define/calculate the input, and output variables. Specifically,
the f (vij)obsand f (vij)ref values have been calculated using excel functions and added to
the dataset, see Table 6. For instance, for the calculation of the number of cases with one
specific level of ca0 (one specific parameter of biological activity) we used the function
COUNTIF. The first argument in the syntax is Range(ca0) = cells that contain all the values
of the categorical variable ca0 (names of the parameters of biological activity measured
in each preclinical assay). The second argument is Criteria(ca0) = cells containing the
value of one unique level of ca0 (name of one specific parameter of biological activity).
The function runs over all Range(ca0) comparing Criteria(ca0) with the specific cell of the
Range(ca0). Other arguments used in different functions are Range(vij) = cells that contain
all the values of biological activity for all preclinical assays (vij), Units(ca0) = the units of the
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biological activity measured (ca0), desirability d(ca0) = 1 or −1, and Range(f (vij)obs) = cells
that contains the f (vij)obs value [14].

Table 6. More relevant functions used in the data pre-processing stage.

Variable Excel Functions Syntax Notes

nj(ca0) =COUNTIF(Range(ca0),
Criteria(ca0))

Function that determines the total number of
cases for each Biological activity in the dataset.

<vij(ca0)> =AVERAGEIF (Range(ca0),
Criteria(ca0), Range(vij))

Calculates the average of all the standard
values of biological activity in the dataset. It is

used as an argument for the
cutoff(ca0) function.

cutoff(ca0)
=IF(Units(ca0) = %, 95,
IF(Units(ca0) = nM, 10,

<vij(ca0)>)

The cutoff value is used to decide if the
compounds is active or not. For the values of

Activity(%) and Inhibition(%), the
cutoff(ca0) = 95%. Similarly, for the IC50(nM),

Ki(nM), and Km(nM), the
cutoff(ca0) = 10 nM, etc.

d(ca0) =OR(d(ca0) = 1, d(ca0) = −1)
Indicates that the measured parameter

increases or decreases directly with a desired
or not desired biological effect.

f (vij)obs

=IF(AND(vij> cutoff(ca0),
d(ca0) = 1), 1, IF(AND(vij ≤

cutoff(ca0), d(ca0) = −1), 1, 0))

f (vij)obs = 1 for active compounds or
f (vij)obs = 0 for control group according to the
set of cutoff and desirability values used for
each ca0. It is the function used as output to

train the IFPTML model.

n(f (vij) =1)
=COUNTIF(Range(ca0),

Criteria(ca0),
Range(f (vij)obs, 1))

Function that determines the total number of
each Biological activity in the dataset and

f(vij)obs equal to 1.

f (vij)ref =n(f (vij) = 1)/nj(ca0)

The function of reference
f (vij)ref = p(f (vij) = 1/ca0) is the probability
with which the observed function gets the

value f (vij)obs = 1, positive assay. It is used as
the first input variable of the IFPTML model.

4.8. Shannon Entropy Measures

The previous IFPTML equations were inputted asSh(Subsystems)k variables. We cal-
culated the Shannon’s Entropies values Sh(Drug)k, Sh(Prot)k, Sh(Gene)k, and Sh(Chrom)k
to quantify the structure information of the different subsystems. We used the tool
MARkovCHains Invariants for Network Selection and DEsign (MARCH-INSIDE) to cal-
culate the Sh(Drug)k values of drugs [48]. The software MARCH-INSIDE was usedto
input the Simplified Molecular Input Line Entry Specification (SMILES) codes for each
compound downloaded from ChEMBL. On the other hand, we used the tool Sequences to
Networks (S2SNet) [28] to calculate information index values Sh(Prot)k, Sh(Gene)k, and
Sh(Chrom)k about the sequence and recurrence of different amino acids into the proteins,
nucleotides into the genes, and genes into the chromosomes. The software S2SNet was used
to input the sequences of proteins and genes downloaded from UniProt and NCBI-GDV,
respectively. S2SNet was also used to input a np (negative/positive) sequence code to
express the orientation of reading and position of each gene into the chromosome.

Both MARCH-INSIDE (drugs) and S2SNet (proteins, genes, and chromosomes) use a
graph to represent the parts of the subsystem (nodes) and the relationships (link) among
them into the structure of the subsystem. The parts of the subsystems are atoms, amino
acids, nucleotide bases, or genes. The links among them are chemical bonds, peptide
bonds, gene sequence, or gene position according to the system. The S2SNet software also
takes into account relationships of recurrence to specific types of amino acids, nucleotides,
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and gene orientation. Figure 7 illustrates some examples of the graphs used to represent
the different subsystems. It shows the name, the representation graph, and a small part
of the graph with its nodes and links. We can see in this figure, from bottom to top,
the chromosome XI represented by genes and the links to the pairs of genes with inverse
orientation. The graph’s nodes of gene 285 with its representation graph in the chromosome,
and the graph with its nodes represented by the nucleotides and links represented by the
gene sequence by their recurrences. The protein Q9NFSS has nodes to amino acids and
links to peptide bonds and the recurrence. Finally, the graph of the CHEMBL510738 drug
was representedwith atoms (nodes) and Chemical Bonds (links).

Figure 7. Illustration of different representations to represent multiple molecular systems.

Both MARCH-INSIDE and S2SNet associates a node adjacency matrix A(Subsystems)
to the respective graphs to carry out a numerical representation of the system (see Figure 7).
Next, both software transforms the adjacency matrix of each subsystem A(Subsystems)
into a Markov matrix Π1(Subsystems), not represented in Figure 7. After that, both tools
calculate the natural powers of order kth for each matrix Π1(Subsystems). Last, both
software use the Chapman-Kolmogórov equations to calculate the absolute probabilities
ap(n/s)k for each node in a given subsystem (n/s) [28,48]. With these probabilities and the
Equation (5), the software performs the calculation of the different Sh(Drug)k, Sh(Prot)k,
Sh(Gene)k, and Sh(Chrom)k values.

Sh
(
Subsystems

)
k = −

nmax

∑
n=1

ap(n, s)k · log(ap(n, s)k) (5)

4.9. Partitions of Categorical Variables

We created two partitions (subsets) of categorical variables from ChEMBL dataset to
encode all the functional or non-structural information. The first partition of categorical
variables was cassayj (abbreviated as caj). The second partition was cdataj(abbreviated as cdj).
These partitions contain variables that encode information about experimental conditions
of preclinical assays (caj) or about the nature and quality of data (cdj). These categorical
variables include information about 22 biological activity types (ca0), 28 target proteins
(ca1), and 9 organisms of the assay (ca2), etc. We also created another partition (cprotj= cpj)
including categorical variables with biological information about the target proteins, genes,
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and chromosomes. These variables cover32 genes (cp0), 10 chromosomes (cp1), gene
orientation (cp2), and 31 protein functions (cp3). Table 7 depicts details of these partitions.

Table 7. Partitions and levels (unique values) taken by the categorical (not ordered) input variables.

Partition
(cj)

Var. Information NLa Unique Levels

cassayj
(caj)

ca0 Biological activity 22

Inhibition(%); IC50(nM); Ki(nM); IC50(ug.mL−1); BHIA50(-); IC50(mill
equivalent); FC(-); Kinact(/min); Activity(%); VAR(-); Ratio(-); Ratio(/M/s);
IC50(molar ratio); Ratio IC50(-); Mean(pM mg−1); GST activity (mU mg−1);
Km(nM); Ratio(/s/M); Activity(-); Ka(103/M/s); Kcat(/s); Inhibition(uM)

ca1
UniProt protein

accession ID 28

Q8MU52; Q3HTL5; Q9NBA7; Q9NFS5; Q8T6J6; Q25856; P39898; Q9N6S8;
Q0PJ46; Q6T755; Q8MMZ4; Q868D6; Q25917; Q9GSW0; Q9NAW4; O77078;

Q9NAW2; Q9BJJ9; Q8T6B1; Q9N623; Q9XYC7; P05227; P11144; Q17SB2;
O77239; Q9Y006; O96214; O97467

ca2 Assay Organism 9
Plasmodium falciparum; Plasmodium falciparum K1; Plasmodium falciparum

NF54; Plasmodium falciparum Dd2; Plasmodium sp.; Plasmodium yoelii;
Plasmodium berghei; Leishmania Mexicana; ND (No registered data)

cdataj
(cdj)

cd0 Target mapping 2 Protein; Homologous protein

cd1 APD name 9 Peptidase C1; Pkinase; Peptidase S8; Asp; OMPdecase; Spermine synth;
Sugar tr; Hist deacetyl

cd2 APD confidence 2 ND (No-Data); high

cd3 Assay type 2 Binding (B) = Data measuring binding of compound to a molecular
target.Functional (F) = Data measuring the biological effect of a compound.

cd4 Data curation level 3 Autocuration; Intermediate; Expert

cd5 Confidence score 2 8 = Homologous single protein target assigned.
9 = Direct single protein target assigned

cprotj
(cpj)

cp0 Gene 32

PF140187; PF110161; PFB0325c; PF110301; PF100225; PF140341; PF140075;
PF110165; PF130141; MAL13P1.214; PF140346; PFE0355c; PF140294;

PF140125; PF110162; PFB0505c; PF140511; PF140076; PFE0370c; PF110147;
PFB0330c; PFF0730c; PF140598; MAL7P1.27; PFI1260c; PFB0100c; PF080054;

PF140077; MAL13P1.185; PF140078; PFB0150c; PFE1455w

cp1 Chromosome 10 II; V; VI; VII; VIII; IX; X; XI; XIII; XIV

cp2 Orientation 2 Downstream = −1; Upstream = 1

cp3
Protein function

(UniProt) 31

Glutathione s-transferase, putative; Falcipain-2 precursor; Cysteine
protease, putative; Spermidine synthase;

Orotidine-monophosphate-decarboxylase, putative; Glucose-6-phosphate
isomerase; Plasmepsin, putative; Falcipain 2 precursor; L-lactate

dehydrogenase; phosphoethanolamineN-methyltransferase;
cGMP-dependent protein kinase 1, beta isozyme, putative; Serine protease
belonging to subtilisin family, putative; Mitogen-activated protein kinase 1;

Deoxyhypusine synthase; Falcipain-3; Beta-ketoacyl-acyl carrier protein
synthase III precursor, putative; Glucose-6-phosphate

dehydrogenase-6-phosphogluconolactonase; Plasmepsin 1 precursor;
Subtilisin-like protease precursor, putative; Mitogen-activated protein

kinase 2; Enoyl-acyl carrier reductase; Glyceraldehyde-3-phosphate
dehydrogenase; Chloroquine resistance transporter, putative; Histone
deacetylase; Knob associated histidine-rich protein; Heat shock 70 kDa

protein; Plasmepsin 2 precursor; CDK-related protein kinase 6; HAP
protein; Protein kinase, putative; Sugar transporter, putative

cp4
ChEMBL target
function type 5 Enzyme; Transporter; Epigenetic regulator; Other cytosolic protein;

Unclassified Protein
a NL = Number of Levels (unique values) remaining after pre-processing.
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4.10. Perturbation-Theory Operators (PTOs)

As we mentioned before, the IFPTML model use PTOs to quantify the deviation
(perturbations) in continuous variables (structural parameters, time, concentration, etc.)
with respect to functional information encoded by categorical variables cj (experimental
conditions). In this work we selected the MMAs operators of type PTO(Sh(Subsystems)k
= ∆Sh(Subsystems)k,cj = Sh(Subsystem1)k−<Sh(Subsystem1)k,cj> or f (Sh(Subsystems)k =
∆Sh(Subsystems)k,cj = Sh(Subsystem1)k−<Sh(Subsystem1)k,cj>. These operators quantify
the deviation (gain or loss in information) of the specific value Sh(Subsystem1)k of the
subsystem concerning the average <Sh(Subsystem1)k,cj> (expected value) of information
for all cases measured under the same experimental conditions. We used three different
partitions cj of categorical variables to codify the experimental conditions and/or non-
structural information (see next section). Moreover, in this data pre-processing stage, we
have calculated the PT operators similar to Box-Jenkins MA operators that are used asinput
data. In this context, c (with c in boldface) refers to a vector of multiple combinations of
categorical variables at the same time. The partitions of the categorical variables used here
are cassayj, cprotj, and cdataj. These partitions are fusions of categorical variables related to
the pharmacological assay (cassayj), the nature of the drug target (cprotj), or about the nature
and/or accuracy of the data measured (cdataj). For simplicity’ssake, we abbreviate these
partitions as cassayj = caj, cprotj = cpj, and cdataj = cdj. The partition caj = (ca0, ca1, ca2) included
the following categorical variables: biological activity (ca0), the UniProt protein accession
ID (ca1), and the organism of assay (ca2). In the Supplementary Materials we detailed
all fused datasets of drugs, unique sequences, proteins, chromosomes, genes, Shannon
Entropies values, and the PTO’s values, this process is called the IF technique. Table 8
shows details of the Perturbation-Theory Operators.

Table 8. Input variables of the IFPTML models developed.

Variable
Type Symbol Formula Categorical

Variables Details

- f (vij)ref n(f (vij)expt = 1)/nj ca0

Expected value of probability
p(f (vij) =1)ref for the activity vij of

type ca0.

MMAcaj ∆Sh(Drugi)k,caj
Sh(Drugi)k–

〈Sh(Drug)k,caj〉
caj

Variation (∆) of the information of the
structure of the drugin different subsets of
multiple categorical variables related to

the pharmacological assay caj.

MMAcdj ∆Sh(Drugi)k,cdj
Sh(Drugi)k –〈
Sh(Drug)k,cdj〉

cdj

Variation (∆) of the information of the
structure of the drugin different subsets of
multiple categorical variables related to

the nature and/or accuracy of the
data measuredcdj.

∆Sh (Proti)k,cpj
Sh(Proti)k−

〈Sh(Prot)k,cpj〉
Variation (∆) of the information of the

sequence of the protein, sequence of the
gene, and information about the

chromosome for different subsets of
multiple categorical variables related
tothe nature of the protein target cpj.

MMAcpj ∆Sh (Genei)k,cpj
Sh(Genei)k−

〈Sh(Gene)k,cpj〉
cpj

∆Sh (Chromi)k,cpj
Sh(Chromi)k−

〈Sh(Chrom)k,cpj〉

4.11. IFPTMLModel Training and Validation

The first step to develop the IFPTML models [12–17] was to download all the in-
formation about preclinical assays, drugs structure, protein sequences, gene sequences,
and chromosomes information from public databases (ChEMBL, UniProt, NCBI-GDV).
The second step was to carry out a pre-processing of all the previous information in
order to calculate thef (vij)obs (dependent variable) and f (vij)ref.Next, we calculated the
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Sh(Subsystems)k values (input variables). This includes a process of information fusion
including data from the different databases (ChEMBL, UniProt, NCBI-GDV). Once data
have been prepared for analysis, wethen run the ML algorithms General Discriminant
Analysis (GDA), Classification Tree (CT) with Univariate Splits (CTUS), and CT with Linear
Combination (CTLC) to seek alternative IFPTML models. All the IFPTML models were
developed using STATISTICA [30] software v. 12.

5. Conclusions

Computational prediction of new Antimalarial compounds is a very important goal
for the pharmaceutical industry. However, the huge amount of information available from
different sources makes the analysis of data for the discovery of new compoundsdifficult.
The IFPTML method allowed us to conduct the fusion and analysis of three different
datasets from the databases ChEMBL, UniProt, and NCBI-GDV to achieve this goal. The
ChEMBL dataset contains outcomes for17,758unique assays including numeric descriptors
(variables) for the structure of compounds. The IFPTML algorithm was successful in
accounting for both numerical information (structural parameters) and categorical informa-
tion (multiple experimental conditions) of the three datasets. Shannon’s entropy measures
Shk (numerical variables) were useful to quantify the information about the structure
of drugs, protein sequences, gene sequences, and chromosomes. In addition, MMAs of
different partitions of categorical variables from categorical variables from theChEMBL
dataset were useful to encode multiple experimental conditions of preclinical assays and
information about targets proteins, genes, and chromosomes. The IFPTML-CTLC model is
the most complex in terms of number of input variables, number of LCs, and number of
splitting rules. However, the IFPTML-CTLC model showed better performance than the
IFPTML-GDA and includes more biologically relevant information than the IFPTML-CTUS
model. This model could become a useful tool for the optimization of pre-clinical assays
of new Antimalarial compounds taking into consideration the structure of the drug, the
specie of Plasmodium, the sequence of the target protein, and other multiple parameters.
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