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The potential of the central nervous 
system (CNS) to regenerate is regu-

lated by a complex interaction of neuro-
nal intrinsic and extrinsic factors that 
remain poorly understood. Significant 
research has been dedicated to identify-
ing these factors to facilitate design of 
therapies that will treat the functional 
impairment associated with CNS inju-
ries. Over the last decade, the develop-
ment of in vivo laser severing of single 
axons in C. elegans has established an 
invaluable model for the genetic identi-
fication of novel regeneration factors. In 
a recent study we report the unexpected 
identification of the core apoptotic pro-
teins CED-4/Apaf-1 and the executioner 
caspase CED-3 as important factors that 
promote early events in regeneration in 
C. elegans. Other upstream regulators 
of apoptosis do not influence regenera-
tion, indicating the existence of a novel 
mechanism for activation of CED-4 and 
CED-3 in neuronal repair. CED-4 and 
CED-3 function downstream of injury-
induced calcium transients and appear 
to act through the conserved DLK-1 
pathway to promote regeneration. We 
propose a working model for calcium-
dependent localized activation of CED-4 
and CED-3 caspase and discuss ques-
tions raised including mechanisms for 
spatially regulating activated CED-3 
and the possible substrates that it might 
cleave to initiate regeneration.

Introduction

Brain trauma, spinal cord injury and other 
insults to the vertebrate central nervous 
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system (CNS) can result in permanent 
functional impairment due to the inabil-
ity of CNS neurons to regenerate. This 
regeneration deficiency results from both 
neuronal-intrinsic and environmental 
factors that inhibit functional regrowth.1 
Research aimed toward identifying the fac-
tors that regulate regeneration have been 
performed primarily in in vitro neuronal 
cultures and in vertebrate models such as 
rodents. Although these vertebrate mod-
els have proved highly fruitful, systematic 
genetic approaches that investigate the 
biology of neuronal regeneration are not 
practical in these experimental paradigms. 
In recent years, in vivo neuronal regenera-
tion assays in model organisms such as C. 
elegans have been developed to add a new 
dimension to the molecular understand-
ing of the factors that modulate and medi-
ate regeneration.

In 2004, Yanik, et al. utilized a femto-
second laser to axotomize individual fluo-
rescently labeled C. elegans GABAergic 
motorneurons in vivo and then measured 
regenerative outgrowth in the transpar-
ent animal.2 Since this groundbreaking 
work, several others have exploited the 
genetically tractable nature of C. elegans to 
study the molecular pathways that regu-
late regeneration at the single cell level,3-7 
including the use of forward and reverse 
genetic approaches to identify new fac-
tors that influence the ability of a severed 
neuron to extend new processes.8 C. ele-
gans already has contributed significantly 
to our understanding of regeneration 
with the identification of the MAPKKK 
DLK-1 as an important factor that pro-
motes regeneration.4,7 As is often the case, 



e22285-2 Worm Volume 2 Issue 22 Worm Volume 2 Issue 2

mechanism for activation of the CED-3 
executioner caspase in regeneration is 
similar to that utilized in apoptosis. We 
tested genes involved in regulating devel-
opmental (egl-1, ced-9, ced-4 and ced-8), 
germline (lin-35) and radiation-induced 
apoptosis (ced-13) for roles in regenera-
tion. Interestingly, only CED-4/Apaf-1, 
the direct upstream regulator of CED-3 
in apoptosis, is required for regenera-
tion. ced-4 mutants have a regeneration 
defect similar to ced-3 and the double 
mutant ced-4; ced-3 is impacted to the 
same degree as either single mutant, 
suggesting action in the same pathway. 
In addition, expression of a minimally 
toxic ced-3 transgene in the ced-4 mutant 
background is able to partially rescue the 
ced-4 defect. These data suggest ced-3 acts 
downstream of ced-4 to promote regener-
ation. Furthermore, since the other apop-
totic regulators do not act in regeneration, 
a novel regulatory mechanism for activa-
tion of CED-4 and CED-3 in regenera-
tion must be operative.

Neuronal injuries induce large intra-
cellular calcium transients that have an 
important role in the initial neuronal 
response to injury and subsequent recov-
ery.13,16-20 Influenced by this classic lit-
erature, we tested whether calcium might 
influence the CED-4/CED-3 regen-
eration pathway. Using the genetically-
encoded calcium reporter cameleon, we 
(and others)13 measured large increases 
in intracellular calcium in wild type ani-
mals immediately consequent to laser 
axotomy in vivo. Mutations in the ER 
calcium-binding chaperone calreticulin 
(crt-1) significantly decrease axotomy-
induced calcium transients, indicating 
that injury-induced calcium signals are 
partially dependent on CRT-1 and ER 
calcium supplies. Moreover, crt-1 mutants 
display initial outgrowth and 24 h regen-
eration defects similar to ced-3. These 
data further substantiate the critical role 
of calcium signaling in initiation of regen-
eration and indicate CRT-1 is required for 
C. elegans to mount a proper neuronal cal-
cium response to injury.

How does calcium signaling inter-
face with the CED-3/CED-4 pathway? 
We found that ced-3 and ced-4 mutants 
have basically normal calcium fluxes in 
response to axotomy, and thus mutations 

required. As noted above, some outgrowth 
still occurs in the ced-3 mutant and by 3 d 
post-axotomy, total outgrowth catches up 
with that of wild type. The ability of ced-3 
neurons to eventually regenerate to wild 
type levels suggests that a parallel regen-
eration pathway5 may compensate for the 
lack of CED-3 over time (see below).

Given the hint that the most profound 
ced-3 defects might be in early regenera-
tion, we focused on high-resolution analy-
sis of neuronal regrowth during the first 5 
h post-axotomy. Indeed, unlike wild type 
outgrowth, which initiates within ~45 
min via the production of highly dynamic 
transient filopodia-like extensions at the 
cut site, we found that the initial regenera-
tive outgrowth observed in severed ced-3 
neurons often appear as short, wide, per-
sistent bleb-like sprouts. Both time to ini-
tial outgrowths and numbers of filipodia 
extensions are reduced in ced-3 mutants. 
These data suggest CED-3 caspase con-
tributes to the very early events in regen-
eration, specifically post-injury filopodia 
extension/dynamics.

Like many invertebrate systems, C. 
elegans have the ability to actively repair 
and reconnect the severed proximal and 
distal axonal fragments of a damaged 
neuron.11,13,14 Using a GFP fluorescence 
transfer protocol, we determined that 
ced-3 neurons are also defective in their 
ability to reconnect following axotomy. 
We found fewer ced-3 neurons track back 
to the dissociated distal fragment when 
compared with wild type (not surprising 
considering less regenerative outgrowth 
occurs in ced-3 neurons). However, of 
the neurons that do regrow back to the 
vicinity of the dissociated distal frag-
ment, significantly fewer ced-3 neurons 
actually reconnect as compared with wild 
type. The “failure to reconnect” pheno-
type is diminished over longer timescales. 
Nonetheless, a deficiency in CED-3 cas-
pase also impairs reparative timing of 
axotomized neurons.

The apoptotic cell death pathway was 
originally characterized in C. elegans and 
is conserved in higher organisms.15 Many 
of the apoptotic regulators involved 
in developmental apoptosis, germline 
apoptosis and radiation-induced apop-
tosis have been identified and well stud-
ied. An obvious question is whether the 

the dlk-1 regeneration pathway discov-
ered in C. elegans has been shown to be 
conserved in higher organisms.9,10 In our 
recent work,11 we unexpectedly discovered 
that the core apoptotic proteins, CED-4 
(Apaf-1 counterpart) and CED-3 caspase, 
promote early events in neuronal regen-
eration. Our data reveal a novel mecha-
nism for activation of CED-4 and CED-3 
distinct from that utilized in apoptosis 
and suggest these apoptotic proteins act 
upstream of DLK-1 to promote regenera-
tion. Interestingly, the elucidation of the 
C. elegans CED-4/CED-3/DLK-1 path-
way linked previously unconnected data 
from the vertebrate literature to suggest 
a regeneration pathway that may be con-
served in higher organisms.

The Apoptotic Proteins CED-4 and 
Executioner Caspase CED-3  

Promote Efficient Regeneration

An initial interest in how C. elegans 
eliminates the dissociated neuronal frag-
ment that is generated by laser axotomy 
prompted us to investigate cell death 
genes in the context of neuronal injury 
and regeneration. Unexpectedly, axoto-
mies performed in mutants defective for 
apoptosis revealed that the C. elegans cas-
pase CED-3, the core apoptotic cell death 
executioner protein, is not required to 
eliminate the dissociated fragment, but 
rather is important in early post-axotomy 
events that promote neuronal regenera-
tion. Regenerative outgrowth measured 
24 h after laser axotomy in both the ALM 
mechanosensory neuron and D-type 
GABAergic motor neurons indicated that 
ced-3 neurons have ~50% less regrowth 
than wild type. Importantly, the ced-
3(n2433) allele, which harbors a point 
mutation that disrupts the caspase active 
site to eliminate caspase activity,12 shows 
a defect similar to that of a CED-3 dele-
tion allele, indicating that CED-3 caspase 
activity is required for efficient regrowth. 
Furthermore, CED-3 appears to act cell 
autonomously in regeneration since low-
level expression of a ced-3 transgene only 
in the axotomized mechanosensory neu-
rons of the ced-3 mutant is able to partially 
rescue the regeneration defect.

While ced-3 is important for promoting 
efficient regeneration, it is not absolutely 
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regulated so it does not induce apoptosis? 
and (3) What are the substrates of CED-3 
caspase activity that promote regenera-
tion? Observations from our work and 
others can provide the bases for working 
hypotheses regarding the answers to these 
questions.

CED-3 caspase is required to promote 
efficient regeneration in response to axot-
omy. However, CED-3 activation must 
be strictly regulated so as not to induce 
apoptotic cell death. Thus, it is likely that 
CED-3 is activated only locally at the site 
of injury. Cellular calcium transients are 
often locally modulated to control sub-
cellular signaling. In our working model, 
the large increase in intracellular calcium 
that occurs at the site of neuronal injury 
and is restricted to that region13 could 
activate CED-4 and procaspase CED-3 
already present, but latent, in the axon. 
Such a mechanism would be consistent 
with genetic data that favor CRT-1 action 
upstream of CED-3. Localized activation 
by calcium signals could also explain pecu-
liar axotomy-induced responses we have 
observed in the disconnected distal axon 
fragment (independent of the nucleus). 
Interestingly, after axotomy, the discon-
nected distal axon initially extends filo-
podia-like exploratory processes similar to 
the proximal axon segment. Extension of 
these exploratory processes from the distal 
stump is deficient in severed ced-3 neu-
rons. CED-3 caspase, or at the very least 
ced-3 mRNA, thus appears already pres-
ent in the axon, waiting to be activated.

Whether procaspase CED-3 is pres-
ent within the axon solely for purposes 
of regeneration and repair is uncertain. 
However, it should be appreciated that 
caspases have been increasingly found 
to have non-apoptotic roles in neurons, 
including activities in dendritic prun-
ing, axon guidance and synaptogenesis.28 
Furthermore, evidence for rapid localized 
activation of caspases has been published. 
In a model of learning and memory in 
zebra finch, pre-existing caspase-3 is 
rapidly and locally activated in the den-
dritic spines of the auditory forebrain in 
response to a memory-forming stimu-
lus and is thought to influence synaptic 
remodeling.29 Localized activation of the 
fly caspase Dronc in dendrites during lar-
val development is important for dendritic 

Working Model for Localized 
Activation of CED-4 and CED-3 to 

Promote Regeneration

Developmental apoptosis in C. elegans is 
initiated by expression of the BH3 domain 
protein EGL-1 in cells destined to die.21,22 
EGL-1 binds to the Bcl-2-like protein 
CED-9, which is normally localized to 
the mitochondrial membrane in a com-
plex with the pro-apoptotic protein CED-
4.23 The interaction between EGL-1 and 
CED-9 causes a conformational change 
in CED-9 that induces CED-4 to dissoci-
ate.23 CED-4 is then free to homo-oligo-
merize and bind to the procaspase CED-3 
through its caspase activation and recog-
nition domain (CARD), which facilitates 
CED-3 autoactivation.24,25 Notably, how-
ever, we found that EGL-1 and CED-9 
do not act in axon regeneration. How 
then are CED-4 and CED-3 activated 
to promote early events of regeneration? 
We noted that Apaf-1, the mammalian 
homolog of CED-4, binds calcium26 and 
CED-4 is predicted to contain two cal-
cium-binding EF-hand domains.27 The 
importance of calcium signaling in regen-
eration, the rapid increase in intracellular 
calcium induced by axotomy, and our 
observation that CRT-1/calcium signal-
ing acts upstream of CED-4 and CED-
3, leads us to propose a working model 
for calcium-dependent CED-4/CED-3 
activation during regeneration (Fig. 1). 
Axotomy-induced calcium transients, 
which are partially dependent on CRT-1, 
could be “sensed” by CED-4 through its 
calcium binding EF-hand domains, lead-
ing to oligomerization of CED-4. CED-4 
could then bind procaspase CED-3, pro-
moting localized autoactivation of CED-3 
caspase activity, which in turn stimulates 
regeneration initiation through the DLK-1 
regeneration pathway.

Speculation on Localization,  
Regulation and Function of  
Activated CED-3 Caspase in  

Regeneration

Several questions still surround CED-3 
caspase and its role in promoting axon 
regeneration. These include: (1) Where 
is CED-3 activated in an injured neu-
ron? (2) How is activated CED-3 tightly 

in ced-3 and ced-4 do not change the 
calcium signal itself. The ced-3; crt-1 
and ced-4; crt-1 double mutants, how-
ever, show similar regeneration defects 
to each single mutant, indicating action 
in the same pathway. Expression of the 
ced-3 transgene partially rescues the crt-1 
phenotype, suggesting CED-3 action 
downstream of CRT-1/calcium. Taken 
together, the data are consistent with a 
model in which injury-induced calcium 
signals, which are partially dependent 
on CRT-1, are needed for CED-4-
dependent activation of CED-3 caspase 
activity that promotes efficient regenera-
tion initiation.

The DLK MAPKKK is critical for 
regeneration across species.4,7,9,10 In 
rodent models, DLK is important for 
retrograde transport of the injury signals 
p-STAT3 and p-cJun to promote axon 
extension.10 In C. elegans, the DLK-1 
p38-like MAPK pathway is important 
for growth cone formation in regener-
ating D-type motor neurons.4,7 In addi-
tion, the JNK MAPK pathway, including 
the MAPK KGB-1, acts in parallel to 
the DLK-1 pathway in C. elegans to pro-
mote regeneration.5 We were interested 
in determining whether the apoptotic 
proteins CED-4 and CED-3 might act 
in either of these pathways. We found 
dlk-1 mutants have a regeneration defect 
in axotomized ALM neurons similar 
to ced-3 and ced-4 and the dlk-1; ced-3 
and dlk-1; ced-4 double mutants show 
impairment similar to each of the single 
mutants. Transgenic ced-3 expression 
in dlk-1 mutants is unable to rescue the 
dlk-1 defect, suggesting that ced-3 may 
act upstream of dlk-1 to promote early 
events in regeneration. In contrast, the 
kgb-1 regeneration defect appeared simi-
lar to ced-3 but the kgb-1 ced-3 double 
mutant was significantly more impaired 
in regeneration than either single mutant, 
suggesting action in parallel pathways. 
Together, these studies define two paral-
lel pathways, one involving ced-4, ced-3 
and dlk-1, and the other involving kgb-1, 
that act in axon regeneration in severed 
mechanosensory neurons. The parallel 
kgb-1 regeneration pathway could par-
tially compensate for the loss of ced-3, 
explaining why ced-3 defects are often 
mitigated by 3 d post-axotomy.
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Avoiding apoptosis consequent to 
CED-3 activation might be more compli-
cated than limiting the region of activity. 
Several native mechanisms for preventing 
autoactivation of procaspase CED-3 have 
been previously described. For example, 
an alternative splice form of CED-4, 
CED-4L, contains an insertion in the 
nucleotide-binding domain that inhibits 
its interaction with the CED-3 prodo-
main, limiting autoactivation of CED-
331 (whether the CED-4S or CED-4L 
isoforms are functional in regeneration 
remains to be addressed). Autoactivation 
of CED-3 also can be inhibited by cas-
pase-related CSP-3, which is catalytically 
inactive but binds the large subunit of the 
procaspase CED-3 to prevent activation.32 
Similarly, catalytically inactive CSP-2 
also can inhibit autoactivation of CED-3 
in the gonad.33 Thus endogenous inhibi-
tors, known and yet to be discovered, 
may contribute to limited autoactivation 
of CED-3 throughout the axon. Again, 
insight might be drawn from the localized 
activation of the D. melanogaster caspase 
Dronc, important in dendritic pruning of 
sensory neurons during metamorphosis. 
The E3 ubiquitin ligase DIAP1 targets 
Dronc for ubiquitination and degradation 
via the proteasome and may be responsible 
for restricting Dronc activation to spe-
cific dendrites.34,35 A similar mechanism 
for spatially restricting activated CED-3 
could be active in regenerating neurons, 
but to our knowledge an E3 ubiquitin 
ligase that targets activated CED-3 for 
proteasomal degradation has yet to be 
identified. Interestingly, precedent exists 
for E3 ubiquitin ligase activity in regen-
eration. The RPM-1/Phr-1 E3 ligase is 
implicated in regeneration by targeting 
DLK-1/DLK for proteasomal degradation, 
which affects microtubule stability and 
growth cone morphology.7,36 Significant 
evidence also indicates the presence of the 
ubiquitin proteasome system in axons and 
its activity is required for regeneration.37 
These observations suggest it is plausible 
that activated CED-3 might be spatially 
restricted within a regenerating neuron via 
ubiquitination and proteasomal degrada-
tion of the caspase, hypotheses remaining 
to be tested.

It also will be critical to determine the 
substrates of CED-3 caspase activity that 

localized activation of pre-existing CED-3 
in regenerating C. elegans neurons.

pruning in sensory neurons.30 These prec-
edents support the feasibility of rapid and 

Figure 1. Working model for localized activation of CED-4 and CED-3 to promote regeneration. 
Neuronal injuries induce calcium transients that are partially dependent on ER calcium stores and 
CRT-1, possibly via calcium induced calcium release. CED-4 binds the free intracellular calcium 
through its calcium-binding EF-hand domains, which induces CED-4 oligomerization and recruit-
ment of procaspase CED-3 for local activation of its caspase activity. CED-3 then promotes neuro-
nal repair through the conserved DLK-1 regeneration pathway and potentially through regulation 
of cytoskeleton dynamics.38,50
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responses in vertebrate culture models.48,49 
Finally, the dual leucine zipper kinase 
(DLK) is a MAPKKK that activates p38 
MAPK and is critical for neuronal regen-
eration. In C. elegans, DLK-1 is required 
for growth cone formation consequent to 
axotomy.4,7 In DRG cultures harvested 
from DLK gene-trap mice, neurons do 
not regrow as well as wild type neurons.9 
In addition, in DLK KO mice peripheral 
motor and sensory neurons do not display 
enhanced regeneration in vivo follow-
ing a conditioning lesion due to loss of 
the DLK-promoted retrograde transport 
of p-STAT3 and p-cJun, which act as 
injury signals to the cell body to potenti-
ate the regeneration response.10 Members 
of this proposed regeneration pathway are 
implicated in neuronal regeneration from 
nematodes to mammals but never have 
been linked together in the regeneration 
literature. Our genetic studies of regen-
eration link these previously unconnected 
observations and suggest an order to their 
activities in a regeneration pathway that 
may be conserved in higher organisms.

Caspases have been a major research 
focus for their roles in apoptosis. Recent 
discoveries have begun to highlight cas-
pases for their functions in other physi-
ological processes such as dendritic 
pruning, axon guidance, synaptogenesis 
and possibly growth cone formation. Our 
work has cemented the role of a caspase 
in the promotion of efficient neuronal 
regeneration and placed its activity in a 
potentially conserved regeneration path-
way. Future work will provide insights 
into how caspases are locally activated 
and spatially regulated to cleave substrates 
that promote regeneration. In the new age 
of regenerative medicine, lessons learned 
from C. elegans single neuron axotomies 
might hold clues to promoting regrowth 
in human injury.
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