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Improving the Micropore Capacity 
of Activated Carbon by Preparation 
under a High Magnetic Field of 10 T
Atom Hamasaki   , Ayumi Furuse, Yuya Sekinuma, Kazuki Fujio, Masashi Iide & Sumio Ozeki

The influence of an applied magnetic field on the formation of carbon materials from coal tar pitch is 
investigated. Under an applied magnetic field, crystallites in a mesophase resembling liquid crystals 
are magnetically oriented during the carbonization process. Compared with that under a nonmagnetic 
field, carbonized coal tar pitch under a strong magnetic field of 10 T, generated by a superconducting 
magnet, has a highly oriented structure of carbon crystallites. The orientation of samples prepared 
under 2 T, which can easily be supplied by an electromagnet, was insufficient. Activation by potassium 
hydroxide is effective for affording a precursor for activated carbon. The activated carbon obtained 
under a strong magnetic field has a unique adsorption ability, which arises from its increase in relative 
surface area and total pore volume compared with those of an activated carbon sample prepared from 
a precursor produced under zero magnetic field. The precursor carbonized under a magnetic field of 10 T 
contains a larger number of crystallites than that carbonized under a 0-T magnetic field, which leads to 
high-performance activated carbon.

Carbon materials, such as activated carbon and graphite, are very useful functional materials. For example, 
carbon materials are important in applications such as gas separation using pressure swing adsorption, water 
purification, air cleaning, electrodes in metal refining, pencils, and lubricants. Recently, nanocarbon, for exam-
ple, carbon nanotubes and graphene, has attracted attention, but conventional carbon materials have still been 
applied and used in advanced technology, such as activated carbon in electric double-layer capacitors and carbon 
fibre-reinforced plastic for the wings of airplanes. Carbon materials are becoming increasingly important in our 
lives; therefore, the amount of carbon materials that is produced will need to increase to meet the demand. The 
carbon source, preparation conditions such as temperature and atmosphere, and preparation methods have an 
important influence on the properties of carbon materials because the structure of carbon materials controls 
their properties1,2. The discovery of new controlling methods will lead to the refinement of carbon materials as 
advanced functional materials.

Coal tar pitch, which is a mineral and contains not only carbon but also other elements such as nitrogen, 
oxygen, and sulfur, has been used as a raw material for carbon products, including both activated carbon and 
graphite. A general preparation method for activated carbon and graphite from coal tar pitch is shown in Fig. 13. 
Graphite is prepared by thermal treatment processes, which can be separated into the crystallite growth process 
in an unreactive atmosphere at less than 1200 K (carbonization) and subsequent crystallite connection to make 
large graphene sheets at up to 4000 K (graphitization). A carbon hexagonal layer grows well during the carbon-
ization process and is called the graphite precursor (graphitizable carbon). If a raw material is stabilized in an 
oxidative atmosphere around its softening point, because oxygen acts as a cross-linker between carbon crystal-
lites, the growth of hexagonal carbon is inhibited during thermal treatment above the stabilization temperature. 
As a result, the base of each pore is constructed of crystallites. This carbon material is called the activated carbon 
precursor (non-graphitizable carbon).

Magnetic fields will interact with any material regardless of its magnetism, but because of the angular momen-
tum of electrons, magnetic fields act weakly on diamagnetic materials. In the 1990s, helium (He)-free super-
conducting magnets were developed, and this advancement has led to dramatic progress in research. Many of 
the examples of orientation in the direction of a magnetic field of large molecules, such as polymers4–6 and large 
domains consisting of small molecules, such as liquid crystals7–9 and lipid membranes10–13, were discovered by 
using He-free superconducting magnets.
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Because the anisotropic structure of hexagonal layers is composed of sp2 bonds, carbon materials may also 
lead to the magnetic orientation of graphene domains. When a pitch-based carbon material is heat-treated in an 
unreactive atmosphere, it passes through the liquid phase in the process of carbonization. The viscosity of the raw 
material is extremely high, and the material after carbonization is a solid; however, its viscosity greatly decreases 
at approximately 600–800 K14. At these temperatures, spherulites are generated, and they are in the mesophase, 
which has properties similar to liquid crystals15. In 2012, we constructed a new furnace system with a super-
conducting magnet and applied a magnetic field to the heat-treatment process of carbon materials. Compared 
with that of a sample produced under a 0-T magnetic field, the intensity of the (002) diffraction peak in X-ray 
diffraction (XRD) profiles16 of heat-treated coal tar pitch samples with no stabilization, which is the same as a 
graphite precursor prepared under a magnetic field of 10 T, increased by approximately 30% despite the crystal-
lites having the same dimensions17. This magnetic field effect was explained by the magnetic orientation arising 
from the anisotropic structure of hexagonal layers composed of sp2 bonds. Although anomalous birefringence of 
mesophase pitch prepared under magnetic fields smaller than 1 T was reported in the 1980s18–21, it became clear 
from our study that the orientation degree was greatly improved upon increasing the magnetic field from 3 T to 
6 T17. The magnetic orientation energy Er of a domain composed of N molecules under magnetic flux density B 
is given by22,23:
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Here, μ0 is the magnetic permeability in vacuum, and θ is the angle between the direction of a magnetic field 
and the easy axis of magnetization. The magnetic anisotropy Δχ22 is the difference between perpendicular (χ⊥) 
and parallel (χ//) magnetic susceptibilities, as illustrated in Eq. (2), while the molar magnetic susceptibility χM 
is determined using Eq. (3). The plane of the benzene ring is assigned as χ//, which aligns with the easy axis of 
magnetization, and the direction perpendicular to the ring is χ⊥, which aligns with the hard axis of magnetiza-
tion. Since a B2 effect is expected, it is reasonable that the magnetic flux density increases sharply at 3 T or above. 
However, the magnetic field effect was saturated above 6 T. The crystallite size estimated from the XRD results 
was 2.9 × 2.9 × 2.7 nm3. If we assumed that only a layered graphene structure was obtained, the anisotropic mag-
netic susceptibility was calculated as Δχ = −8.6 × 10−7 m3 mol−117. Since the thermal energy was approximately 
6.6 kJ mol−1 at 793 K, it was calculated that the magnetic orientation could be sufficiently complete at more than 
6 T by overcoming Brownian motion, with only approximately 4000 crystallites moving cooperatively. In fact, 
the crystallite contained other atoms, such as oxygen and sulfur; therefore, the actual value of anisotropic sus-
ceptibility was slightly smaller than the ideal value, and it seemed that more crystallites moved cooperatively. 
Nevertheless, considering the size of the mesophase microspheres (diameter on the micrometre scale), this result 

Figure 1.  General preparation method of activated carbon and graphite from coal tar pitch.

https://doi.org/10.1038/s41598-019-43818-y


3Scientific Reports |          (2019) 9:7489  | https://doi.org/10.1038/s41598-019-43818-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

was quite reasonable. We called this material a highly oriented carbonized pitch (HOCP) as opposed to general 
carbonized pitch (GCP).

There have been many precedents for preparing composite materials while orienting carbon materials, such as 
graphene and nanotubes, in a magnetic field. However, applying a strong magnetic field to the preparation pro-
cess of a functional carbon material to drastically change the structure has never been reported. In the days when 
only electromagnets could be used, the strength of the magnetic field was lower than that provided by modern 
equipment. Additionally, to prepare the material, the distance between the poles of an electromagnet would be 
insufficient. Preparation by using a superconducting magnet may be expected to be beneficial not only for the 
application of a high magnetic field but also for the large preparation space compared with that of an electromag-
net. We attempted to prepare a high-performance carbon material in this study by preparing activated carbon 
from HOCP.

Results and Discussion
Optimization of magnetic field effects on carbonized process.  To clarify the optimal temperature 
for the magnetic field effect, we carried out only the carbonization treatment of coal tar pitch with the tempera-
ture varied from 553 K to 973 K (see Fig. S1(a), process A), which was based on the general method for preparing 
a graphite precursor. The intensity of the XRD peak at 26°, assigned to the (002) plane of carbon hexagonal 
layers prepared in the absence and presence of a 10-T magnetic field, at each temperature is plotted in Fig. 2(a). 
Carbonization did not progress below 650 K, so naturally, no magnetic field effect was observed in this temper-
ature region. Carbonization occurred gradually from 650 K until approximately 1000 K under zero magnetic 
field. In contrast, the (002) peak intensity of the samples prepared under a 10-T magnetic field increased rapidly 
with increasing heat-treatment temperature until 800 K and then became saturated above this temperature. The 
difference between the (002) XRD peak intensities of carbon materials prepared in the absence and presence of 
the 10-T magnetic field, denoted by I(10T)/I(0T), is also shown in Fig. 2(a). The maximum magnetic field effect was 
observed at approximately 800 K. We considered this finding as evidence for a magnetic field effect caused by 
magnetic orientation because this is the temperature at which the mesophase of coal tar pitch, which is a liquid 
crystal-like structure containing carbon crystallites, appears.

We have reported previously that it was impossible to obtain the magnetic field effect for a general activated 
carbon precursor prepared with stabilization17. This result was explained by the oxygen cross-linked structures 
that formed in the carbon material during thermal treatment in an oxidative atmosphere2; i.e., the formation 
of an oxygen cross-linked structure by stabilization not only led to suppression of carbonization but also made 
liquid crystal-like behaviour impossible. This was considered the reason why the magnetic field effect did not 
appear. To elucidate the time required for cross-linked structure formation, stabilization was carried out before 
carbonization with the time varied from 0 to 120 minutes (see Fig. S1(a), process B). Here, preparation methods 
other than 0 minutes were based on the general method for preparing an activated carbon precursor. The (002) 
XRD peak intensity was plotted against stabilization time as illustrated in Fig. 2(b). The (002) diffraction dras-
tically decreased after stabilization for just 5 minutes before carbonization regardless of the absence or presence 
of a magnetic field. Under oxidizing conditions, cross-linking proceeds regardless of the presence or absence of 
a magnetic field. A cross-linked structure was effectively constructed by slight stabilization, and no magnetic 
field effect was observed in only 5 minutes. We concluded that no stabilization was the only way to obtain highly 

Figure 2.  (a) Heat-treatment-temperature dependence of the (002) XRD peak intensity of carbon materials 
prepared in the absence (solid line, closed squares) and presence (dashed line, open squares) of a 10-T magnetic 
field. Relative value of the intensities of the (002) XRD peaks at 10 and 0 T, I(10T)/I(0T) (dashed-dotted line, 
circles). (b) Stabilization time dependence of the (002) XRD peak intensity of activated carbon precursors 
prepared in the absence (solid line, closed squares) and presence (dashed line, open squares) of a 10-T magnetic 
field.
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oriented anisotropic carbon from coal tar pitch. We would like to discuss the difference in the structure and func-
tion of GCP and HOCP prepared in the absence and presence of 10 T at 793 K without stabilization (as process 
A), which are described as P-GCP and P-HOCP below.

Specific structure of carbonized pitch under a high magnetic field of 10 T.  The oriented structures 
of P-GCP and P-HOCP were observed with a polarizing microscope. P-GCP had a flow-like structure derived 
from the fusion of the mesophase, as shown in Fig. 3(a)-0 T, which was confirmed by the polarizing microscope, 
and the two polarizers were set at the crossed Nicols position. As can be understood from the image rotated by 
45° from the original position, the orientation direction varied over a wide region. In the magnified figure, iso-
lated small mesophase spherules were observed, indicating that the fusion was not uniform. This carbon material 
corresponded to “general” anisotropic carbon because of the above; however, carbon crystallites were oriented 
only in a small number of mesophase units in the absence of a magnetic field. The direction of the crystallite was 
different between domains, as shown in Fig. 3(b). As a result, there were areas where the crystallite became sparse 
at the boundary. However, in the case of carbonization under a high magnetic field obtained by using a super-
conducting magnet, such as carbonization for P-HOCP, the magnetic orientation was markedly accelerated. As 
shown in Fig. 3(a)-10 T, the white region showing optical anisotropy was widely spread (diagonal position), and 
when the sample was rotated by 45°, the whole region became dark (extinction position). In contrast to the struc-
ture evident at 0 T, a fine domain structure was not observed, and the orientation degree was extremely high and 
had a highly uniform structure, both macroscopically and microscopically. We confirmed that P-HOCP exhibited 
a structure similar to the quasi-graphite structure, such as crystallites aligned over a wide range, as shown in 
Fig. 3(b). Although the orientation at approximately 2 T (which can be generated with a relatively strong elec-
tromagnet) was locally advanced, compared with that of 10 T, it was not complete, as shown in Fig. 3(a)-2 T. The 
structure of P-HOCP was a new structure obtained by using a strong magnetic field. If the magnetic orientation is 
complete at approximately 2 T, superconducting magnets will not be needed. However, the structures prepared in 
the presence of superconducting magnets were different in terms of the electromagnet level orientation. Although 
the required magnetic field strength depends on the raw material properties, the use of superconducting magnets 
is very important to provide new structures for carbon materials.

Adsorption isotherms and pore distribution.  Figure 4(a–d) display the adsorption isotherms of acti-
vated carbon prepared from P-GCP and P-HOCP with KOH:precursor ratios of 3, 5, 8 and 10, respectively. 
For activated carbon prepared from P-GCP and P-HOCP, micropores of less than approximately 2 nm diameter, 
which a Type I adsorbed isotherm according to IUPAC classification24,25 were formed in all samples except for 
that produced using a KOH:precursor ratio of 1. Table 1 shows the adsorption amount of each sample and the 
pore parameters calculated from the adsorption isotherms. Compared with that of activated carbon prepared 
from P-GCP, the adsorption amount of activated carbon prepared from P-HOCP increased by approximately 35% 

Figure 3.  (a) Polarizing microscopy image of carbonized coal tar pitch prepared in the absence and presence 
of magnetic fields of 2 T and 10 T. All figures show the diagonal position and extinction position. (b) Schematic 
drawing of a magnetic field effect on the carbonization process of coal tar pitch.
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Figure 4.  Adsorption isotherm of activated carbon prepared from P-GCP (closed marks) and P-HOCP (open 
marks) with a KOH:precursor ratio of (a) 3 (squares, solid line), (b) 5 (upward-pointing triangles, dashed line), 
(c) 8 (downward-pointing triangles, dashed-dotted line), (d) 10 (circles, dashed-double dotted line). Inset 
figures are the logarithmic plots.

KOH 
ratio

Magnetic 
field (B/T)

Burn-
off (%)

Adsorbed amount 
(w/mg g−1)

BET surface area 
(AS/m2 g−1)

Total pore volume 
(Vtotal/cm3 g−1)

Micropore volume 
(Vmicro/cm3 g−1)

Micropore ratio 
(Vmicro/Vtotal, %)

Pore size 
(d/nm)

1
0 T — 20 61 0.026 0.025 96 —

10 T — 25 76 0.032 0.031 97 —

3
0 T 55 436 1275 0.55 0.51 93 0.78

10 T 52 591 1697 0.74 0.71 96 0.78

5
0 T 62 592 1619 0.74 0.67 91 0.94

10 T 52 798 2063 1.00 0.76 76 0.97

8
0 T 71 1065 2503 1.33 0.88 66 1.06

10 T 65 1105 2623 1.38 0.96 69 1.05

10
0 T 71 1196 2443 1.49 0.98 66 1.19

10 T 66 1003 2156 1.25 0.89 71 1.13

Table 1.  Pore parameters of prepared activated carbon samples.
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for a KOH:precursor ratio of 3. The adsorption amount of the sample prepared with a KOH:precursor ratio of 5 
also increased by approximately 35%; however, its behaviour was different from that of the sample prepared with 
a KOH:precursor ratio of 3 at a relative pressure of less than 1 × 10−4. At a KOH:precursor ratio of 3, the adsorp-
tion amount of activated carbon prepared from P-HOCP was larger than that of activated carbon prepared from 
P-GCP at a relative pressure of less than 1 × 10−4. However, at a KOH:precursor ratio of 5, the adsorption amount 
in this region was smaller for activated carbon prepared from P-HOCP than activated carbon prepared from 
P-GCP. Although the number of relatively small to relatively large micropores increased evenly in P-GCP with 
an increasing amount of KOH, it was assumed that relatively large micropores were formed by enlarging a fine 
micropore in P-HOCP. In the case of a much larger KOH:precursor ratio, the superiority of applying a magnetic 
field was lost at a KOH:precursor ratio of approximately 8 and the magnetic field effect was completely inhibited 
at a KOH:precursor ratio of 10.

The pore distributions of activated carbon prepared from P-GCP and P-HOCP, as analysed by the Horvath–
Kawazoe method26,27 from the obtained adsorption isotherms, are presented in Fig. 5(a,b), respectively. The pore 
sizes of activated carbon prepared from P-GCP and P-HOCP with a KOH:precursor ratio of 3 were 0.88 nm and 
0.84 nm, respectively. The difference was extremely small, and most of the pores were distributed between 0.80 
and 0.95 nm in both cases. However, it was observed that the adsorption amount of the activated carbon prepared 
from P-HOCP greatly increased in this region. The total adsorption amount in the range from 0.8 to 0.95 nm 
could be estimated to be approximately 1.25 times from the adsorption isotherm. When the KOH ratio was 5, the 
pore size distribution was shifted for both P-GCP and P-HOCP to expanding. In the case of P-GCP, pore sizes 
from 0.80 to 1.05 nm were mainly observed, but in the case of P-HOCP, the pore size was approximately 1.10 nm, 
which was slightly larger. From the viewpoint of the adsorption amount, the number of fine micropores with pore 
sizes between 0.8 and 0.9 nm was greatly reduced in P-HOCP compared to in P-GCP. This effect was reflected 
in the difference in isotherms between the KOH:precursor ratios of 3 and 5 at a relative pressure of less than 
1 × 10−4. At KOH ratios of 8 and 10, the behaviour was completely different between P-GCP and P-HOCP. In the 
case of P-GCP, the pore size increased with increasing KOH:precursor ratio, whereas in the case of P-HOCP, the 
pore diameter hardly increased from that for the KOH:precursor ratio of 5.

Mechanism of pore construction.  We predicted that these differences arose from the difference in the 
pore formation mechanism derived from the precursor structure of P-GCP and P-HOPC. To activate the car-
bon atoms that do not form part of the hexagonal layer of carbon to react, the activator atom must be located 
inside the structure. Therefore, an access pathway to these atoms is necessary for activation. Because P-GCP 
contained amorphous carbon derived from the fusion of mesophase spherules in random directions, as shown in 
Fig. 6, molecules were able to gain access along the amorphous carbon regions. Under an applied magnetic field, 

Figure 5.  Pore size distributions of activated carbon prepared from (a) P-GCP (closed marks) and (b) P-HOCP 
(open marks) with KOH:precursor ratios of 3 (squares, solid line), 5 (upward-pointing triangles, dashed line), 8 
(downward-pointing triangles, dashed-dotted line), and 10 (circles, dashed-double dotted line).
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because oriented spherules coalesce, carbon hexagons form along the magnetic-field direction. This effect leads 
to a structure with no boundaries, that is, a graphene-like structure, which was also suggested from the results 
of the birefringence measurements, as shown in Fig. 2. As a result, P-HOCP does not contain access pathways 
because of the alignment of crystallites with the magnetic field; therefore, chemicals cannot easily gain access to 
the inter-crystallite and inter-carbon hexagonal layers28. The mechanism of chemical activation of HOPG pro-
posed by Endo et al. involves metallic potassium penetrating into the crystallites with destruction of the hexag-
onal network to form the edge surfaces in graphite29 and chemicals intercalating into the interlayer of graphene 
plates. We propose that P-HOCP has a difficult structure for activation and that P-HOCP is activated in an acti-
vation mechanism similar to HOPG.

Scanning electron microscopy (SEM) images of activated P-GCP and P-HOPC samples with a KOH:precursor 
ratio of 3 are shown in Fig. 7. In the case of P-GCP, most of the images showed flaky structures. However, in the 
case of P-HOCP, most of the images showed block morphologies. Even when observing the cross-section of the 
carbon stacking plane, the latter exhibited a cleaner cross-section than the former and retained the ordered struc-
ture reflecting the precursor. If P-HOCP could be attacked violently from the isotropic direction, such a structure 
would not survive. Although it is difficult to directly prove the proposed mechanism, it is sufficient to assume that 
the two sides have different activation processes.

The relationship between the burn-off ratio and KOH:precursor ratio is plotted in Fig. 8(a). Here, the burn-off 
ratio, which reflects the progression of activation, was obtained by calculating the weight of carbon lost by com-
parison with the weight before activation. The burn-off ratio of both P-GCP and P-HOPC increased with the 
KOH:precursor ratio and then became saturated at KOH:precursor ratios above 8. However, the burn-off ratio 
of an activated carbon sample prepared from P-HOCP was a few percent lower than that obtained from P-GCP 
for all KOH:precursor ratios despite using the same activation time of 60 minutes. This result provides evidence 

Figure 6.  Schematic drawing of the effect of an applied magnetic field on the formation of activated carbon.
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that P-HOCP is a less active structure than P-GCP. The surface area is also plotted in Fig. 8(a). The surface area 
of samples prepared from P-GCP showed the same trend as the burn-off ratio and theoretically increased incre-
mentally with increasing KOH:precursor ratio30. Conversely, a decreased surface area was observed at a high 
KOH:precursor ratio using P-HOCP, which is contrary to the trend in the burn-off ratio. This result shows that the 
formation of relatively large micropores caused by chemical activation was suppressed and that the micropores 
also disappeared, which corresponds to the pore distribution results for activated P-HOCP, as shown in Fig. 5(b). 
This result can be thought to arise from the existence of crystallites at a high density, which inhibited the increase 

Figure 7.  SEM images of activated (a) P-GCP and (b) P-HOPC with a KOH:precursor ratio of 3.

Figure 8.  Dependence of (a) the burn-off ratio (circles) and surface area (squares) and (b) the micropore 
volume area (upward-pointing triangles) and ratio of micropore volume per total pore volume (downward-
pointing triangles) of activated carbon samples prepared from P-GCP (closed marks) and P-HOCP (open 
marks) on the KOH:precursor ratio.
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in the pore size beyond a certain size. The increase in the (002) peak intensity of P-HOCP showed an increase with 
the number of crystallites per unit volume, which has been reported in our previous study17. The increase in the 
crystallite density of P-HOCP was also directly confirmed by transmission electron microscopy (TEM) (Fig. S3). 
The true density of P-HOCP observed in 1-butylalcohol was also certainly increased by several present over that 
of P-GCP (Fig. S4). Here, the true density value is not simply related to the number of crystallites. Both P-GCP 
and P-HOCP contain amorphous carbon and crystallites, and the proportions of these species were only different 
in each sample; therefore, their density will not differ greatly. As the crystallite density increased with the applica-
tion of magnetic fields, a large number of micropores having the same distribution were obtain by the progression 
of activation under the optimum activation condition of around a KOH:precursor ratio of 3.

The micropore volume was almost completely dependent on the tendency of the surface area, as shown in 
Fig. 8(b), owing to the Type 1 adsorption isotherm. However, as shown on the right axis of Fig. 8(b), the optimum 
KOH ratio differed between the cases in which fine micropores and relatively large micropores were formed. The 
rate of increase in the number of fine micropores was the largest at a KOH:precursor ratio of 3. However, the 
relationship between fine micropores and relatively large micropores was reversed at a KOH:precursor ratio of 5. 
If relatively large micropores are required, a combination of P-HOCP and a KOH:precursor ratio of 5 was recom-
mended. It seems that the selectivity for pore size can be improved by combining P-HOCP with an appropriate 
amount of KOH.

Conclusion
We demonstrated the effect of an applied magnetic field on the preparation of carbon materials. The adsorption 
ability of an activated carbon sample prepared under a magnetic field was larger than that of sample prepared 
without a magnetic field by approximately 35%. The most appropriate temperature for carbonization under an 
applied magnetic field was approximately 800 K; this temperature is where the mesophase of carbon materials 
appeared. The magnetic field effect on carbonized materials under an unreactive atmosphere was explained by 
the magnetic orientation in the mesophase, which resembled a liquid crystal. This magnetic field effect disap-
peared with stabilization treatment. The magnetic field effect on the precursor resulted in the construction of a 
large number of crystallites, which led to the formation of a large number of micropores. Although the activation 
of precursors prepared under a magnetic field is difficult, pore formation was effectively performed by the same 
activation method as that of HOPG. A KOH:precursor ratio of 3 was most suitable for the formation of micropo-
res, and the pore size distribution in samples prepared from P-HOCP was sharper than that in samples prepared 
from P-GCP. The micropore capacity of activated carbon was improved by preparation under a magnetic field, 
and we can expect a molecular sieve effect arising from the sharper pore size distribution. Hence, the magnetic 
field effect can be obtained at a relatively low temperature in the carbonization region, so there is no need to carry 
out activation at high temperature under a magnetic field, which is very important from an application point of 
view. These results may also lead to the property control of other carbon materials, such as graphite, because the 
activated carbon precursor used in this study is optimal for graphite fabrication. Furthermore, many materials 
other than carbon are categorized as having a negative magnetic susceptibility, which are termed non-magnetic 
materials; thus, magnetic orientation achieved using this effective procedure can be used to control the properties 
of such materials.

Materials and Methods
Preparation.  Coal tar pitch (2.0 g) with a softening point at 553 K, provided by Ad’all Co., Ltd. (Uji, Japan), 
was heat-treated roughly by two kinds of processes, process A and process B (see Fig. S1(a)). Process A was based 
on the general method for preparing a graphite precursor. In process A, only the carbonization treatment was 
carried out with the temperature varied from 553 K to 973 K. Process B was based on the general method for 
preparing an activated carbon precursor. In process B, stabilization was carried out before carbonization with 
the time varied from 0 to 120 minutes. The temperature was raised at a rate of 4 K/min. The stabilization process 
and carbonization process were conducted in atmospheres of air and nitrogen (N2), respectively, with a flow rate 
of 500 sccm. A magnetic field was applied the whole time during heating for process A. Although no magnetic 
field effects on the stabilization process were observed in our previous study17, we applied a magnetic field from 
time tb in process B in the present study to examine the effect of the magnetic field on the carbonization process.

Chemical activation was carried out as shown in Fig. S1(b) using carbonized coal pitch washed by pyridine. 
The maximum temperature of chemical activation was 1073 K and was maintained for 60 minutes. The ground 
precursor was immersed in potassium hydroxide (KOH) aqueous solution (the volume ratio of KOH to precursor 
was 1, 3, 5, 8, or 10) for 3 h before being placed in a furnace. N2 gas was flowed at a rate of 500 sccm. The activated 
sample was washed by enough water.

Furnace system.  An electric furnace system was constructed in the bore (diameter φ = 100 mm) of a super-
conducting magnet (HF-10-100 VHT-4, Sumitomo Heavy Industries, Ltd.), as shown in Fig. S2(a). A ceramic 
bobbin with a length of 600 mm, wound with Kanthal (Fe-Cr-Al) wire, was housed in a stainless-steel vessel 
covered with a non-magnetic water cooling jacket and tightly fixed to a 10-T superconducting magnet. A quartz 
or ceramic tube with an inner diameter of 23 mm and length of 1000 mm was inserted into the furnace bore with 
an inner diameter of 30 mm. Applying a maximum direct current (DC) voltage of 100 V to the furnace provided 
an output power of 1520 W and a temperature of 1523 K. The temperature distribution in the quartz tube inserted 
into the furnace at 798 K in the centre is shown in Fig. S2(b). A uniform temperature of 798 K was maintained 
with an error of ±5 K. The magnetic field distribution at 10 T in the centre is also presented in Fig. S2(b), which 
demonstrates the relationship between the furnace and magnet. The temperature at the sample position, which 
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coincided with the centre of the magnetic field, was controlled by a proportional-integral-differential (PID) ther-
mocontroller (E5CN-R2HBT, Omron Co.) with a K-type thermocouple.

Strictures and properties.  The microscopic structures of the prepared carbon materials were characterized 
by powder X-ray diffraction (XRD) measurements on a Multiflex diffractometer (Rigaku; CuKα radiation). The 
X-ray source was operated at 40 kV and 20 mA. Samples were scanned at a rate of 4°/min at 0.02° intervals over 
the range of 2° ≤ 2θ ≤ 80°.

The macroscopic structure of the carbonized coal tar pitch was confirmed by an epi-type polarizing micro-
scope (BX51P, Olympus Co.), Photographs of the wide view and magnification view were observed with objective 
lenses of 5× and 20×, respectively.

The morphology of the prepared activated carbon was observed by a JEOL JSM-7600F scanning electron 
microscope (SEM).

The adsorption behaviour of the prepared activated carbon samples was determined from N2 adsorp-
tion isotherms measured by using an in-house gravimetric apparatus at 77 K. Prepared samples were ground 
and preheated at 393 K and 1 mPa for 3 h before observation of the adsorption isotherms. Total pore volumes 
were estimated from the adsorption isotherms. The obtained isotherms were also analysed to provide infor-
mation about the relative surface area, pore diameter, and micropore volume through BET plots, t-plots, and 
Dubinin-Radushkevich (DR) plots, respectively. Pore distributions were analysed by the Horvath–Kawazoe 
method.
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