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Abstract

Background

Despite the identification of many signaling pathways involved in colorectal cancer (CRC)

tumorigenesis, metastatic CRC still remains one of the major causes of cancer related

death. NIK and IKKβ-binding protein (NIBP) is one of the key regulators of the NF-κB signal-

ing pathway, which has been implicated in CRC metastasis. The aim of this study was to

investigate the possible role of NIBP in CRC metastasis through its regulation of NF-κΒ and

extracellular regulated kinase/c-Janus kinase (ERK/JNK) signaling pathways.

Methods

In this study NIBP, phosphorylated (p)-p65, p-ERK1/2, and p-JNK1/2 expression was exam-

ined in 130 CRC, and 25 adenoma tissue samples were studied by immunohistochemistry.

NIBP shRNA knockdown was performed in HCT116 cells, and NF-κB and ERK/JNK path-

way activity was measured after TNF-α stimulation in vitro and in vivo.

Results

We found that NIBP, p-p65, p-ERK1/2, and p-JNK1/2 expression was higher in late stages

of CRC compared to early stages or adenomas. Expression of p-p65, p-IκBα, p-IκBβ, p-

ERK1/2, and p-JNK1/2 was inhibited in TNF-α stimulated HCT116 cells following NIBP

knockdown. Nevertheless, p-ERK1/2 expression in un-transfected and NIBP knockdown

HCT116 cells remained the same in the absence of TNF-α stimulation. Furthermore, cell

motility and invasion were reduced in HCT116 cells following NIBP knockdown even after

TNF-α treatment. Finally, primary tumor weight and liver metastasis were reduced in nude

mice with orthotopically transplanted NIBP knockdown of HCT116 cells.
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Conclusion

In conclusion, we demonstrated that NIBP knockdown reduces colorectal cancer metastasis

through down-regulation of canonical NF-κΒ signaling and suppression of ERK and JNK

signaling.

Introduction

Colorectal cancer (CRC) is one of the most common types of cancer with over 130,000 newly

diagnosed cases in the United States annually. The treatment options for metastatic colorectal

cancer (mCRC) are limited, making mCRC a significant clinical challenge[1]. Many signaling

pathways and molecules involved in the development and progression of CRC have been iden-

tified; however, which molecules are specifically involved in regulating metastasis still remain

to be clarified[2]. Therefore, research examining the molecular processes that govern CRC

metastasis may provide new targets for the treatment of mCRC.

The transcription nuclear factor κB (NF-κΒ) signaling pathway, which has a pivotal role in

tumorigenesis, is activated in response to cytokines, growth factors, oncoproteins, and stress

signals, and can follow two distinct activation pathways[2]. In the canonical pathway, NF-κΒ is

triggered by tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β, and is dependent on

the inhibitor of NF-κB kinase (IκB or IKK). Under basal conditions NF-κΒ binds to IκB in the

cytoplasm and, following proteasomal degradation of IκB, NF-κB translocates to the nucleus

where it facilitates gene transcription. As a relatively novel regulator of canonical NF-κB sig-

naling, NIK and IKKβ-binding protein (NIBP) plays a dual role as an activator of NF-κB

through its direct interactions with NIK and IKKβ[3]. NIBP enhances cytokine-induced NF-

κB activation through potentiating IKKβ kinase activity and also has a role in protein traffick-

ing[3]. High NIBP expression has been reported in cancer cell lines and tumor tissues[4].

Knockdown of NIBP has been shown to reduce TNF-α induced NF-κB activation, which may

prevent cell invasion and differentiation. In our previous study we showed that NIBP overex-

pression promoted invasion of colorectal cancer cells through activation of matrix metallopro-

teinases (MMPs)[5]. In addition, it has been shown that NIBP knockdown inhibits HCT116

colon cell proliferation, invasion, and tumor formation, while NIBP overexpression promotes

these processes[4]. NIBP has also been implicated in trans-Golgi network and antiviral defense

[6, 7].

Mitogen activated protein kinase (MAPK) signaling pathways, mediated through extracel-

lular regulated kinase (ERK) and c-Jun N terminal kinase (JNK), represent other important

regulatory networks involved in tumorigenesis, including regulation of proliferation and apo-

ptosis[8]. Recent studies have shown that MAPKs are involved in NF-κB activation. Indeed,

ERK expression was up-regulated by NF-κB and activating transcription factor 3 (ATF3) acti-

vation, which was followed by an increase in apoptosis in human colorectal cancer cells[9, 10].

In contrast, NF-κB activation was reduced through inhibition of the intracellular JNK signal-

ing cascade[9]. Thus, TNF-α not only activated the canonical NF-κB pathway, but also

increased JNK activity[11]. However, the link between NF-κB and MAPKs is still unclear.

As a key regulator of canonical NF-κB signaling, the mechanisms of NIBP regulated NF-κB

activation and possible interactions with the ERK and JNK signaling pathways in mCRC have

not yet been established. Therefore, the aim of this study was to examine the possible associa-

tion of NIBP with these signaling pathways in patients with colorectal adenomas and adeno-

carcinomas. In addition, the consequences of NIBP knockdown were explored in a human

adenocarcinoma HCT116 cell model.

Knockdown of NIBP Reduces NF-κΒ Signaling Pathway
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Materials and Methods

Patients and tissue specimens

A total of 130 consecutive patients with sporadic colorectal cancer scheduled to undergo cura-

tive resection and 25 patients with colorectal adenoma diagnosed by colon endoscopy from

March 2013 to October 2013 at the First Hospital of Guangxi Medical University (Nanning,

China) were included in this study. Tumor tissue samples obtained at the time of surgery were

fixed and embedded in paraffin. Cancer staging was determined by imaging studies and opera-

tive findings with histological diagnosis according to the NCCN Clinical Practice Guidelines

in Oncology for Colon Cancer (Version 3, 2013). All patients provided written informed con-

sent, and the study protocol was approved by the Institutional Review Board for Human

Genetic and Genomic Research, in accordance with the Declaration of Helsinki.

Antibodies and reagents

Antibodies against p65 (cat.no. 4764), phospho-p65 (p-p65, cat.no. 3033), IκBα (cat.no.

8635), phospho-IκBα (p-IκBα, cat.no. 2859), IκBβ (cat.no. 8635), phospho-IκBβ (p-IκBβ, cat.

no. 4921), ERK1/2 (cat.no. 4695), phospho-ERK1/2 (p-ERK1/2, cat.no. 4370), JNK (cat.no.

9252), phospho-JNK (p-JNK1/2, cat.no. 4668) and glyceraldehyde phosphate dehydrogenase

(GAPDH) (cat.no. 2118) were purchased from Cell Signaling Technology (Beverly, USA).

Antibodies against NIBP (cat.no. 16014-1-AP) were obtained from Proteintech Group (Rose-

mont, USA). PVDF membrane (cat.no. 162–0181) was obtained from Bio-Rad Laboratories

(Hercules, USA). Pierce ECL Western Blotting Substrate (cat.no. 32209) was obtained from

Thermo Fisher Scientific (Waltham, USA). Blasticidin S (cat.no. 203351) was purchased from

EMD Millipore (Darmstadt, Germany). TNF-α (cat.no. T6674) and Matrigel (cat.no. E1270)

were purchased from Sigma-Aldrich Co. (St. Louis, USA). The 24-well transwell plates (cat.

no.3422) were obtained from Corning Inc. (Corning, USA).

Cell culture and transfection

The human adenocarcinoma cell line HCT116 obtained from American Type Culture Collec-

tion (ATCC) was used for stable NIBP knockdown transfections. In brief, HCT116 cells were

cultured in high glucose Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% fetal bovine serum (FBS) and penicillin/streptomycin (100 U/ml). The NIBP short hairpin

RNA (shRNA) (3’-GGAAGCTGTCCTGAATTTCAA-5’) was cloned into a pcDNA6.2-

EGFP-NIBP-miR vector and introduced into HCT116 cells via lentiviral transfection. Cells

carrying the NIBP shRNA and empty vector (NC) were selected by culturing in the presence

of 5 μg/ml blasticidin S (Darmstadt, Germany) for more than two weeks. Stable clones were

verified by Western blot and one stably transfected NIBP knockdown HCT116 cell clone was

chosen for subsequent experiments. To determine the effect of NIBP on the activation of the

NF-κΒ canonical pathway, HCT116 cells were incubated with 20 ng/ml TNF-α for 48 h in

NIBP knockdown and control un-transfected cells.

Western blot analysis

For Western blot analysis cells were lysed in Triton X-100-based lysis buffer. Protein concen-

tration in the supernatant was determined using Bradford colorimetry. Next, 40 μg of protein

from each sample were denatured and separated by SDS-PAGE and electro blotted onto

PVDF membrane. Following blocking in 5% non-fat milk in Tris buffered saline with Tween

(TBST) for 1 h, membranes were incubated overnight at 4˚C with appropriate antibodies as

follows: NIBP (1:100), p65 (1:500), p-p65 (1:500), IκBα (1:500), p-IκBα (1:500), IκBβ (1:500),

Knockdown of NIBP Reduces NF-κΒ Signaling Pathway
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p-IκBβ (1:500), ERK1/2 (1:500), p-ERK1/2 (1:500), JNK1/2 (1:500), p-JNK1/2 (1:500) and

GAPDH (1:5,000). After washing with phosphate buffered saline (PBS), PVDF membranes

were incubated with horseradish peroxidase (HRP)-conjugated secondary antibody (1:3,000)

for 1 h. Protein signals were visualized using enhanced chemiluminescence reagents, accord-

ing to the manufacturer’s instructions.

Immunohistochemistry

All tissue samples were fixed with 4% paraformaldehyde for 12 h, embedded in paraffin and

cut into 5 μm sections. Next, sections were deparaffinized, rehydrated, and endogenous perox-

idases were blocked in methanol with 30% H2O2. After antigen retrieval induced by heat, sec-

tions were blocked in 10% normal goat serum in PBS for 1 h, and incubated with primary

antibody for 4 h. Next, HRP-conjugated secondary antibody was applied for 30 min. Immuno-

histochemical reaction was visualized using DAB chromogen. All slides were evaluated by two

pathologists. Evaluation of the nuclear staining reaction was performed in accordance with the

immunoreactive score (IRS) proposed by Remmele and Stegner[12]: IRS = SI (staining inten-

sity) x PP (percentage of positive cells). SI was defined as 0, negative; 1, weak; 2, moderate; and

3, strong. PP was defined as 0, no positive cells present; 1, 10% positive cells; 2, 11–50% positive

cells; 3, 51–80% positive cells; and 4, more than 80% positive cells. Ten visual fields from differ-

ent areas of each tumor were used for IRS evaluation. Tumor slides with at least 3 IRS points

in our study were classified as immunoreactive.

Invasion and motility assays

To prepare transwell plates for invasion assay, inserts were coated with Matrigel, which was

first thawed at 4˚C overnight and then diluted at a concentration of 5 mg/ml in cold serum-

free DMEM. Next, 100 μl of the diluted Matrigel were poured into the upper chamber of the

24-well transwell insert and incubated at 37˚C for at least 4 h for solidification. Next, HCT116

cells were grown to approximately 80% confluence in cell culture flasks and harvested by tryp-

sinization, washed three times with DMEM containing 1% FBS, and resuspended at a density

of 5 x 105 cells/ml. Next, 1 x 105 cells were added onto the transwell insert and the lower cham-

ber of the transwell was filled with 600 μl of DMEM containing 20% FBS. Cells were then incu-

bated at 37˚C for 24 h and the non-invading cells on the top of the transwell insert were

scraped off with a cotton swab. Inserts were then removed from plates, stained with crystal vio-

let solution, and the optical density (OD) was read at 590 nm. Similarly, the tumor cell motility

assay was performed using 24-well transwell plates with uncoated inserts in the same manner

as the invasion assay. The data are presented as mean ± SD of three independent experiments.

Orthotopic transplantation model of human colonic tumor

For in vivo experiments, un-transfected or NIBP knockdown HCT116 cells (7 x 106 cells) were

inoculated subcutaneously into the dorsal surfaces of BALb/c nude male mice obtained from

SLAC Laboratory Animal Center (Shanghai, China). When xenografts of approximately 500

mm3 were established, they were excised and divided into 1 mm3 pieces. Two of these pieces

were then orthotopically implanted into the colons of other male BALb/c nude mice as previ-

ously reported[13]. Briefly, for operative procedures, animals were anesthetized with isoflur-

ane inhalation. A 1 cm laparotomy was performed, and both the cecum and ascending colon

were exteriorized. Using 7 X magnification and microsurgical techniques, the serosa was

disrupted in two different locations. Xenografts were subserosally implanted using a nylon

suture at the two points of serosal disruption. The bowel was then returned to the peritoneal

cavity and the abdomen was closed with interrupted vicryl sutures[14]. Each mouse in the

Knockdown of NIBP Reduces NF-κΒ Signaling Pathway
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experimental group was observed for up to 6 weeks, and mice were weighed every week. After

4 weeks, mice were sacrificed and primary tumor, metastatic tumor, and serum were snap-

frozen in liquid nitrogen for subsequent analyses. All animals were checked on daily basis to

monitor their health. All of the mice used in this study were euthanized by cervical disloca-

tion. All animal care and studies were conducted in accordance with the Medical ethics com-

mittee of the First Affiliated Hospital of Guangxi Medical University for Ethical Approval for

Research Involving Animals (Nanning, China, permit number: KY-036).

Statistical analysis

All data are presented as mean ± standard deviation (SD). The statistical significance of differ-

ences between the means was evaluated using the unpaired Student’s t test or the one-way

analysis of variance (ANOVA) test. Statistical analysis was performed using the Statistical

Package for the Social Sciences (SPSS) 20.0. p< 0.05 was considered significant.

Results

Clinical characteristics of CRC patients

A total of 25 patients with colorectal adenomas and 130 patients with colorectal adenocarcino-

mas were included in the study. The group of colorectal patients consisted of 103 males and 52

females. The age of patients ranged from 25 to 83 years old at first diagnosis. According to the

NCCN CRC classification, 22 patients were at stage I, 53 were at stage II, 33 were at stage III,

and 22 were at stage IV (Table 1). Seventy-nine tumors were located in the left-sided colon

(descending and sigmoid colon and rectum), and 51 tumors were located in the right-sided

colorectum (caecum, ascending, and transverse colon up to the splenic flexure). Twenty-six

tumors were mucinous adenocarcinoma and 104 were tubular adenocarcinoma as identified

by pathologists. The maximum diameter was less than 2 cm in 10 tumors, between 2 and 5 cm

in 67 tumors, and larger than 5 cm in 53 tumors. Eighteen CRCs were highly differentiated, 88

were moderately differentiated, and 24 were low differentiation.

NIBP, p-p65, p-ERK, and p-JNK expression in colorectal adenomas and

adenocarcinomas

In this study, we used immunohistochemistry to assess NIBP, p-p65, p-ERK1/2, and p-JNK1/2

expression in patients with adenomas and sporadic adenocarcinomas (Fig 1). The IRS values

for NIBP, p-p65, p-ERK1/2, and p-JNK1/2 were higher in late CRC stages (TNM III and TNM

IV) compared to early stage cancers and adenomas p< 0.05, Table 1). In addition, IRS values

for NIBP, p-p65, p-ERK1/2, and p-JNK1/2 were higher in mucinous adenocarcinomas and

tubular adenocarcinomas compared to adenomas. The IRS values for NIBP were lower in

smaller tumors that had maximum diameters less than 2 cm (p< 0.05, Table 1). The IRS values

for p-ERK1/2 and p-JNK1/2 were lower in highly differentiated tumors when compared to

moderately and low differentiated tumors (p< 0.05, Table 1). However, we did not observe

any differences in the IRS for NIBP and p-p65.

NIBP knockdown inhibits activation of the NF-κΒ canonical and ERK/

JNK pathways in HCT116 cells in vitro

In our study the un-transfected control HCT116 cells showed high NIBP protein expression

[4]. Stable NIBP knockdown in HCT116 cells resulted in low NIBP expression, while cells

transfected with an empty vector (NC) had high NIBP protein expression similar to the control

un-transfected HCT116 cells (Fig 2).

Knockdown of NIBP Reduces NF-κΒ Signaling Pathway
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In order to examine the influence of NIBP on canonical NF-κΒ pathway activation,

HCT116 cells (NC and NIBP shRNA) were incubated with 20 ng/ml TNF-α for 48 h. TNF-α
treatment increased protein expression of p65, IκBα, IκBβ, p-p65, p-IκBα and p-IκBβ in NC

HCT116 cells. Contrary to these findings, expression of these proteins was significantly lower

in NIBP shRNA transfected HCT116 cells regardless of whether they were treated with TNF-α
or not (p< 0.05; Fig 3).

In control un-transfected HCT116 cells TNF-α treatment induced phosphorylation of

ERK1/2 and JNK1/2. Contrary to these findings, phosphorylation of JNK1/2 was inhibited in

NIBP shRNA HCT116 cells (p< 0.05; Fig 3); nevertheless, phosphorylation of ERK1/2 was not

affected (p> 0.05; Fig 3). However, when NIBP shRNA transfected HCT116 cells were treated

with TNF-α the phosphorylation of ERK1/2 and JNK1/2 was reduced (p< 0.05; Fig 3). Collec-

tively, these results indicate that NIBP knockdown inhibits activation of the NF-κΒ canonical

pathway by decreasing phosphorylation of p65, IκBβ, and IκBβ in HCT116 cells, ultimately reduc-

ing the effects of TNF-α stimulation. However, NIBP knockdown inhibited the ERK/JNK path-

way and, in part, reduced phosphorylation of ERK1/2 and JNK1/2 after the TNF-α treatment.

NIBP knockdown decreases HCT116 cell motility and invasion in vitro

Cell motility and invasion are essential for metastatic spread of tumors, both locally as well as

at distant sites in the organism. Therefore, we examined the influence of NIBP knockdown on

these two important cellular processes. In our study NIBP shRNA knockdown reduced cell

motility and invasion of HCT116 cells, even after cells were treated with TNF-α (p< 0.05; Fig

Table 1. CRC patient clinicopathological characteristics and IRS values for NIBP, p-p65, p-ERK1/2, and p-JNK1/2 immunohistochemical

expression.

N NIBP IRS p-p65 IRS p-ERK1/2 IRS p-JNK1/2 IRS

Total

adenoma 25 1.24±0.61 1.48±1.92 1.30±0.87 0.87±0.57

TNM I 22 1.97±1.17 2.69±2.00 2.00±1.82 1.50±1.03

TNM II 53 2.49±1.21a 3.06±2.36a 2.81±1.68a 2.78±1.14a

TNM III 33 5.63±2.70abc 6.29±3.72abc 6.24±1.12abc 6.18±1.04abc

TNM IV 22 7.15±2.69abc 9.10±2.81abcd 7.78±1.70abcd 7.95±1.50abcd

Pathological type

adenoma 25 1.24±0.61 1.48±1.92 1.87±0.87 0.87±0.57

mucinous adenocarcinoma 26 3.66±2.85e 5.06±3.73e 4.24±2.77e 4.38±2.81e

tubular adenocarcinoma 104 4.07±2.79e 4.78±3.65e 4.42±2.70e 4.28±2.57e

CRC location

left-sided colorectum 79 4.00±2.75 4.90±3.65 4.31±2.70 4.12±2.62

right-sided colon 51 3.97±2.89 4.70±3.69 4.50±2.73 4.58±2.58

Maximum diameter of CRC

<2 cm 10 2.06±1.24 2.38±1.91 2.56±2.41 2.76±2.28

2–5 cm 67 4.08±2.66f 4.93±3.74f 4.62±2.63f 4.39±2.55

>5 cm 53 4.23±3.06f 5.18±3.67f 4.43±2.76f 4.47±2.68

CRC histologic differentiation

High differentiation 18 3.32±2.39 3.40±2.58 3.69±2.21 2.66±1.72

Moderate differentiation 88 3.90±2.78 4.94±3.72 4.23±2.80g 4.27±1.63g

Low differentiation 24 4.83±3.04 5.54±3.92 5.49±2.44g 5.63±2.37g

a vs adenoma, p < 0.05; b vs TNM I, p < 0.05; c vs TNM II, p < 0.05; d vs TNM III, p < 0.05; e vs adenoma, p < 0.05; f vs < 2 cm CRC, p < 0.05; g vs high

differentiation p < 0.05.

doi:10.1371/journal.pone.0170595.t001

Knockdown of NIBP Reduces NF-κΒ Signaling Pathway
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4). These results further support the hypothesis that NIBP knockdown inhibits activation of

the canonical NF-κΒ and ERK/JNK pathways.

NIBP knockdown decreases liver metastases and tumor proliferation of

HCT116 cells in vivo

In this study, the metastatic capability of un-transfected as well as NIBP shRNA transfected

HCT116 cells was examined following colonic orthotopic implantation of subcutaneously

Fig 1. Immunohistochemical analysis of NIBP, p-p65, p-ERK1/2, and p-JNK1/2 expression in colorectal adenomas and

adenocarcinomas. NIBP, p-p65, p-ERK1/2, and p-JNK1/2 protein expression was higher in late CRC stages (TNM III and TNM IV)

compared to early CRC stages (TNM I and TNM II) or adenomas. In addition, NIBP, p-p65, p-ERK1/2, and p-JNK1/2 expression was higher

in mucinous adenocarcinomas and tubular adenocarcinomas compared to adenomas.

doi:10.1371/journal.pone.0170595.g001

Fig 2. Lentivirus-mediated NIBP knockdown in HCT116 cells. Control un-transfected HCT116 cells had

higher NIBP protein expression compared to NIBP-knockdown HCT116 cells. Cells transfected with an empty

vector (NC) had high NIBP expression, similar to the control un-transfected HCT116 cells, as determined by

Western blot analysis. * vs. un-transfected HCT116, p < 0.05.

doi:10.1371/journal.pone.0170595.g002

Knockdown of NIBP Reduces NF-κΒ Signaling Pathway
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grown xenografts. The control un-transfected HCT116 cells had more metastatic potential

than NIBP knockdown HCT116 cells. Implanted un-transfected HCT116 cells resulted in cell

metastasis to the liver in all four mice. The metastatic potential of HCT116 cells was decreased

by NIBP knockdown, and only one of six mice had liver metastasis (Fig 5, Table 2). Addition-

ally, primary tumors weighed less in mice implanted with NIBP knockdown HCT116 cells

compared to mice with control un-transfected HCT116 cells (967 ± 515 mg vs.1738 ± 396 mg;

p = 0.036; Fig 6). Collectively, these results indicate that NIBP knockdown in HCT116 cells

decreases their metastatic potential.

Discussion

Colorectal cancer is a major public health issue with regards to malignant diseases[15]. Despite

the current knowledge about the molecular pathology of CRC, the 5-year relative survival rate

of patients, especially those in late stage mCRC, is still low [16–18]. The role of NF-κB signal-

ing in CRC has been explored in recent years and several mechanisms have been proposed to

explain the regulation of persistent NF-κB activation in tumorigenesis[18]. In brief, it has been

shown that NF-κB promotes CRC invasiveness by increasing vascular endothelial growth fac-

tor (VEGF), intracellular cell adhesion molecule (ICAM), vascular cell adhesion molecule

(VCAM), and MMP expression[16]. Jeong et. al., showed that the ERK pathway was activated

by reactive oxygen species (ROS) generation, and the NF-κB pathway reduced apoptosis in

human colorectal cancer cells[10]. In addition, TNF-α activated both the canonical NF-κB and

JNK pathways and increased expression of pro-inflammatory factors[11]. In our previous

Fig 3. NIBP knockdown inhibits activation of the canonical NF-κΒ and ERK and JNK mediated pathways in HCT116

cells. A. Representative results of Western blot analysis of control un-transfectedand NC transfected HCT116 cells, and NIBP

knockdown HCT116 cells with or without TNF-αtreatment. B. p-p65, p-IκBα and p-IκBβ expression was highest in control un-

transfected HCT116 cells after TNF-α treatment; and TNF-α treatment reduced p-p65 levels similar to total p65 in NIBP knockdown

HCT116 cells. Additionally, p-ERK1/2 expression was up-regulated in TNF-α treated control un-transfected HCT116 cells, and this

increase was reduced by NIBP knockdown; however, no difference was observed in p-ERK1/2 expression between the control un-

transfected cells and NIBP knockdown cells without TNF-α treatment. Moreover, p-JNK1/2 expression was increased in control un-

transfected cells treated with TNF-α and decreased in knockdown NIBP cells, irrespective of whether they were treated with TNF-α
or not. * vs. un-transfected HCT116, p < 0.05; # vs. TNF-α treatment, p < 0.05.

doi:10.1371/journal.pone.0170595.g003

Knockdown of NIBP Reduces NF-κΒ Signaling Pathway
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study we showed that HT-29 cell invasiveness was enhanced via activation of ERK1/2 and

MMP-2/9[19]. In this study phosphorylation of p65, ERK1/2, and JNK1/2 was increased in

patients with late CRC TNM stages. Furthermore, phosphorylation of p65, IκBα, IκBβ, ERK1/

2, and JNK1/2, was increased in HCT116 cells treated with TNF-α. Moreover, cell motility and

Fig 4. NIBP knockdown increases cell motility and invasion in HCT116 cells in vitro. Motility and invasion capability of control

un-transfected and NC transfected HCT116 cells as well as NIBP knockdown HCT116 cells with or without TNF-α treatment. OD at

590 nm for motility and invasion assays was the highest in control un-transfected HCT116 cells treated with TNF-α. In NIBP

knockdown HCT116 cells motility and invasion were low regardless of TNF-α treatment. * vs. un-transfected HCT116, p < 0.05; #

vs. TNF-α treatment, p < 0.05.

doi:10.1371/journal.pone.0170595.g004

Fig 5. Liver metastasis of HCT116 orthotopic transplantation in the nude mice model. Liver metastasis of control un-transfected

HCT116 cells and NIBP knockdown cells in the orthotopic transplantation model. The liver metastatic potential of HCT116 cells was

decreased by NIBP knockdown, as indicated by the yellow arrows.

doi:10.1371/journal.pone.0170595.g005
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invasion properties were enhanced in TNF-α treated HCT116. Based on these findings, it can

be concluded that both the canonical NF-κB and the ERK and JNK pathways increase with

CRC progression and play important roles in cancer metastasis. This is not surprising since, in

addition to the known activation of NF-κB signaling, activation of the ERK and JNK mediated

pathways has also been reported in the pathogenesis, progression, and oncogenic behavior of

human colorectal cancer[18, 19].

It has been previously reported that canonical NF-κB pathway-dependent gene expression

is increased when NIBP expression is up-regulated[20]. NIBP is highly expressed in breast can-

cer and colorectal cancer while its expression is low in immune organs in which NF-κB is

known to perform important biological functions[3, 4]. In addition, it has been shown that

NIBP expression correlates with tumorigenesis in CRC[21]. Some studies have reported

crosstalk between NF-κB and MAPK cascades[22–24], with one of the most important media-

tors of these interactions being the growth arrest and DNA damage-inducible 45 (Gadd45)

family[25]. However, the exact molecular mechanism underlying this crosstalk still remains

unknown. In this study, phosphorylation of p65, ERK1/2 and JNK1/2 increased in late CRC

stages, as did the expression of NIBP. Based on these results we hypothesized that NIBP

Table 2. NIBP knockdown inhibited the formation of HCT116 liver metastases in in vivo.

animal group Total (n) liver metastases (n) p

+ -

NIBP knockdown HCT116 6 1 5 0.048

un-transfected HCT116 e 4 4 0

doi:10.1371/journal.pone.0170595.t002

Fig 6. HCT116 orthotopic transplantation in the nude mice model. Orthotopic transplantation of control un-transfected HCT116 cells and NIBP

knockdown cells in nude mice. Primary tumors weighed less in mice transplanted with NIBP knockdown HCT116 cells compared to mice transplanted with

control un-transfected HCT116 cells (967 ± 515 mg vs. 1738 ± 396 mg; p = 0.036).

doi:10.1371/journal.pone.0170595.g006
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regulates the metastatic potential of tumor cells through induction of the canonical NF-κB and

ERK and JNK pathways. In order to test this hypothesis, we decreased NIBP expression in the

human adenocarcinoma cell line HCT116, which is known to have high invasive capability.

NIBP knockdown in HCT116 cells decreased phosphorylation of p65, IκBα, IκBβ, and JNK1/2

and attenuated in vitro motility and invasion. In addition, NIBP knockdown inhibited the

TNF-α mediated activation of the canonical NF-κB and ERK and JNK pathways. NIBP knock-

down also inhibited the metastatic potential of HCT116 cells in nude mice. These data indicate

that knockdown of NIBP reduces metastatic potential of CRCs through inhibition of the

canonical NF-κB pathway and suppression of ERK and JNK mediated signaling.

In conclusion, we have shown that knockdown of NIBP reduces colorectal cancer metasta-

sis through down-regulation of the canonical NF-κΒ signaling pathway, as well as via suppres-

sion of MAPK signaling mediated through ERK and JNK. These findings might prove useful

in establishing new targets for anticancer therapy especially for advanced stages of CRC for

which current treatment options are still limited.

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China

(No. 81260365).

Author Contributions

Conceptualization: MQ.

Data curation: JH.

Formal analysis: LT.

Funding acquisition: JH.

Investigation: CX.

Methodology: JZ MQ.

Project administration: JH.

Resources: JH.

Software: MQ.

Supervision: JH.

Validation: SL.

Visualization: PP.

Writing – original draft: JH.

Writing – review & editing: JH MQ JZ.

References

1. Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin.2014; 64: 104–

117. doi: 10.3322/caac.21220 PMID: 24639052

2. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N

Engl J Med.2009; 361: 2449–2460. doi: 10.1056/NEJMra0804588 PMID: 20018966

Knockdown of NIBP Reduces NF-κΒ Signaling Pathway

PLOS ONE | DOI:10.1371/journal.pone.0170595 January 26, 2017 11 / 13

http://dx.doi.org/10.3322/caac.21220
http://www.ncbi.nlm.nih.gov/pubmed/24639052
http://dx.doi.org/10.1056/NEJMra0804588
http://www.ncbi.nlm.nih.gov/pubmed/20018966


3. Hu WH, Pendergast JS, Mo XM, Brambilla R, Bracchi-Ricard V, Li F, et al. NIBP, a novel NIK and IKK

(beta)-binding protein that enhances NF-(kappa)B activation. J Biol Chem.2005; 280: 29233–29241.

doi: 10.1074/jbc.M501670200 PMID: 15951441

4. Zhang Y, Liu S, Wang H, Yang W, Li F, Yang F, et al. Elevated NIBP/TRAPPC9 mediates tumorigene-

sis of cancer cells through NFkappaB signaling. Oncotarget.2015; 6: 6160–6178. doi: 10.18632/

oncotarget.3349 PMID: 25704885

5. Qin M, Liu S, Li A, Xu C, Tan L, Huang J. NIK- and IKKbeta-binding protein promotes colon cancer

metastasis by activating the classical NF-kappaB pathway and MMPs. Tumour Biol.2016; 37: 5979–

5990. doi: 10.1007/s13277-015-4433-8 PMID: 26596835

6. Zong M, Satoh A, Yu MK, Siu KY, Ng WY, Chan HC, et al. TRAPPC9 mediates the interaction between

p150 and COPII vesicles at the target membrane. PLoS One.2012; 7: e29995. doi: 10.1371/journal.

pone.0029995 PMID: 22279557

7. Zahoor MA, Yamane D, Mohamed YM, Suda Y, Kobayashi K, Kato K, et al. Bovine viral diarrhea virus

non-structural protein 5A interacts with NIK- and IKKbeta-binding protein. J Gen Virol.2010; 91: 1939–

1948. doi: 10.1099/vir.0.020990-0 PMID: 20444997

8. Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Arch Toxicol.2015;

89: 867–882. doi: 10.1007/s00204-015-1472-2 PMID: 25690731

9. Shao HJ, Lou Z, Jeong JB, Kim KJ, Lee J, Lee SH. Tolfenamic Acid Suppresses Inflammatory Stimuli-

Mediated Activation of NF-kappaB Signaling. Biomol Ther (Seoul).2015; 23: 39–44.

10. Jeong JB, Choi J, Baek SJ, Lee SH. Reactive oxygen species mediate tolfenamic acid-induced apopto-

sis in human colorectal cancer cells. Arch Biochem Biophys.2013; 537: 168–175. doi: 10.1016/j.abb.

2013.07.016 PMID: 23896517

11. Dvoriantchikova G, Ivanov D. Tumor necrosis factor-alpha mediates activation of NF-kappaB and JNK

signaling cascades in retinal ganglion cells and astrocytes in opposite ways. Eur J Neurosci.2014; 40:

3171–3178. doi: 10.1111/ejn.12710 PMID: 25160799

12. Friedrichs K, Gluba S, Eidtmann H, Jonat W. Overexpression of p53 and prognosis in breast cancer.

Cancer.1993; 72: 3641–3647. PMID: 8252480

13. Ongchin M, Sharratt E, Dominguez I, Simms N, Wang J, Cheney R, et al. The effects of epidermal

growth factor receptor activation and attenuation of the TGFbeta pathway in an orthotopic model of

colon cancer. J Surg Res.2009; 156: 250–256. doi: 10.1016/j.jss.2009.02.002 PMID: 19524264

14. Blits B, Kitay BM, Farahvar A, Caperton CV, Dietrich WD, Bunge MB. Lentiviral vector-mediated trans-

duction of neural progenitor cells before implantation into injured spinal cord and brain to detect their

migration, deliver neurotrophic factors and repair tissue. Restor Neurol Neurosci.2005; 23: 313–324.

PMID: 16477093

15. Rajput A, Dominguez San Martin I, Rose R, Beko A, Levea C, Sharratt E, et al. Characterization of

HCT116 human colon cancer cells in an orthotopic model. J Surg Res.2008; 147: 276–281. doi: 10.

1016/j.jss.2007.04.021 PMID: 17961596

16. Kraus S, Nabiochtchikov I, Shapira S, Arber N. Recent advances in personalized colorectal cancer

research. Cancer Lett.2014; 347: 15–21. doi: 10.1016/j.canlet.2014.01.025 PMID: 24491406

17. Perkins ND. The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer.2012;

12: 121–132. doi: 10.1038/nrc3204 PMID: 22257950

18. Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB. NF-kappaB addiction and its role in

cancer: ’one size does not fit all’. Oncogene.2011; 30: 1615–1630. doi: 10.1038/onc.2010.566 PMID:

21170083

19. Liu SQ, Huang JA, Qin MB, Su YJ, Lai MY, Jiang HX, et al. Sphingosine kinase 1 enhances colon can-

cer cell proliferation and invasion by upregulating the production of MMP-2/9 and uPA via MAPK path-

ways. Int J Colorectal Dis.2012; 27: 1569–1578. doi: 10.1007/s00384-012-1510-y PMID: 22684547

20. Perkins ND. Post-translational modifications regulating the activity and function of the nuclear factor

kappa B pathway. Oncogene.2006; 25: 6717–6730. doi: 10.1038/sj.onc.1209937 PMID: 17072324

21. Kim JC, Kim SY, Roh SA, Cho DH, Kim DD, Kim JH, et al. Gene expression profiling: canonical molecu-

lar changes and clinicopathological features in sporadic colorectal cancers. World J Gastroen-

terol.2008; 14: 6662–6672. doi: 10.3748/wjg.14.6662 PMID: 19034969

22. Lewis DA, Spandau DF. UVB-induced activation of NF-kappaB is regulated by the IGF-1R and depen-

dent on p38 MAPK. J Invest Dermatol.2008; 128: 1022–1029. doi: 10.1038/sj.jid.5701127 PMID:

18059487

23. Saha RN, Jana M, Pahan K. MAPK p38 regulates transcriptional activity of NF-kappaB in primary

human astrocytes via acetylation of p65. J Immunol.2007; 179: 7101–7109. PMID: 17982102

Knockdown of NIBP Reduces NF-κΒ Signaling Pathway

PLOS ONE | DOI:10.1371/journal.pone.0170595 January 26, 2017 12 / 13

http://dx.doi.org/10.1074/jbc.M501670200
http://www.ncbi.nlm.nih.gov/pubmed/15951441
http://dx.doi.org/10.18632/oncotarget.3349
http://dx.doi.org/10.18632/oncotarget.3349
http://www.ncbi.nlm.nih.gov/pubmed/25704885
http://dx.doi.org/10.1007/s13277-015-4433-8
http://www.ncbi.nlm.nih.gov/pubmed/26596835
http://dx.doi.org/10.1371/journal.pone.0029995
http://dx.doi.org/10.1371/journal.pone.0029995
http://www.ncbi.nlm.nih.gov/pubmed/22279557
http://dx.doi.org/10.1099/vir.0.020990-0
http://www.ncbi.nlm.nih.gov/pubmed/20444997
http://dx.doi.org/10.1007/s00204-015-1472-2
http://www.ncbi.nlm.nih.gov/pubmed/25690731
http://dx.doi.org/10.1016/j.abb.2013.07.016
http://dx.doi.org/10.1016/j.abb.2013.07.016
http://www.ncbi.nlm.nih.gov/pubmed/23896517
http://dx.doi.org/10.1111/ejn.12710
http://www.ncbi.nlm.nih.gov/pubmed/25160799
http://www.ncbi.nlm.nih.gov/pubmed/8252480
http://dx.doi.org/10.1016/j.jss.2009.02.002
http://www.ncbi.nlm.nih.gov/pubmed/19524264
http://www.ncbi.nlm.nih.gov/pubmed/16477093
http://dx.doi.org/10.1016/j.jss.2007.04.021
http://dx.doi.org/10.1016/j.jss.2007.04.021
http://www.ncbi.nlm.nih.gov/pubmed/17961596
http://dx.doi.org/10.1016/j.canlet.2014.01.025
http://www.ncbi.nlm.nih.gov/pubmed/24491406
http://dx.doi.org/10.1038/nrc3204
http://www.ncbi.nlm.nih.gov/pubmed/22257950
http://dx.doi.org/10.1038/onc.2010.566
http://www.ncbi.nlm.nih.gov/pubmed/21170083
http://dx.doi.org/10.1007/s00384-012-1510-y
http://www.ncbi.nlm.nih.gov/pubmed/22684547
http://dx.doi.org/10.1038/sj.onc.1209937
http://www.ncbi.nlm.nih.gov/pubmed/17072324
http://dx.doi.org/10.3748/wjg.14.6662
http://www.ncbi.nlm.nih.gov/pubmed/19034969
http://dx.doi.org/10.1038/sj.jid.5701127
http://www.ncbi.nlm.nih.gov/pubmed/18059487
http://www.ncbi.nlm.nih.gov/pubmed/17982102


24. De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, et al. Induction of gadd45beta by NF-

kappaB downregulates pro-apoptotic JNK signalling. Nature.2001; 414: 308–313. doi: 10.1038/

35104560 PMID: 11713530

25. Yang Z, Song L, Huang C. Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK

cascades. Curr Cancer Drug Targets.2009; 9: 915–930. PMID: 20025601

Knockdown of NIBP Reduces NF-κΒ Signaling Pathway

PLOS ONE | DOI:10.1371/journal.pone.0170595 January 26, 2017 13 / 13

http://dx.doi.org/10.1038/35104560
http://dx.doi.org/10.1038/35104560
http://www.ncbi.nlm.nih.gov/pubmed/11713530
http://www.ncbi.nlm.nih.gov/pubmed/20025601

