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Abstract: Spirocyclic nitroxyl radicals (SNRs) are stable paramagnetics bearing spiro-junction at α-,
β-, or γ-carbon atom of the nitroxide fragment, which is part of the heterocyclic system. Despite
the fact that the first representatives of SNRs were obtained about 50 years ago, the methodology of
their synthesis and their usage in chemistry and biochemical applications have begun to develop
rapidly only in the last two decades. Due to the presence of spiro-function in the SNRs molecules,
the latter have increased stability to various reducing agents (including biogenic ones), while the
structures of the biradicals (SNBRs) comprises a rigid spiro-fused core that fixes mutual position
and orientation of nitroxide moieties that favors their use in dynamic nuclear polarization (DNP)
experiments. This first review on SNRs will give a glance at various strategies for the synthesis
of spiro-substituted, mono-, and bis-nitroxides on the base of six-membered (piperidine, 1,2,3,4-
tetrahydroquinoline, 9,9′(10H,10H′)-spirobiacridine, piperazine, and morpholine) or five-membered
(2,5-dihydro-1H-pyrrole, pyrrolidine, 2,5-dihydro-1H-imidazole, 4,5-dihydro-1H-imidazole, imidazo-
lidine, and oxazolidine) heterocyclic cores.

Keywords: spirocyclic nitroxides; recyclization; condensation; 1,3-dipolar cycloaddition; TEMPO;
PROXYL; 3-imidazoline nitroxides; DOXYL; bis-nitroxides; molecular structure; EPR

1. Introduction

Stable nitroxyl radicals (NRs), first obtained more than 150 years ago (Figure 1, 1a,
R1,2 = SO3K, Frémy’s salt), became widely known with the development of electron
paramagnetic resonance (EPR) spectroscopy methods and thanks to the discovery in
1959 of extremely stable cyclic derivatives (Figure 1, 1b, R1–4 = Me) of piperidine series
(TEMPO) [1]. Over the past 60 years, NRs have become an integral part of scientific research
related to the development of advanced methods for the construction of new materials for
chemistry, biochemical studies, medical applications, and energy storage needs.

Only in the last decade, many monographs, book chapters, and reviews were pub-
lished regarding the physicochemical features of these radicals, methods of their synthesis,
and their various applications [2–5] in synthetic organic chemistry (as oxidants) [6], the
creation of functional materials [7–10], and polymer chemistry [11], including their role
as agents in nitroxide-mediated radical polymerization [12–14], as unique molecular spin
probes [15] and indispensable spin labels [16,17], and antioxidants and potential therapeutic
agents for biological research and medicine [18–20].

At the same time, these monographs and reviews only occasionally or incompletely
mention the so-called spirocyclic nitroxyl radicals (SNRs), which include a wide range
of nitroxides containing spirocyclic moiety(-ies) at the α-, β-, or γ-carbon atoms near a
paramagnetic center (Figure 1, structures 2a–c).
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time (Tm ) long enough up to ~125 K to allow for double electron-electron resonance 
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e) the spiro substituent can serve as a rigid linker to create di- or polyradical mole-

cules, whose magnitude of the exchange interaction between paramagnetic centers can be 

managed by changing the size or geometry of the linker; 

f) the introduction of some chirality into the spiro function can predetermine specific 

physicochemical properties of the SNR and makes it possible to use the radical as a chiral 

auxiliary in stereoselective processes. 

Here, it is possible to further enumerate the benefits of SNRs, but it is better to 

briefly refer to the current state of affairs in terms of their application in various fields of 

chemistry, biology, and physics. 

Figure 1. Structures of cyclic nitroxyl radicals (NRs) and α-, β-, and γ-spirocyclic nitroxides (SNRs).

SNRs, especially those belonging to α-SNRs (Figure 1, 2a) or containing several spiro
moieties—in comparison with traditional NRs (Figure 1, 1a, R1,2 = tert-Alk; R1 = t-Bu;
R2 = Ar; R1,2 = Ar) or with those in Figure 1, 1b, possessing a tetra-alkyl environment near
the paramagnetic center—have a number of definite advantages, e.g.,

(a) they have a much lower rate of radical center reduction by biogenic reducing
agents owing to a decrease in the steric accessibility of the N–O group;

(b) due to the hindered rotation of the spiro moiety, they have spin-echo dephasing
time (Tm ) long enough up to ~125 K to allow for double electron-electron resonance (DEER)
measurements of interspin distances in the liquid-nitrogen temperature range;

(c) they offer an opportunity for fine-tuning the changes in the properties of the
radical (hydrophilicity/hydrophobicity) or (open/closed) conformation (Figure 2) via the
introduction of proper substituents or heteroatoms at different positions of the spirocycle.
Furthermore, the functional group in the spiro moiety could be used as a spin label in
molecular biology or as a spin-labeled chelate-forming reagent in analytical chemistry;
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Figure 2. Equilibrium between open and closed conformations of TEMPO-like SNRs (A) in the
absence of and (B) in the presence of substituents at the C-3,5 atoms of the spiroheterocycle (the
(R,S,R,S) configuration is dominated by the closed conformation; the (S,R,S,R) configuration is
dominated by the open conformation).

(d) the spiro functions can be employed as protective groups; under certain conditions,
they can be destroyed using an acidic medium or enzymatically, leading to the release of
active proton-containing groups;

(e) the spiro substituent can serve as a rigid linker to create di- or polyradical molecules,
whose magnitude of the exchange interaction between paramagnetic centers can be man-
aged by changing the size or geometry of the linker;

(f) the introduction of some chirality into the spiro function can predetermine specific
physicochemical properties of the SNR and makes it possible to use the radical as a chiral
auxiliary in stereoselective processes.

Here, it is possible to further enumerate the benefits of SNRs, but it is better to briefly
refer to the current state of affairs in terms of their application in various fields of chemistry,
biology, and physics.
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During the last several decades, numerous research groups from the USA, France,
Japan, Germany, and Russia have shown that SNRs are applicable as:

(a) sterically shielded spin labels and spin probes with high resistance to biological
reductants having long spin-spin relaxation times [21–41];

(b) paramagnetic agents for dynamic nuclear polarization (DNP) both in solutions
and as solids [42–65];

(c) catalysts for living radical polymerization [66–75];
(d) starting compounds for the synthesis of oxoammonium salts, which are used as

oxidants in organic chemistry [76] and for the creation of organic radical batteries [77];
(e) building blocks for magnetic materials [78–81];
(f) organic radical contrast agents (ORCAs) for magnetic resonance imaging (MRI) [82–89];
(g) as participants in host–guest interactions in supramolecular chemistry for the

creation of nanomachines and polyradical ensembles [90–99];
(h) as spin probes for studying liquid crystalline media [100–103]; etc.
Usually, the preparation of SNRs requires an appliance of nonstandard synthetic

strategies that are different from those used for non-spirocyclic analogs. However, no
special review dedicated to SNRs synthesis has been published yet. In this regard, the
purpose of this survey is to systematize and summarize basic synthetic ways to spirocyclic
mono- and bis-nitroxides containing six-membered (piperidine, 1,2,3,4-tetrahydroquinoline,
9,9′(10H,10H’)-spirobiacridine, piperazine, and morpholine) and five-membered (2,5-
dihydro-1H-pyrrole, pyrrolidine, 2,5-dihydro-1H-imidazole, 4,5-dihydro-1H-imidazole,
imidazolidine, and oxazolidine) nitrogenous heterocyclic cores.

2. Piperidine Nitroxide Radicals (TEMPO Type)

The first SNRs were obtained on the basis of six-membered nitrogen heterocycles. In
addition, ring contraction of piperidine NRs is one of the main methods for the synthesis
of five-membered nitroxides of the pyrrole series; accordingly, the presentation of data in
this review conforms to the principle “from big to small.”

Piperidine-type SNRs (Figure 3, 3) have been obtained via oxidation of the cor-
responding sterically hindered amines 4 with hydrogen peroxide or its inorganic and
organic analogs (for example, with potassium peroxymonosulfate (OXONE) or meta-
chloroperoxybenzoic acid [m-CPBA]) [104–106]. Given that the oxidation step allows
us to synthesize SNRs with high yields, the main problem is usually the synthesis of a
precursor, a respective amine.
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intermediate cyclic amine 4.

In this regard, the interaction of acetonine (i.e., 2,2,4,6,6-pentamethyl-1,2,5,6- tetrahy-
dropyrimidine 5, which can be easily prepared from acetone) with different ketones,
including cyclic ones, has been studied extensively. A number of catalysts, such as methy-
lammonium chloride, acetic acid, and para-toluenesulfonic acid (PTSA), have been tested for
this reaction; however, the best result has been obtained for anhydrous ammonium chloride.
In addition, the formation of 2,2,6,6-tetramethylpiperidone 6 the product of the interac-
tion between acetonine and acetone, is always observed as a side reaction in this process
(Scheme 1). The proportion of ketones 6–8 is determined by the gas chromatography–mass
spectrometry (GS–MS) analysis (Table 1). The total isolated yield of mono-7 and dispiro-
cyclic 8 amounts to 60% when cyclohexanone is used as a ketone. When 2-alkyl-substituted
cyclohexanones, including bicyclic ones, (entries 3 and 6–9 in Table 1) are employed in the
reaction, dispirocyclic products 8 are not registered in the resultant mixture [76].
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Table 1. The proportion of the products in the reaction mixture after the reaction of a cyclic ketone
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* Individual mono- and dispirocyclic products cannot always be successfully isolated from the reaction mixture.

A suggested mechanism behind the formation of piperidone 7 is shown in Scheme 2.
An initial nucleophilic attack of the tautomeric form of acetonine 9 on the protonated
carbonyl compound leads to an intermediate, 10, which undergoes heterocyclic C–N bond
cleavage thereby turning into acyclic compound 11. Intramolecular cyclization of its
tautomer 12 generates piperidine 13, which is followed by hydrolysis yielding the final
product, spirocyclic amine 7.

Bobbitt et al. synthesized chiral piperidine-type SNRs to obtain the corresponding
oxoammonium salts on their basis. The interaction of acetonine 5 with dihydrocarvone
(Table 1, entry 6) should give rise to optically active piperidone 14. Nonetheless, experi-
mentally obtained product 14 is a mixture of isomers. It should be noted that racemization
at the C-2 position of the carbocycle takes place during the reaction; meanwhile, the (R)
configuration of the asymmetric center at the C-5 position of the starting ketone remains
the same for all isomers. Moreover, a new asymmetric center at position C-1 is formed.
Finally, four diastereomers are obtained with the ratio 49:26:14:11. Spatial structures of the
stereoisomers have been established by nuclear magnetic resonance (NMR) spectroscopy.
Hydrogenation of isomeric mixture 14 by means of Pt/H2 leads to compounds 15, which
are next oxidized by m-CPBA to the corresponding radicals 16. Reductive amination of
the keto group in SNR 16 followed by acylation of the intermediate with acetic anhydride
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leads with a high yield to amide 17, possessing a new chiral center of an undetermined
configuration (Scheme 3) [76].
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Scheme 3. Synthesis of chiral SNRs from acetonine and dihydrocarvone.

The synthesis of SNRs 18a–c, 19b–c, and 20, which have been obtained as catalysts
for living radical polymerization [67,69,71], can be presented here as an example of the
application of the above-mentioned synthetic strategy. It is worth noting that the reaction
of the acetonine with cyclic ketones may be the weak link in the whole synthetic scheme.
Thus, monospiroamines 21a–c are obtained as products of the interaction of 5 with cy-
clopentanone, cyclohexanone, and cycloheptanone, respectively, in the presence of NH4Cl
or NH4Br with rather low yields (from 6% to 14%). Those authors have stated that desired
spiro compounds 21a–c are isolated chromatographically or by vacuum distillation from a
complicated reaction mixture. The yields of dispiroamines 22b,c, which are synthesized
under similar experimental conditions, are also low (24% for cyclohexane derivative 22b
and only 1.9% for cycloheptane derivative 22c). Those authors explain the very low yield
of the latter by steric encumbrances preventing its formation [71]. The next step, reduction
of ketones 21a–c and 22b,c by sodium borohydride to respective amino alcohols 23a–c and
24b,c, as a rule, does not pose difficulties. Final oxidation of 23a–c and 24b,c by m-CPBA
or hydrogen peroxide in the presence of disodium salt of ethylenediaminetetraacetic acid
(EDTA-Na2) and Na2WO4 gives target SNRs 18a–c and 19b,c. A similar oxidation step for
22b has a yield of only 29%. Such a yield ratio (~3/1) difference between the oxidation
of amino alcohol 24b and the oxidation of aminoketone 22b is related to their different
solubility in ethanol, where the reaction is carried out (Scheme 4).
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Scheme 4. Synthesis of mono- and di-SNRs of the TEMPO and TEMPOL type.

Spin labeled rotaxanes 25 and 26 are prepared on the basis of an amino derivative of
SNR 20 [92]. First, the reaction of SNR 20 with propargylamine, followed by the reduction
of the imine, produces radical 27 with a terminal acetylene group. After that, in the key
reaction for the formation of [2]rotaxane, radical 27 enters into a “click” reaction with a
diazido derivative of 1,8-dialkoxynaphthalene (DAN), 28, with simultaneous addition of
a cyclobis(paraquat-p-phenylene) (CBPQT) macrocycle based on paraquat and a catalyst,
a copper(I) salt (Scheme 5). A similar rotaxane, 26, was obtained using a diazido deriva-
tive of tetrathiofulvalene (TTF), 29 (Scheme 6). Ideally, cyclobis(paraquat-p-phenylene)
(CBPQT4+)(PF6

−)4 having a wheel structure should play the role of a “shuttle” moving due
to the redox process in the rotaxane molecule between the “stations” (the corresponding
units, DAN (magenta) and TTF (green)), while bulky SNR residues serve as terminal
stoppers and EPR-sensitive sensors.
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SNR 27, DAN derivative 28 (carrying azide-terminated glycol chains), and CBPQT.



Molecules 2021, 26, 677 7 of 60
Molecules 2021, 26, x FOR PEER REVIEW 7 of 64 
 

 

 

Scheme 6. Synthesis of [2]rotaxane 26 via a three-component Cu(I)-catalyzed click reaction among 

SNR 27, TTF derivative 29 carrying azide-terminated glycol chains, and CBPQT. 

In continuation of this work, Lucarini et al. have managed to implement the fol-

lowing idea: a multifunctional rotaxane 30 is created with the CBPQT shuttle, i.e., a spin 

(TEMPO)-labeled radical that can move from the TTF core to DAN core, where at the 

terminus of a molecule, a second label (an SNR stopper) is situated (Figure 4). Sin-

gle-electron oxidation of the TTF unit results in a significant through-space magnetic in-

teraction between different radical units. In some cases, rotaxanation has proven to have 

dramatic effects on such magnetic interactions [95]. 

 

Figure 4. Structure of [2]rotaxane 30 bearing two different nitroxide units, two redox-active 

tetrathiafulvalene (TTF) groups and the 1,5-dioxynaphthalene (DAN) component. 

SNRs 31 and 32 are obtained initially as spin probes from acetonine 5 and 

4-hydroxycyclohexanone in two to three steps. The yield of intermediate amine 33 is only 

19%. Oxidation of 33 by m-CPBA gives the corresponding radical 31, which is reduced 

quantitatively by sodium borohydride (without affecting the radical center) to SNR 32 

with three hydroxy groups [28]. Based on nitroxide 31, through its conversion into amino 

derivative 34 with subsequent transformation into N,N-disubstituted urea, a polarizing 

agent for effective DNP of biomolecules is synthesized—biradical bcTol (35) with high 

water solubility [58].  

When methylamine is used in a similar procedure instead of NH4OAc, and carbon-

yldiimidazole is replaced by bis(trichloromethyl)carbonate (BTC), a dimethyl analog of 

35, R*NMe-CO-NMeR* (bcTol-M), is synthesized from 31. Along with this biradical, 

asymmetric Cyolyl-TOTAPOL biradical 38 containing five hydroxy groups is obtained 

(Scheme 7) [107]. The synthesis of the latter is carried out by the nucleophilic opening of 

epoxide 37, prepared from 4-hydroxy derivative 36 via a reaction with epichlorohydrin 

and in interaction with amino derivative 34. Moreover, heterobiradical AsymPolPOK 

(43), one of the best DNP agents applied at magnetic fields both 9.4 and 18.8 T, has also 

been derived from SNR 34. Thus, the coupling of amine 34 with paramagnetic carboxylic 

Scheme 6. Synthesis of [2]rotaxane 26 via a three-component Cu(I)-catalyzed click reaction among
SNR 27, TTF derivative 29 carrying azide-terminated glycol chains, and CBPQT.

In continuation of this work, Lucarini et al. have managed to implement the following
idea: a multifunctional rotaxane 30 is created with the CBPQT shuttle, i.e., a spin (TEMPO)-
labeled radical that can move from the TTF core to DAN core, where at the terminus of a
molecule, a second label (an SNR stopper) is situated (Figure 4). Single-electron oxidation
of the TTF unit results in a significant through-space magnetic interaction between different
radical units. In some cases, rotaxanation has proven to have dramatic effects on such
magnetic interactions [95].
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Figure 4. Structure of [2]rotaxane 30 bearing two different nitroxide units, two redox-active tetrathia-
fulvalene (TTF) groups and the 1,5-dioxynaphthalene (DAN) component.

SNRs 31 and 32 are obtained initially as spin probes from acetonine 5 and 4-hydroxycy-
clohexanone in two to three steps. The yield of intermediate amine 33 is only 19%. Oxida-
tion of 33 by m-CPBA gives the corresponding radical 31, which is reduced quantitatively
by sodium borohydride (without affecting the radical center) to SNR 32 with three hydroxy
groups [28]. Based on nitroxide 31, through its conversion into amino derivative 34 with
subsequent transformation into N,N′-disubstituted urea, a polarizing agent for effective
DNP of biomolecules is synthesized—biradical bcTol (35) with high water solubility [58].

When methylamine is used in a similar procedure instead of NH4OAc, and car-
bonyldiimidazole is replaced by bis(trichloromethyl)carbonate (BTC), a dimethyl analog
of 35, R*NMe-CO-NMeR* (bcTol-M), is synthesized from 31. Along with this biradical,
asymmetric Cyolyl-TOTAPOL biradical 38 containing five hydroxy groups is obtained
(Scheme 7) [107]. The synthesis of the latter is carried out by the nucleophilic opening of
epoxide 37, prepared from 4-hydroxy derivative 36 via a reaction with epichlorohydrin
and in interaction with amino derivative 34. Moreover, heterobiradical AsymPolPOK
(43), one of the best DNP agents applied at magnetic fields both 9.4 and 18.8 T, has
also been derived from SNR 34. Thus, the coupling of amine 34 with paramagnetic
carboxylic acid 39 produces a heterobiradical, amide 40, in a moderate yield. Deprotection
of the latter and the phosphorylation of intermediate diol 41 with bis(2-cyanoethyl)-N,N-
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diisopropylphosphoramidite (BCEDIPPA) in the presence of an activator (5-(benzylthio)-
1H-tetrazole; BTT) affords diphosphonate 42. The removal of cyanoethyl groups from 42
under base-catalyzed conditions quantitatively generates the water-soluble dipotassium
salt of bis(phosphonate) 43 (Scheme 7) [60].
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of 4-hydroxycyclohexanone.

In addition to cyclohexanone derivatives, other cyclic ketones have been reacted with
acetonine 5, for example, tetrahydro-4H-pyran-4-one 44 and its thio analog, tetrahydro-
4H-thiopyran-4-one 45 (Scheme 8) [108]. The yields of cyclic amines in both reactions are
approximately the same. Nonetheless, for the pyran derivative, the oxidation proceeds in
accordance with a standard scheme and gives SNR 46 with a high yield, whereas in the case
of thiopyran compound 47, this oxidation is accompanied by additional oxidation of the
sulfide group to sulfone, resulting in a rather low yield of final SNR 48 [109]. Of note the
thiopyran ring can serve as a protective group for the ethyl moiety; consequently, amine 47
has gained popularity in the synthesis of 2,2,6,6-tetraethyl derivatives of 4-oxypiperidine-1-
oxyl (TEMPON) 49, which are NRs extremely resistant to the action of various reducing
agents (Scheme 8).

Molecules 2021, 26, x FOR PEER REVIEW 8 of 64 
 

 

acid 39 produces a heterobiradical, amide 40, in a moderate yield. Deprotection of the 

latter and the phosphorylation of intermediate diol 41 with 

bis(2-cyanoethyl)-N,N-diisopropylphosphoramidite (BCEDIPPA) in the presence of an 

activator (5-(benzylthio)-1H-tetrazole; BTT) affords diphosphonate 42. The removal of 

cyanoethyl groups from 42 under base-catalyzed conditions quantitatively generates the 

water-soluble dipotassium salt of bis(phosphonate) 43 (Scheme 7) [60]. 

 

Scheme 7. Preparation of spin probes and dynamic nuclear polarization (DNP) agents on the basis 

of 4-hydroxycyclohexanone. 

In addition to cyclohexanone derivatives, other cyclic ketones have been reacted 

with acetonine 5, for example, tetrahydro-4H-pyran-4-one 44 and its thio analog, tetra-

hydro-4H-thiopyran-4-one 45 (Scheme 8) [108]. The yields of cyclic amines in both reac-

tions are approximately the same. Nonetheless, for the pyran derivative, the oxidation 

proceeds in accordance with a standard scheme and gives SNR 46 with a high yield, 

whereas in the case of thiopyran compound 47, this oxidation is accompanied by addi-

tional oxidation of the sulfide group to sulfone, resulting in a rather low yield of final 

SNR 48 [109]. Of note the thiopyran ring can serve as a protective group for the ethyl 

moiety; consequently, amine 47 has gained popularity in the synthesis of 

2,2,6,6-tetraethyl derivatives of 4-oxypiperidine-1-oxyl (TEMPON) 49, which are NRs 

extremely resistant to the action of various reducing agents (Scheme 8). 

 

Scheme 8. Interaction of acetonine 5 with heterocyclic ketones. Scheme 8. Interaction of acetonine 5 with heterocyclic ketones.



Molecules 2021, 26, 677 9 of 60

An alternative route for the synthesis of mono-α-SNR 50 and di-α,α′-SNR 20 was
suggested [110]. As a result of an aldol condensation of mesityl oxide with cyclohexanone,
ketol 51 is converted into a mixture of isomeric ketones 52a,b. Its treatment with gaseous
ammonia in an autoclave at temperatures above 100 ◦C for 17 h leads to cyclic amine
21b with a good yield (Scheme 9). Similarly, a mixture of ketones 54a,b that is obtained
by condensation of acetone with cyclohexanone followed by dehydration of 53 is again
applied to the same reaction with cyclohexanone, including distillation and dehydration of
55a,b, thus affording a mixture of three ketones 56a–c. Finally, the treatment of the latter
with ammonia and the oxidation of dispirocyclic amine 22b produces the desired SNR 20.
It must be noted that although the H2O2/Na2WO4 system can be utilized for successful
oxidation of amine 21b, in the case of more sterically hindered amine 22b, a satisfactory
result is achieved only with m-CPBA (Scheme 9).
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Yamada et al. proposed an alternative approach to the synthesis of piperidine-type
SNRs. It is assumed that the carbonyl group in 1,2,2,6,6-pentamethylpiperidine-4-one 57
can undergo enolization, thus simplifying further recyclization of the enol triggered by a
carbonyl compound. For instance, heating a solution of compound 57 in DMSO with cyclic
ketones 58a–f in the presence of a large excess of NH4Cl provides spirocyclic amines 22b,
47, and 59b,d–f with modest yields. Oxidation of the above amines by hydrogen peroxide
in ethanol leads to respective SNRs 20, 46, 48, and 60d,f [52,109]. In addition, the cleavage
of the dioxolane protective group in 59f, followed by oxidation of intermediate amine 61,
has allowed the preparation of α,α′-di-SNR 62 with three keto groups (Scheme 10) [109].
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Spin-labeled nitroxides 63a–c have been obtained by the aforementioned synthetic
procedure, using 15NH4Cl as a catalyst at the step of amine formation (Scheme 10). This
result proves that ammonium chloride is the source of nitrogen at the recyclization and
amine formation steps. Because amine 57 is a stronger base than NH4Cl, their interaction
causes ammonia formation. A plausible scheme of the reaction between 57 and ketones
has been proposed. Initiating the whole process is aldol condensation of 57 with cyclic
ketone 58 yielding sterically strained 64, followed by C–C bond cleavage through Grob-
type fragmentation [111] providing α,β-unsaturated carbonyl compound 65. Interaction of
the latter with ammonia and a subsequent reaction of 66 with cyclohexanone generates
intermediately 67; further elimination in it, accompanied by cycle closure in aminoenone 68
finally forms amine 59 (Scheme 11) [109]. Yamada et al. noted that, with a decrease in the
molar ratios of NH4Cl and cyclic ketone 58 to piperidone 57 and at a decreased temperature
of the reaction mixture, amines of type 7 bearing only one spiro moiety can form in some
cases (ca. 10–30% yield), and their oxidation leads to corresponding SNRs [52,112].
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Paramagnetic unnatural amino acids—7-aza-dispiro[5.1.5.3]hexadecane-7-oxyl-15-
amino- 15-carboxylic acid 69 and its N-(9-fluorenylmethoxycarbonyl) derivative 70—have
been obtained from the above-mentioned SNR 20 to be applied as spin labels. Thus, a
reaction of radical 20 with (NH4)2CO3 in the presence of sodium cyanide produces hydan-
toin derivative 71 with a high yield. Hydrolysis of 71 under harsh conditions—similar to
what has been conducted before for the corresponding tetramethyl analog of piperidine-1-
oxyl-4-amino-4-carboxylic acid (TOAC) (72) [113]—leads to amino acid 69 in a ~50% yield.
Nonetheless, the sample obtained in this way has failed to be fully rid of paramagnetic
traces and the hydrolysis intermediate. It is assumed that the steric hindrances produced
by cyclohexane rings make the complete conversion of the hydantoin intermediate to
α-amino acid 69 difficult. In this regard, SNR 69 was synthesized in two steps; first, double
Boc-protected derivative 73 is obtained followed by its hydrolysis under relatively mild
conditions. Amino acid 69 is then modified at the amino group via interaction with N-(9-
fluorenylmethoxycarbonyloxy)succinimide, affording target compound 70 without any
paramagnetic impurities (Scheme 12) [24].

It is noteworthy that on the basis of a simple paramagnetic amino acid, TOAC (72, a
derivative of TEMPO), using alternating protection of functional groups in the radical, a
dipeptide is obtained that thermolytically and readily converts into spirocyclic nitroxyl
biradical (SNBR) 74 of the TEMPO type, containing an almost flat diketopiperazine linker
between the paramagnetic nuclei (Figure 5).
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Figure 5. X-ray structure of dispirocyclic biradical 74 with a rigid diketopiperazine linker. A
cocrystallized 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) molecule forms an H-bond between the N–O
moiety and the hydroxy group of the solvent.

Thus, by a previously developed method [114], one part of TOAC is protected at
the amino group by a fluorenylmethyloxycarbonyl residue, whereas the carboxy function
of another part is esterified with diazomethane. Then, both molecules 75 and 76 are
crosslinked under the conditions of peptide bond formation, and after the removal of the
fluorenylmethoxycarbonyl (Fmoc) group in 77 by means of diethylamine, aminoester 78 is
subjected to mild acid-catalyzed thermolysis accompanied by cyclization and formation of
final SNBR 74 (Scheme 13) [115].
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Modern application of the DNP method allows us to increase NMR signal intensity in
solids and liquids by several orders of magnitude. The DNP method is based on polariza-
tion transfer from paramagnetic compounds to nuclei of investigated diamagnetic samples
by microwave irradiation of the sample at the electron paramagnetic resonance (EPR)
frequency. In practice, a huge variety of paramagnetic compounds has been synthesized
and applied as DNP agents during the last decade. The best results on signal enhance-
ment have now been shown by sterically hindered spirocyclic nitroxyl biradicals (SNBRs)
of the TEMPO series, which are fairly well soluble in protic solvents and carry various
substituents in the spiro substituent, which allows the surroundings of the paramagnetic
center to adopt a favorable conformation (see Figure 2) [63]. To obtain promising DNP
agents, two approaches were recently used to synthesize SNR biradicals. These methods
differ in only one fundamental characteristic, i.e., the nature of the linker between the
nitroxide nuclei, in particular, and whether it is flexible or rigid [59]. Some examples from
both approaches are presented below.

A urea residue is often employed as a flexible hydrophilic linker. For instance, water-
soluble polarizing agents PyPol and AMUPol are synthesized, starting from SNR 46. Reduc-
tive amination of 46 using ammonium acetate (or tetra(ethyleneglycol) methyl ether amine)
and sodium cyanoborohydride or Na(OAc)3BH leads to amines 79a,b, which are then re-
acted with triphosgene to obtain 80a (PyPol) or 80b (AMUPol) as solids (Scheme 14) [116].
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Another popular spacer between two radical parts, methyleneamine, which has
one group less than the urea residue, was recently used as the basis for the TinyPol
family of biradicals [62]. First, from SNR 46, 4-cyano derivative 81 was prepared from
tosylmethylisocyanide in the presence of potassium tert-butoxide. Hydrolysis of the cyano
group and subsequent reduction of the carboxylic group resulted in primary alcohol 82
in a good yield. Oxidation of the hydroxy group led to formyl-substituted SNR 83, which
then reacted with another SNR, amine 34, via reductive amination. Finally, deprotection of
the silyl groups in an intermediate adduct by means of tetra-n-butylammonium fluoride
(TBAF) in tetrahydrofurane (THF) yielded TinyPol (84) as a red solid (Scheme 15).

Molecules 2021, 26, x FOR PEER REVIEW 12 of 64 
 

 

Modern application of the DNP method allows us to increase NMR signal intensity 

in solids and liquids by several orders of magnitude. The DNP method is based on po-

larization transfer from paramagnetic compounds to nuclei of investigated diamagnetic 

samples by microwave irradiation of the sample at the electron paramagnetic resonance 

(EPR) frequency. In practice, a huge variety of paramagnetic compounds has been syn-

thesized and applied as DNP agents during the last decade. The best results on signal 

enhancement have now been shown by sterically hindered spirocyclic nitroxyl biradicals 

(SNBRs) of the TEMPO series, which are fairly well soluble in protic solvents and carry 

various substituents in the spiro substituent, which allows the surroundings of the 

paramagnetic center to adopt a favorable conformation (see Figure 2) [63]. To obtain 

promising DNP agents, two approaches were recently used to synthesize SNR biradicals. 

These methods differ in only one fundamental characteristic, i.e., the nature of the linker 

between the nitroxide nuclei, in particular, and whether it is flexible or rigid [59]. Some 

examples from both approaches are presented below. 

A urea residue is often employed as a flexible hydrophilic linker. For instance, wa-

ter-soluble polarizing agents PyPol and AMUPol are synthesized, starting from SNR 46. 

Reductive amination of 46 using ammonium acetate (or tetra(ethyleneglycol) methyl 

ether amine) and sodium cyanoborohydride or Na(OAc)3BH leads to amines 79a,b, 

which are then reacted with triphosgene to obtain 80a (PyPol) or 80b (AMUPol) as solids 

(Scheme 14) [116]. 

 

Scheme 14. Synthesis of SNRs that can serve as DNP agents (containing a urea-type linker)—PyPol and AMUPol. 

Another popular spacer between two radical parts, methyleneamine, which has one 

group less than the urea residue, was recently used as the basis for the TinyPol family of 

biradicals [62]. First, from SNR 46, 4-cyano derivative 81 was prepared from tosylme-

thylisocyanide in the presence of potassium tert-butoxide. Hydrolysis of the cyano group 
and subsequent reduction of the carboxylic group resulted in primary alcohol 82 in a 

good yield. Oxidation of the hydroxy group led to formyl-substituted SNR 83, which 

then reacted with another SNR, amine 34, via reductive amination. Finally, deprotection 

of the silyl groups in an intermediate adduct by means of tetra-n-butylammonium fluo-

ride (TBAF) in tetrahydrofurane (THF) yielded TinyPol (84) as a red solid (Scheme 15). 

 

Scheme 15. Synthesis of the TinyPol family of SNRs with a methyleneamine-type linker. 

The synthesis of similar SNR biradicals with a flexible linker was also presented 

above, in Scheme 7 (compounds 35 and 38). 

Scheme 15. Synthesis of the TinyPol family of SNRs with a methyleneamine-type linker.

The synthesis of similar SNR biradicals with a flexible linker was also presented above,
in Scheme 7 (compounds 35 and 38).
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In strong magnetic fields, the effective electron resonance frequency, which provides
the polarization of unpaired electrons of the biradical, can depend substantially on the
molecular orientation relative to the external magnetic field, and in a biradical, the respec-
tive parameter is controlled by relative orientations of electron g-tensors. A rigid linker
that fixes the two TEMPO moieties in a desired relative orientation should increase the
enhancement afforded by the polarizing agent. The required orthogonality of paramag-
netic centers toward each other—and their mutual arrangement that prevents a strong
exchange interaction—can be realized, for example, in the case of a rigid γ,γ′-SNBR of the
TEMPO type in which the number of spirocycles linking the paramagnetic cores is an even
number [42]. In this regard, when searching for optimal DNP agents, some investigators
have published a number of studies on the synthesis of similar SNBRs.

The reaction of 2,2,6,6-tetramethyl-4-piperidone 6 or substituted piperidin-4-ones 7a,b,
22b, 47, 59b,e, or 85a–e with pentaerythritol in the presence of PTSA yields diamines 86a–l,
which are then oxidized with hydrogen peroxide in the presence of Na2WO4 to trispiro-
cyclic biradicals 87a [42], 87b [45], 87c–f [52], or 87g–l [59] in 35–85% yields (Scheme 16).
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To carry out cross-condensation and obtain an asymmetric biradical, a mixture of
spirocyclic amine 22b, piperidone 6, and pentaerythritol was refluxed in toluene with
PTSA, followed by the oxidation of the resulting mixture of three amines. Along with the
cross-condensation product, SNBR 88, whose yield is only 10%, symmetric dimeric SNBR
87a,b are isolated by chromatography [52].

A series of sulfur-containing SNBRs was synthesized in the search for water-soluble
biradicals suitable for DNP experiments in water [46,47]. For example, boiling of tetraacetyl
pentaerythritithiol 89 with 2,2,6,6-tetramethyl-4-piperidone 6 in concentrated hydrochloric
acid yields a hydrochloride of the condensation product in a high yield, whose oxidation
with ruthenium tetroxide (generated in situ from RuCl3 and H5IO6) leads to diamine
tetrasulfone 90. Oxidation of the latter with m-CPBA gives rise to bisnitroxide 91 in a 70%
yield. This SNBR 91 does not have sufficient solubility in water but is readily soluble in
the DMSO/H2O system with a ratio of 60:40 (Scheme 17) [46]. Piperidin-4-one 59b also
condenses with tetraacetyl pentaerythritiol 89 in HCl, with diamine 92 forming in a 70%
yield. Its subsequent exhaustive oxidation to tetrasulfone 93 is performed when potassium
peroxomonosulfate is used. Initially, at low pH levels, only sulfur atoms are oxidized; with
an increase in pH to 8–9 and oxidation of the mixture with dimethyl dioxirane (generated
from acetone added to the mixture), the secondary amino groups are converted into nitroxyl
ones. To the disappointment of the researchers, biradical 93 has proven to be also insoluble
in glycerin–water mixture. Finally, oxidation of amine 92 with an excess of m-CPBA yields
a mixture of sulfur-containing bisnitroxides 94, which have turned out to be quite soluble
in a glycerol–water (60:40) mixture (Scheme 17) [47].
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3. Benzoannelated Derivatives of Piperidine-Type SNRs
3.1. SNRs of 1,2,3,4-Tetrahydroquinolines Series

Several examples of the synthesis of stable SNRs of the 1,2,3,4-tetrahydroquinoline
series are described in the literature. Their preparation includes two steps: (a) key assembly
of the tetrahydroquinoline frame as a result of an “unusual” Diels–Alder cycloaddition of
Schiff base 96 to 2-methyl-4,5-dihydrofuran in the presence of boron trifluoride etherate
as a catalyst [117] and (b) oxidation of the obtained cyclic amine with hydrogen peroxide
to a nitroxyl radical. For example, the interaction of imines 96a,b with dihydrosylvan
produces corresponding tetrahydroquinolines 97a,b. Their oxidation in the 30% aqueous
H2O2/Na2WO4 system leads to SNRs 98a,b [118,119]. Cyclohexylidene derivatives have
been obtained in a similar way from α- and β-naphthylamines 99, which, as a result of
similar transformations, are converted into SNRs 100 and 101, i.e., stable radicals of the
benzoquinoline series (Scheme 18) [120].
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In a later work [121], precise determination of the structure for the product of the
reaction between unsubstituted ketimine 96a and dihydrosylvan was performed by X-ray
analysis, and it was shown that in this process, compound 102 is formed, not compound
97a, as was postulated earlier [117]. Adduct 102 appears to be formed by the reaction of
imine 96a with the isomeric form of dihydrosylvan, 2-methylenetetrahydrofuran, although
usually, the equilibrium between these two tautomers is shifted toward 2-methyl-4,5-
dihydrofuran. Thus, in the case of unsubstituted imine 96a, the reaction proceeds in an
unusual way; according to the authors of that study, this outcome can be explained by
the influence of steric factors during the formation of the transition state. According to
X-ray diffraction data, stable SNR 103 that is obtained by oxidation of amine 102 has
the structure of dispirocycle 103 with spiro substituents at α- and γ-carbon atoms, not
of mono-spiro compound 98a, as previously stated. Of note, SNR 103 has been used as
an effective indicator of peroxy radicals, with which it reacts and yields a characteristic
product (absorption band at 371 nm) in autoxidation systems [122].

3.2. SNRs of the 10H,10′H-9,9′-Spirobi[acridine] Series

Diradicals with the orthogonal arrangement of single occupied molecular orbitals
(SOMO) have received much attention in the chemistry of organic magnetic materials
because they have a ground triplet state, and consequently, the implementation of an
intramolecular ferromagnetic interaction in them is possible. At the beginning of the
21st century, several reports appeared about obtaining and studying the magnetic char-
acteristics of spirocyclic diradicals of the acridine type, whose structural features hold
promise for achieving orthogonality of closely spaced paramagnetic centers. Indeed,
the diamagnetic precursor of such a diradical, 9,9′(10H,10H′)-spirobiacridine 104, is syn-
thesized in two stages—from t-butyloxycarbonyl (Boc)-protected diphenylamine and
methoxyethoxymethyl (MEM)-protected acridone. The presence of Boc-protection in
the starting amine promotes its directed ortho-lithiation to intermediate 105. The key stage
includes a one-pot procedure consisting of the addition of a heteroaromatic ketone to or-
tho-lithiated compound 105, followed by the acid-catalyzed intramolecular Friedel–Crafts
reaction and final acid-promoted removal of the protective groups to obtain target spiro-
cyclic diamine 104 with a good yield relative to starting diphenylamine [123]. The oxidation
of diamine 104 by m-CPBA leads to the formation of a mixture of monoradical 106 (35%)
and target diradical 107 (5%), which are separated by chromatography (Scheme 19). The
structure of both radicals has been proved by X-ray analysis (Figure 6). A study on the
magnetic properties of diradical 107 in a polycrystalline sample has shown that antifer-
romagnetic interactions are predominant for this compound. This result was explained
by the authors as a possible mutual influence of the closely located nitroxyl groups of
neighboring molecules. Nevertheless, the EPR spectrum of a dilute solution of compound
107 and Density Functional Theory (DFT) calculations in the gas phase indicated that the
ground state of the diradical molecule should be a triplet [78].
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A decade later, the investigation of Ishida et al. was successful; recently, a publication
appeared on the synthesis of paramagnetic spirocyclic nitroxyl diradical (SNDR) 108 with
the largest value of ferromagnetic exchange in the series of spiro compounds, 2J/kB = +
23(1) K [79]. Crystallographic analysis clarified the D2d molecular structure, suggesting the
degeneracy of SOMOs. The introduction of four tert-butyl groups at the para-position of
the benzene cycle in the biacridine system relative to the NO fragment (Scheme 20) has
made it possible to completely suppress the effect of the intermolecular antiferromagnetic
interaction of the diradical molecules. The key base compound in a six-step sequence, di-
tert-butyl–substituted acridone 109, is obtained quantitatively by Friedel–Crafts alkylation
of acridone [124]. In a 2020 paper, the same authors showed that, by changing the number
of tert-butyl groups (0→ 2→ 4) in the molecule of a spirobiacridine diradical, it is possible
to control the exchange interaction of unpaired electrons in the molecule by fine-tuning the
intermolecular distances [125]. The corresponding di-tert-butyl diradical is obtained by a
similar procedure from diarylamine 110 and MEM-protected acridone as starting blocks.
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4. Piperazine- and Morpholine-Type SNRs

Sterically hindered SNRs of the piperazine series (115, 116, 118, and 120) were obtained
for the first time to study the effect of substituents on hyperfine coupling constant AN in
the EPR spectra of stable radicals [126]. For instance, under reduced pressure, heating the
aminonitrile of cyclohexanone 111 gives bis(1-cyanocyclohexyl)amine 112, followed by a
one-pot step, including acid-catalyzed hydrolysis and intramolecular cyclization, leading to
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the starting compound of SNR synthesis—cyclic piperazinedione 113 [127]. Carboxylation
of the latter with chloroethyl formate and oxidation of amine 114 with m-CPBA give
nitroxide 115 in a 63% yield. Hydrolysis at room temperature and decarboxylation of SNR
115 allows for the isolation of NH-containing radical 116 (Scheme 21). In contrast, using
protection, carbonyl groups are removed from the heterocycle. Benzylation of amine 113,
followed by oxidation of intermediate 117 with m-CPBA, results in nitroxide 118 in a 61%
yield. Reductive deoxygenation of 118 with LAH leads to diamagnetic hydroxylamine
derivative 119, which readily oxidizes in ambient air to radical 120 (Scheme 21).
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Scheme 21. Preparation of different piperazine-type SNRs from aminonitriles.

In the works of Lai, a different approach to the synthesis of SNRs of the piperazinone
and morpholinone series was proposed [128–131]. The key stage of this approach is the
Bargellini reaction [132], which consists of the interaction of 1,2-aminoalcohols or 1,2-
diamines with ketones in chloroform in the presence of a strong base, with the formation
of sterically hindered morpholinone or piperazinone 121, which can then be oxidized to
corresponding nitroxyl radical 122 by the action of 1–2 equiv of m-CPBA (Scheme 22).
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Scheme 22. Synthesis of SNRs according to the Bargellini reaction.

The following scheme represents the proposed mechanism of the Bargellini reaction. In
the presence of a strong base, chloroform is deprotonated to the CCl3− anion, which attacks
the carbonyl carbon of the ketone, forming dichloroepoxide 123. A sterically hindered
C–N bond is formed through the regioselective opening of 123 with a nucleophile—amino
alcohol or diamine. Subsequent cyclization gives rise to lactone or lactam 124, respectively
(Scheme 23).
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Scheme 23. A plausible pathway of the formation of a piperazinone or morpholinone frame.

Below, we provide examples of specific syntheses using the above-mentioned ap-
proach to obtain SNRs of the piperazine and morpholine series. For example, condensation
of 2-nitropropane, formaldehyde, and optically active (S)-1-phenylethylamine produces
nitroamine 125, subsequent reduction of which by hydrogen on Raney nickel quantita-
tively leads to diamine 126. The Bargellini reaction of 126 with cyclohexanone causes the
formation of intermediate piperazinone 127. Although the yields in this reaction are high
(>80%), in the early work of Lai [128], it was noted that, along with piperazinone 127, the
formation of minor regioisomer 128 is also sometimes observed, while the ratio of products
127/128 is ~4.5:1. Oxidation of cyclic amine 127 with m-CPBA generates optically active
radical 129 in a quantitative yield (Scheme 24) [133].
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Scheme 24. Synthesis of a piperazinone-type SNR.

Similarly, hydrogenation of the intermediate obtained by the condensation of 1-
nitrotetralin with formaldehyde and (S)-phenylethylamine gives diamine 130. Its reaction
with acetone under the conditions of the Lai method and oxidation of piperazinone 131
quantitatively produces optically active nitroxide 132. Reduction of lactone 131 with LAH
yields piperazine 133 in the form of a mixture of diastereomers in a 1.3:1 ratio, which are
efficiently separated by crystallization of salts with camphorsulfonic acid (CSA). Hydro-
genation of piperazine 133 on Pd(OH)2 results in the removal of the phenylethyl group, and
subsequent treatment with 1 equivalent of TsCl yields mono-tosyl derivative 134. Optically
active nitroxide 135 is obtained quantitatively by the oxidation of the NH-function in 134
(Scheme 25) [133].

Chiral morpholine and morpholinone nitroxides should also be available using the
Bargellini reaction. Scheme 26 outlines a route to these nitroxides from model 2-methyl-
2-amino-1-propanol. Investigators were surprised to find that the Bargellini coupling
with acetophenone works very well in this case. The same reaction has been unsuccessful
with diamine 130. Sodium salt 136 precipitates from the reaction mixture and is isolated
by filtration. Acidification, followed by heating in toluene and neutralization with Et3N,
produces lactone 137 in a 57% overall yield from the initial amino alcohol. Oxidation with
m-CPBA completes this simple and effective synthesis of stable morpholinone nitroxide 138.
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Scheme 26. The general route to morpholinone NRs via the Bargellini reaction.

The next step was the synthesis of an optically active SNR of the morpholine series,
for which amino alcohol 139 (obtained by the condensation of 1-nitroindane with formalde-
hyde, followed by reduction of the nitro group) was used as a starting compound. The
three-component reaction of compound 139 with acetone in chloroform in the presence
of NaOH yields the corresponding carboxylate, whose acidification and heating in PhMe
result in lactone 140 in a 66% yield. Separation of the enantiomers of morpholinone 140
is again carried out by crystallization of their salts with (+)-camphorsulfonic acid. The
diastereomeric mixture of acetates 141 is obtained by the reduction of the (+)-140 isomer
with diisobutylaluminium hydride (DIBAL-H), followed by acylation. O-acyl derivative
141 is transformed by means of trimethylsilyl trifluoromethanesulfonate (TMSOTf) and
trimethyl(phenylthio)silane (TMSSPh) into S-derivative 142, which is further reduced with
Li/NH3 to morpholine. Controlled oxidation of the latter with m-CPBA acid in the presence
of NaHCO3 in a two-phase DCM/H2O system leads to optically active radical (+)-143 with
a very high yield (Scheme 27) [133]. Of note, overoxidation (overexposure to an oxidizing
agent) of radical 143 causes a complete loss of optical activity because of rapid racemization
arising from the recyclization of the spiro function as a consequence of solvolytic opening
and closure of the N-oxoammonium salt, which is a product of nitroxide overoxidation.
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On the basis of a natural ketone, L-(−)-menthone, Studer et al. performed the synthe-
sis of highly sterically hindered SNRs for subsequent preparation of the corresponding
alkoxyamines to be applied as initiators/regulators of controlled nitroxide-mediated rad-
ical polymerization of n-butyl acrylate and styrene. The key compound in the scheme
for synthesizing these SNRs is hydantoin 144, which is obtained via the Bucherer–Bergs
reaction [134]. Its further hydrolysis under harsh conditions, followed by treatment of the
intermediate amino acid with isopropylamine in the presence of a condensing agent and
hydrogenation with BMS, or the use of reductive conditions (NaBH4 / I2), leads to diamine
145 and amino alcohol 146, respectively. The Bargellini reaction of 145 with cyclohexanone
yields dispirocyclic piperazine 147, whose final stage of oxidation to target SNR 148 is
carried out in 40% peracetic acid (Scheme 28) [73].

On the contrary, for the synthesis of the chiral SNR of the morpholine series, 153,
a new approach was employed, including the use of a commercially available synthetic
block, 3-oxetanone [135]. Thus, amino alcohol 146 is reacted with a strained ketone to
form dispirocompound 149 in a high yield. In the presence of trimethylsilyl cyanide
(TMSCN) and a catalytic amount of In(OTf)3, 149 is then subjected to the Strecker reaction
with subsequent ring expansion to obtain morpholine 150, which is isolated as a single
diastereoisomer. Nitrile reduction, silyl ether cleavage, and BOC protection result in
bicycle 151. Subsequent alkylation of 151 with an excess of MeI causes double methylation.
Again, the oxidation of secondary amine 152 with AcOOH affords the target bulky spiro
morpholine-based stable radical 153 (Scheme 28) [74].

These chiral nitroxides carry spiroanellated six-membered rings at the α-position with
two additional substituents, which lock a sterically more hindered chair conformation.
X-ray structural analysis and DFT calculations have confirmed the conformation of such
nitroxides.
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A very recent paper presents the successful synthesis of rigid SNR diradicals 154a-c
of the morpholine type for DNP that have small distances between paramagnetic centers
and torsion angles that are not accessible in the six-membered SNR biradicals, bTbK, and
TEKPOL series [136]. Their synthesis is based on the original methodology of tin amine
protocol (SnAP)-assisted iterative assembly of polyspirocyclic N-heterocycles developed
by Bode et al. [137]. The key step in the process is the coupling of the cyclic ketone 155
with the SnAP reagent 156 in the presence of a Lewis acid, titanium isopropoxide, and a
catalyst (copper (II) triflate), yielding an interaction of the forming carbon-centered radical
with a carbon atom of the iminium cation, thus forming a morpholine ring (Scheme 29,
Figure 7) [138].

Molecules 2021, 26, x FOR PEER REVIEW 22 of 64 
 

 

 

Scheme 29. Tin amine protocol (SnAP) iterative assembly for the synthesis of SNDRs 154 of the morpholine type sepa-

rated by rigid linkers. 

 

Figure 7. Top: parent diketones 157a–c; bottom: synthesized diradicals 154a–c. 

5. 2,5-Dihydropyrrole (3-Pyrroline)- and Pyrrolidine (PROXYL)-Type SNRs 

One of the main methods for obtaining 3-pyrroline and pyrrolidine NRs is an ap-

proach based on the Favorskii rearrangement of 

3,5-dibromo-4-oxo-2,2,6,6-tetramethylpiperidine 158 by means of various O- and 

N-centered nucleophiles: OH−, MeO−, NH3, or amines. The resulting NH-pyrrolines 159 

can be then oxidized to pyrroline nitroxides 160 or reduced to pyrrolidines 161 and then 

transformed into corresponding pyrrolidine (PROXYLs) 162 by oxidizing agents based 

on hydrogen peroxide [139]. As for the Favorskii rearrangement of the monobromo de-

rivative 3-bromo-4-oxo-2,2,6,6-tetramethyl piperidine-1-oxyl 163, by using nucleophiles 

OH, EtO, and RNH2, it directly leads to PROXYLs 162 (Scheme 30) [139]. 

  

Scheme 29. Tin amine protocol (SnAP) iterative assembly for the synthesis of SNDRs 154 of the morpholine type separated
by rigid linkers.

Molecules 2021, 26, x FOR PEER REVIEW 22 of 64 
 

 

 

Scheme 29. Tin amine protocol (SnAP) iterative assembly for the synthesis of SNDRs 154 of the morpholine type sepa-

rated by rigid linkers. 

 

Figure 7. Top: parent diketones 157a–c; bottom: synthesized diradicals 154a–c. 

5. 2,5-Dihydropyrrole (3-Pyrroline)- and Pyrrolidine (PROXYL)-Type SNRs 

One of the main methods for obtaining 3-pyrroline and pyrrolidine NRs is an ap-

proach based on the Favorskii rearrangement of 

3,5-dibromo-4-oxo-2,2,6,6-tetramethylpiperidine 158 by means of various O- and 

N-centered nucleophiles: OH−, MeO−, NH3, or amines. The resulting NH-pyrrolines 159 

can be then oxidized to pyrroline nitroxides 160 or reduced to pyrrolidines 161 and then 

transformed into corresponding pyrrolidine (PROXYLs) 162 by oxidizing agents based 

on hydrogen peroxide [139]. As for the Favorskii rearrangement of the monobromo de-

rivative 3-bromo-4-oxo-2,2,6,6-tetramethyl piperidine-1-oxyl 163, by using nucleophiles 

OH, EtO, and RNH2, it directly leads to PROXYLs 162 (Scheme 30) [139]. 

  

Figure 7. Top: parent diketones 157a–c; bottom: synthesized diradicals 154a–c.

5. 2,5-Dihydropyrrole (3-Pyrroline)- and Pyrrolidine (PROXYL)-Type SNRs

One of the main methods for obtaining 3-pyrroline and pyrrolidine NRs is an approach
based on the Favorskii rearrangement of 3,5-dibromo-4-oxo-2,2,6,6-tetramethylpiperidine
158 by means of various O- and N-centered nucleophiles: OH−, MeO−, NH3, or amines. The
resulting NH-pyrrolines 159 can be then oxidized to pyrroline nitroxides 160 or reduced to
pyrrolidines 161 and then transformed into corresponding pyrrolidine (PROXYLs) 162 by ox-
idizing agents based on hydrogen peroxide [139]. As for the Favorskii rearrangement of the
monobromo derivative 3-bromo-4-oxo-2,2,6,6-tetramethyl piperidine-1-oxyl 163, by using
nucleophiles OH−, EtO−, and RNH2, it directly leads to PROXYLs 162 (Scheme 30) [139].
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pyrroline and pyrrolidine NRs.

Thus, piperidine-type SNRs can be easily transformed into SNRs of the pyrrole series;
this is a very convenient method for synthesizing the latter. Let us consider an example
of the application of this approach to the synthesis of various SNRs of the 3-pyrroline
series, 166–175, which are promising spin labels. Stirring of amine 22b with 4 equivalent
of bromine for 24 h readily results in hydrobromide 164 (Scheme 31). Rearrangement of
dibromo derivative 164 in a dioxane−aqueous ammonia mixture produces amide 165, the
oxidation of which with H2O2 in the presence of sodium tungstate generates paramagnetic
amide 166. Due to the low solubility of nitroxide 166 in water, the hydrolysis of the
amide group is carried out in a water–alcohol solution of KOH with microwave activation
(165 ◦C), as a result of which carboxylic acid 167, a starting compound for obtaining
spin labels, is synthesized with a good yield [21]. Further, starting with acid 167, the
methanethiosulfonate label is synthesized in five steps, and although nitroxide 172 is
poorly soluble in water, it is reported to be capable of reacting with glutathione in aqueous
methanol with the formation of SNR 173, which precipitates from a concentrated aqueous
solution as an individual compound (Scheme 31).
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Moreover, on the basis of acid 167, its N-hydroxysuccinimide ester 174 is obtained [21],
which is applied to the synthesis of paramagnetic unnatural amino acid 175 [140] (Scheme 31)
and to a novel site-directed spin labeling (SDSL) approach potentially suitable for long
natural RNAs. In particular, site-specific alkylation of an RNA with the 4-[N-(2-chloroethyl-
N-methyl)amino]benzyl phosphoramide derivative of oligodeoxyribonucleotide, followed
by the hydrolysis of the phosphoramide bond and a release of the aliphatic amino group
in a linker attached to the target nucleotide residue, creates a convenient template for
spin-labeling by selective coupling of paramagnetic ester 174 to this amino group [37].
O-Mesyl derivative 170 was recently utilized to synthesize an aminomethyl spin label for
binding through a flexible linker to C60 in order to apply photoexcited fullerenes as spin
labels for pulsed dipolar (PD) EPR distance measurements [141].

Pyrrolidine radicals (PROXYLs) are currently some of the stablest and most robust
NRs, and as a result, the most suitable for and demanded by scientists; in this regard,
many synthetic approaches have been developed specifically for this class of paramagnets.
Through the Favorskii rearrangement of monobromo derivative 176, carboxylic acid 177
is obtained from SNR 20 in two stages—bromination of 20 to halogenated derivative 176
and subsequent ring contraction to form SNR 177, with yields of ~60% at each subsequent
step [82]. At the same time, acid 177 can be obtained by the reduction of pyrroline deriva-
tives. Thus, the interaction of amide 166 with lithium borohydride proceeds selectively only
at the double C=C bond without affecting the amide group and radical center. Alkaline
hydrolysis of the reduced intermediate in aqueous alcohol leads to SNR 177 in a 67% yield
(Scheme 32) [21].
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proaches.

The synthesized acid 177 has been actively applied to the preparation of different
spin labels. For example, its succinimide derivative 178 was subjected to the synthesis of
water-soluble contrast agent ORCA, a polyradical dendrimer (Figure 8), via a sequential
interaction of the amino groups of the polypropyleneimine molecule with the NHS-ester of
SNR 178 and then with the succinimide derivative of polyethylene glycol (Scheme 32) [82].
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Derivative 178 has also been utilized for the synthesis of isocyanate spin label 179,
which in turn is conjugated with a natural molecular UV filter, kynurenine (KN), to sig-
nificantly increase its photostability in modified KN 180 (Scheme 32) [142]. Bifunctional
derivatives of SNRs–PROXYLs can be prepared by nucleophilic addition to a double bond
activated by the presence of an acceptor group in 3-pyrroline. In this way, amide 166 is
converted into the corresponding nitrile, followed by the addition of the CN− anion result-
ing in a mixture of cis- and trans-dicyano derivatives 181. Both dinitriles were separated
and subjected to alkaline hydrolysis in a drastic conditions (10% aq KOH, 100→150 ◦C,
6 d, conversion 63%), resulted in a formation of solely one product, trans-dicarboxylic acid
182 [21].

A rather unusual method for synthesizing SNR of the PROXYL series was demon-
strated by Motherwell and Roberts. Spiro-nitroxide 183 is prepared by oxidative cyclization
of enehydroxylamine with a silver compound. Thus, the Michael addition of methyl vinyl
ketone to nitrocyclohexane 184 followed by the Wittig reaction with CH2=PPh3 leads
to γ-nitroolefine 185. Reduction of the nitrocompound by Zn/NH4Cl and subsequent
oxidation of enehydroxylamine 186 by Ag2CO3/celite or Ag2O allows us to obtain the
target nitroxide 183 in a 30% yield. The authors suggested that the precursor of SNR 183 is
open-chain monoalkyl nitroxide 187, which can undergo cyclization similarly to a certain
olefinic aminium radical cation (Scheme 33) [143].
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Two more general approaches to the synthesis of NRs of the PROXYL series, based on
pyrroline nitrones, have been developed by Keana and Hideg groups.

In the first method, the key step is the Grignard addition to nitrone 188 (R1 = H). The
resulting N-hydroxy intermediate is oxidized to nitrone 189, which is reacted with another
Grignard reagent; this time, the oxidation of the intermediate generates stable PROXYL 190
(Scheme 34) [144]. In another method, the crucial stage is a regioselective reaction of 1,3-
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dipolar cycloaddition of nitrone 188 (R1 = Me) to an alkene activated by an acceptor group
thereby forming isoxazolidine 191. Bicycle cleavage at the N–O bond by the Zn/AcOH
reducing system and subsequent oxidation of amine 192 yields the corresponding NR 193
(Scheme 34) [145]. Next, the application of these two approaches to the synthesis of the
corresponding SNRs of the PROXYL series is demonstrated in a number of examples.
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Scheme 34. Two approaches to PROXYLs based on pyrroline nitrones.

PROXYL type SNRs 198, 200, 201, and 204, possessing an adamantane part as a
spiro substituent, have been obtained with the aim of their subsequent modification and
use as spin labels. The base-catalyzed Michael addition of methyl vinyl ketone to 2-
nitroadamantane 194 leads to γ-nitroketone 195, followed by reductive cyclization with
Zn/NH4Cl to starting spirocyclic pyrroline 196 (Scheme 35).
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Scheme 35. Preparation of a synthetic block—spirocyclic pyrroline nitrone 196.

Nucleophilic addition of methyl or ethynylmagnesium bromides to nitrone 196 leads
readily to hydroxylamines 197 and 199, which are then transformed into corresponding
SNRs 198 and 200 by the action of MnO2. The reaction of 196 with the Grignard reagent
BrMgC≡CCH2OMgBr, which is synthesized from propargyl alcohol and two equivalents
of EtMgBr, leads to PROXYL 201 through the formation of an intermediate, hydroxylamine
202 (Scheme 36).
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1,3-Dipolar cycloaddition of methyl acrylate with nitrone 196 occurs in an excess of
the reagent upon heating in the absence of a solvent and results in isoxazolidine 203 in a
76% yield. N–O bond breakage in bicyclic compound 203, by heating in the Zn/AcOH
system, allows us to obtain a sterically hindered amino alcohol, which, upon treatment with
m-CPBA, is converted to corresponding SNR 204, albeit with a low yield (Scheme 36) [22].

It is worth noting that the use of a tandem Michael reaction of methyl vinyl ketone
with cyclic nitro derivatives, followed by the addition of an organometallic reagent to a
five-membered nitrone, is a fairly general method for constructing SNRs of the PROXYL
series. In this way, Tamura et al. used the approach described above for the synthesis of
mesogenic paramagnetic compounds containing a spirocyclic residue. For example, nitro-
cyclohexane 184 quantitatively forms adduct 205 in a reaction with methyl vinyl ketone
in the presence of tetramethylguanidine (TMG). Its subsequent reduction under classic
conditions (Zn/NH4Cl/EtOH) generates the product of intramolecular cyclization of an
intermediate hydroxylaminoketone, spirocyclic nitrone 206. The addition of arylmagne-
sium bromide to heterocycle 206, followed by oxidation and desilylation without isolation
of intermediates, affords target SNR 207 in a 42% yield per nitrone 206 (Scheme 37) [146].
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Scheme 37. Synthesis of an SNR of the PROXYL type with a phenolic substituent.

In continuation of this work, to obtain new all-organic ferromagnetic liquid crystal
materials, a synthetic scheme based on 1,4-dinitrocyclohexane has been successfully im-
plemented, which gives rise to cis- and trans-isomers of PROXYL-type α,α′-SNDRs 213, in
which paramagnetic nuclei are separated by a rigid spirocyclic cyclohexane linker [147].
Thus, 1,4-cyclohexanedioxime 208 is oxidized in one step with a satisfactory yield to 1,4-
dinitro derivative 209 using the novel system Na2MoO4/H2O2/MeCN/H2O. A reaction
of 209 with methyl vinyl ketone, followed by reduction of adduct 210, produces a mixture
of cis- and trans-isomers of spirocyclic dinitrone 211 in a ~3:2 ratio, which are successfully
separated by chromatography. The addition of a Grignard reagent based on protected
para-bromophenol to dispirocycle 211 at −78 ◦C proceeds stereoselectively, albeit in a low
yield, and the resulting bishydroxylamines are oxidized without isolation to corresponding
diradicals cis-212 and trans-212 (X = OTBDMS). Final desilylation almost quantitatively
leads to bisphenols, SNDRs cis-213 and trans-213 (Scheme 38). For the synthesis of a para-
magnetic discotic compound, trans-diradical 214, dinitrone 211 is treated with an excess
of 4-(diethoxymethyl)phenylmagnesium bromide in THF at ambient temperature for 24
h; in this case, the yield of corresponding SNDR 212 (X = CH(OEt)2) increases up to 37%.
Subsequent hydrolysis of trans-acetal 212, selective oxidation of diformyl derivative 215
to paramagnetic dicarboxylic acid 216, and the final amidation step involving amine 217
and appropriate condensation reagents (DMT-MM and N-methylmorpholine) result in
α,α′-SNDR 214 (Scheme 38), showing both discotic and smectic liquid crystalline phases
and manifesting superparamagnetic-like behavior [81,148].
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Scheme 38. Synthesis of α,α-SNDRs of the PROXYL type for liquid crystalline materials.

Another similar approach to the synthesis of SNRs of the PROXYL type, which
contain an easily modifiable 1,3-dioxane moiety in the spiro substituent, was implemented
in the work of Japanese researchers in 2019. Based on 2-bromo-2-nitropropane-1,3-diol
218, 2,2-dimethyl-5-nitro-1,3-dioxane was synthesized, and then consecutively by Michael
and Grignard additions, it was transformed through intermediate nitrone 219 into 5-R-
substituted SNRs 220a-g (Scheme 39) [149]. The study also described the physical properties
of synthesized SNRs 220, e.g., log P and water−proton relaxivity (r1, a measure of the
ability to serve as a contrast agent), and the reactivity (k2) of these species toward ascorbic
acid (AsA) was evaluated. An acetal ring in SNRs 220 is capable of deprotection under
acidic conditions, to form a diol analog with increased r1; thus, SNRs might enhance
contrast imaging and tumor detection using these radicals might be a valid technique.

Molecules 2021, 26, x FOR PEER REVIEW 29 of 64 
 

 

 

Scheme 39. Preparation of 1,3-dioxane spiro-fused SNRs of the PROXYL type. 

Chiral super sterically hindered SNR 221 is obtained by multistep synthesis via re-

actions of the addition of organomagnesium reagents to cyclic nitrones and intramolec-

ular 1,3-dipolar cycloaddition of nitrones containing a terminal alkene group. 

(3S,4S)-3,4-Di-tert-butylpyrroline N-oxide 222 has been chosen as a starting compound 

because of its unique ability to enter into 1,3-dipolar cycloaddition reactions even with 

unactivated alkenes. It has been obtained previously in a good yield from the 

(R,R)-O,O-di-tert-butyl ester of tartaric acid 223 as a result of simple four-step synthesis, 

including hydroxylamine-promoted cyclization of a diol ditosylate compound (Scheme 

40) [150]. 
The addition of 4-pentenylmagnesium bromide to nitrone 222 proceeds stereoselec-

tively due to the steric effect of the bulky tert-butoxyl group at the third position on the 

pyrroline ring and causes the formation of N-hydroxypyrrolidine 224. Oxidation of the 

latter proceeds with moderate regioselectivity and is accompanied by the emergence of 

two isomeric nitrones 225 and 226, which are separated by column chromatography. In-

tramolecular cycloaddition in nitrone 225 is performed at 110 °C for 2.5 h and results in a 

single product, tricycle 227, in a quantitative yield. Treatment of compound 227 with 

m-CPBA opens the isoxazolidine part and produces aldonitrone 228, which is again sub-

jected to a sequence of addition/oxidation reactions with quantitative formation of 

nitrone 229. The second regioisomer, aldonitrone 226, was also converted into spiro 

compound 229 during five-step transformations (226230231232233229), in-

cluding Grignard addition, oxidation, intramolecular (3 + 2)-cycloaddition, reductive 

cleavage of the isoxazolidine ring promoted by an low-valent titanium (LVT)-reagent, 

and final oxidation of the amino alcohol with H2O2/Na2WO4 (Scheme 40). 

Scheme 39. Preparation of 1,3-dioxane spiro-fused SNRs of the PROXYL type.



Molecules 2021, 26, 677 28 of 60

Chiral super sterically hindered SNR 221 is obtained by multistep synthesis via reac-
tions of the addition of organomagnesium reagents to cyclic nitrones and intramolecular
1,3-dipolar cycloaddition of nitrones containing a terminal alkene group. (3S,4S)-3,4-Di-tert-
butylpyrroline N-oxide 222 has been chosen as a starting compound because of its unique
ability to enter into 1,3-dipolar cycloaddition reactions even with unactivated alkenes. It
has been obtained previously in a good yield from the (R,R)-O,O′-di-tert-butyl ester of tar-
taric acid 223 as a result of simple four-step synthesis, including hydroxylamine-promoted
cyclization of a diol ditosylate compound (Scheme 40) [150].
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The addition of 4-pentenylmagnesium bromide to nitrone 222 proceeds stereoselec-
tively due to the steric effect of the bulky tert-butoxyl group at the third position on the
pyrroline ring and causes the formation of N-hydroxypyrrolidine 224. Oxidation of the
latter proceeds with moderate regioselectivity and is accompanied by the emergence of two
isomeric nitrones 225 and 226, which are separated by column chromatography. Intramolec-
ular cycloaddition in nitrone 225 is performed at 110 ◦C for 2.5 h and results in a single
product, tricycle 227, in a quantitative yield. Treatment of compound 227 with m-CPBA
opens the isoxazolidine part and produces aldonitrone 228, which is again subjected to a
sequence of addition/oxidation reactions with quantitative formation of nitrone 229. The
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second regioisomer, aldonitrone 226, was also converted into spiro compound 229 during
five-step transformations (226→230→231→232→233→229), including Grignard addition,
oxidation, intramolecular (3 + 2)-cycloaddition, reductive cleavage of the isoxazolidine
ring promoted by an low-valent titanium (LVT)-reagent, and final oxidation of the amino
alcohol with H2O2/Na2WO4 (Scheme 40).

Transformation of nitrone 229 into a tricyclic product proceeds in a stereospecific
manner leading exclusively to the formation of a single cycloadduct, 234, whose spatial
structure has been confirmed by NMR spectroscopy. Again, treatment of 234 with a low-
titanium reagent produces aminodiol 235, followed by final oxidation to a corresponding
enantiomerically pure dispirocyclic radical, whose structure has been proved by X-ray anal-
ysis (Figure 9). The synthesized SNR 221, due to its very high kinetic stability (determined
mainly by steric factors), shows exceptional inertness toward biological reductants [23].
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Later, the same researchers suggested that the presence of electron-withdrawing
tert-butoxy groups at positions 3 and 4 of the pyrrolidine ring of 221 can strongly affect
the rate of nitroxide reduction; therefore, the removal of these groups should cause a
further decrease in the reduction rate of the corresponding nitroxide. In this regard, they
developed a method for the synthesis of SNRs of C1-symmetric racemic 3,4-unsubstituted
pyrrolidine nitroxides 236a–c with only one spiro (2-hydroxymethyl) cyclopentane moiety
(Scheme 41) [151]. Before the step of oxidation of the secondary amino group to a radical
in this sequence, acyl protection of the primary alcohol group (237→238) is carried out. In
one case (238a, R = Me), this leads to the formation of a byproduct, SNR 239, which has
a double bond in the spirocycle. In the authors’ opinion, the dehydrogenation reaction
with the formation of such an unusual radical can be explained by the participation of
oxammonium cation 240, a probable intermediate of the oxidation reaction.
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Earlier, a curious example of the preparation of PROXYL-type nitroxide 241, spiro-
fused with an isoxazoline heterocycle, was described. Namely, a study on nucleophilic
reactions of 5,5-dimethyl-2-phenacylpyrroline-1-oxide 242, which is obtained by the inter-
action of metalated derivative 2,5,5-trimethylpyrroline 1-oxide 243 with ethyl benzoate,
revealed that the treatment of nitrone 242 with hydroxylamine leads to oxime 244, which
can exist in solutions in two tautomeric forms, 244 and 245, the latter being spirocyclic.
Oxidation of compound 245 with MnO2 in chloroform produces SNR 241 in a high yield
(Scheme 42) [152].
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6. 2,5-Dihydroimidazole (3-Imidazoline)-Type SNRs

In the 1970s–1990s, Volodarskii et al. developed an approach to the synthesis of
nitroxyl radicals of the 2,5-dihydroimidazole series (3-imidazolines); the method consists
of the condensation of 2-hydroxylaminoketones (HAKs) 246 with carbonyl compounds in
the presence of ammonia or ammonium acetate, followed by conversion of an intermediate,
1-hydroxyimidazolines 247, to nitroxides 248 by means of heterogeneous or homogeneous
oxidants, such as MnO2, PbO2, or Cu(OAc)2/NH3/O2 [153]. It should be noted that the
condensation of HAKs with weakly reactive ketones is accompanied by the formation
of dihydropyrazine 1,4-dioxides 249, i.e., byproducts of the HAK dimerization reaction
catalyzed by ammonium acetate (Scheme 43) [154]. When HAKs are heated in the absence
of NH4OAc, virtually no pyrazine dioxides are formed.
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The use of a cyclic ketone as a substrate in this procedure generates an SNR of
the 3-imidazoline series. For instance, condensation of HAKs 246 with cyclopentanone,
cyclohexanone, or heterocyclic ketones in the presence of excess NH4OAc in methanol
yields 1-hydroxy derivatives 247a–g, whose subsequent oxidation with manganese dioxide
(or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in the case of compound 247g) leads
to agents of radical polymerization and paramagnetic ligands, the corresponding SNRs
248a–d [155], e–f [154], and g [156] (Scheme 43).

HAK 250 (R = H), bearing an additional functional phenolic group, has been employed
for the synthesis of SNRs possessing one or two mesogenic groups. For this purpose,
compounds 250 (R = H, CnH2n+1) are condensed with a cycloxexanone [157] or with its
four-substituted functional derivatives, 4-(4-hydroxyphenyl)cyclohexanone [158] and 4-
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hydroxycyclohexanone [159]. After the oxidation of intermediate N-hydroxy derivatives to
SNRs 251, the latter are acylated by means of one or two residues of 4-alkoxybenzoic acids
to form corresponding paramagnetic esters 252 (one of examples is shown in Scheme 44).
Three mixed triradicals 254a–c with small exchange coupling parameters (J � AN) are
obtained on the basis of a coupling reaction between spirofused 2,5-dihydroimidazole–
type monoradical 251 and two molar equivalent of carboxylic acid derivatives 253a–c of
PROXYL-, TEMPO-, or 2,5-dihydro-1H-pyrrol-type nitroxides [160]. In this case, compound
251 (R = H, X = 4-OH-C6H4), carrying two phenolic groups with different acidity, serves
as a convenient template for the assembly of heteropolyradicals (Scheme 44). The longest
spin–spin and spin–lattice relaxation times at 50 K have been documented for a triradical
carrying two TEMPO moieties, indicating the potential usefulness of three-spin qubit
models for quantum gate operations.
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Symmetric triradicals 256a–c have been synthesized upon treatment of cyanuric chlo-
ride 255 with three equivalent of SNR 251 (X = H; O(C=O)Ar, p-C6H4-O(C=O)Ar) in an
attempt to prepare liquid crystalline discotics based on s-triazine (Scheme 44). The crystal
structure of triradical 256a has been determined by the X-ray diffraction method [161].

Notably, the reaction of two equivalent of HAK 250 with 1,4-cyclohexandione 157a
does not yield a double-condensation product and the formation of a dispirocycle; instead,
it results in a complex mixture of products forms. Therefore, to obtain di-SNDRs of the
imidazoline series, a step-by-step strategy is utilized, including either the use of dioxolane
protection for the diketone 157a or the oxidation of the secondary 4-hydroxy group in
radical 251 (X = OH) to a keto derivative SNR. It should be noted that the second method
has been shown to be more productive, especially when the Dess–Martin reagent is used,
whereas the deprotection in the radical 257 has proved to be a challenging task, and
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only when the system “iron (III) chloride on silicagel” is employed, ketone 258 is isolated
with a low yield (Scheme 45). Reduction of the radical function and condensation of
the intermediate N-hydroxyketone 259 with 2-hydroxylaminoketone 250 (R = H) in an
inert atmosphere (followed by oxidation of the reaction product) ensures the isolation
of desired diradical 260 in the form of a mixture of cis/trans isomers in a total yield of
35% across three steps. Acylation of this mixture with 4-alkoxybenzoic acid chloride
results in di-SNDRs cis-261 and trans-261, which are identified as individual isomers after
chromatographic separation (Scheme 45). It is reported that the condensation reaction of
HAK 250 with diamagnetic hydroxylaminoketone 259 is stereoselective because isomeric
nitroxides trans-261 and cis-261 are isolated in a 3.75:1 ratio. EPR spectra of the obtained
di-SNDRs stereoisomers 261 confirm their paramagnetic diradical nature and a difference
in spatial structure. To determine the spatial structure of the isomers, diradical trans-
261 has been reduced by Zn/NH4Cl to diamagnetic bis(hydroxylamine), in which the
trans-arrangement of the heterocycles has been determined by NMR spectroscopy [162].
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moieties.

Kirilyuk et al. described a method for the synthesis of SNRs of the 3-imidazoline series
based on the reaction of 1,2-ketoximes (isonitrosoketones) with ketones in the presence
of NH4OAc in acetic acid, followed by the oxidation of the resultant cyclic aldonitrone in
methanol with excess PbO2 to a stable nitroxide with two methoxy groups on the α-carbon
atom near the nitroxyl group. In this manner, from ketoxime 262, SNR 264a is synthesized
in a high yield by condensation with cyclohexanone and oxidation of intermediate nitrone
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263a (Scheme 46) [163]. Intriguingly, the reduction of radical 264b obtained according to
a similar scheme by means of the Zn/NH4Cl system is accompanied by the elimination
of the methanol molecule and causes the formation of methoxynitrone 265. Prolonged
exposure of 265 to manganese dioxide in ethylene glycol gives rise to SNR 266, in which
the spiro moiety is a heterocycle of the 1,3-dioxolane type (Scheme 46) [164].
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Scheme 46. Formation of SNRs of the 3-imidazoline series on the basis of 2H-imidazole 1-oxides.

Recently, an approach to the synthesis of a pH-sensitive spin probe based on the SNR
of the 3-imidazoline series was proposed, in which the key stages are a sequence of reac-
tions of intramolecular 1,3-dipolar cycloaddition of alkenylnitrones of the 4H-imidazole
series and an opening of the intermediate cycloadduct by an LVT reagent with the emer-
gence of a spirocyclic hindered amine, whose standard oxidation leads to the target SNR.
Thus, at the first stage, a pH-sensitive group is introduced into the molecule together
with the components of the dipole and dipolarophile. For this purpose, 1-hydroxy-2,5-
dihydroimidazole 267 is synthesized and oxidized (without isolation from the reaction
mixture) to 4H-imidazole-3-oxide 268, whose subsequent nitrosation and the Beckmann
rearrangement in oxime 269 give carbonitrile 270. Nucleophilic substitution of the cyano
group in the latter leads to 5-dimethylamino-4H-imidazole-3-oxide 271 in a high yield. At
the second stage, intramolecular 1,3-dipolar cycloaddition of an unactivated C=C bond in
ketonitrone is carried out, and its successful implementation is favored by the presence of
a suitable linker (cf. [165]). Indeed, heating of 271 in toluene at 110 ◦C results in a single
product, 272, with a 96% yield. The opening of cycloadduct 272 under the action of an LVT
reagent, followed by oxidation of spirocyclic sterically hindered amino alcohol 273 with
m-CPBA, almost quantitatively yields target SNR 274 (Scheme 47) [29].
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The same synthetic approach has been applied by Morozov et al. in another study [72]
to obtain sterically hindered mono- and di-SNRs 275a–d for use of the latter in “living”
polymerization. The interaction of aldonitrones 276a–d with 4-pentenylmagnesium bro-
mide, oxidation of intermediates to ketonitrones, and subsequent thermal intramolecular
1,3-dipolar cycloaddition, produce tricycles 277a–d. The opening of the isoxazolidine ring
in 277 is performed using either the Zn/AcOH system or an LVT reagent. The resulting
amines are oxidized with m-CPBA to target SNRs 275a–d (Scheme 48).
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Scheme 48. Synthesis of functionalized SNRs on the basis of isomeric 2H- and 4H-imidazole N-oxides.

Paramagnetic 3-imidazoline 3-oxides are obtained by condensation of 2-hydroxylamino
oximes 278 with ketones in the presence of NH4OAc, where the formed acyclic nitrone
279 exists in a tautomeric equilibrium with the cyclic form—1-hydroxy-3-imidazoline
3-oxide 280. The latter, when oxidized with manganese dioxide, transforms into a nitroxyl
radical, thereby shifting the equilibrium toward the cyclic product. The catalytic effect
of ammonium acetate is explained by the formation of a ketone imine at the first step,
whose protonated form is more reactive in the nucleophilic attack of the hydroxylamino
group. Thus, by this technique, SNR 281 is prepared in a high yield (Scheme 49) [166]. The
same SNR 281 is obtained from 2-amino-2-methyl-1-phenylpropan-1-one oxime 282a under
conditions of acid-catalyzed condensation of the latter with cyclohexanone and oxidation
of intermediate aminonitrone 283 by hydrogen peroxide (Scheme 49) [167].
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Scheme 49. Synthesis of SNR from 2-hydroxylamino- and 2-amino oximes.

Aliphatic aminooxime 282b can react with triacetonamine only under harsh conditions,
whereas the yield of a spirocyclic nitrone, diamine 284, is rather low. Oxidation of nitrone
284 by H2O2 leads to a different ratio of diradical 286 to mono-SNR 285, depending
on the duration of incubation. Paramagnetic compounds 285 and 286 are separated by
chromatography on silica (Scheme 50) [168].
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Scheme 50. Synthesis of α,γ-SNDR 286, a 3-imidazoline 3-oxide of the TEMPO type.

Another notable type of SNR is exemplified by nitroxyl radicals of the 3-imidazoline
3-oxide series, spiro-fused to the 1,3-dioxolane part at the C-2 atom. Compound 287 is
prepared by sequential oxidation of 2,5-dihydroimidazole N-oxide 288 with manganese
dioxide (using ethylene glycol both as a solvent and reagent) first to hydroxylamine
derivative 289 (via the intermediate formation of 4H-imidazole N,N′-dioxide) and then by
oxidation of diamagnetic hydroxylamine 289 by MnO2 in chloroform (Scheme 51) [169].
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7. 4,5-Dihydroimidazole (2-Imidazoline)-Type SNRs

Recently, the vast class of stable nitronyl nitroxyl radicals (NNRs) of the 4,5-dihydroim-
idazole series, introduced into practice by Ullmann et al. [170,171] and represented mostly
as 4,4,5,5-tetramethyl (tetra-alkyl) derivatives, was supplemented with spirocyclic analogs
(SNNRs). First, α,β-di-SNNRs were prepared by Ovcharenko et al. via five-step synthesis
starting with cyclopentylbromide 290 (Scheme 52) [172]. Nucleophilic substitution of the
bromine atom affords a nitro compound with a moderate yield. Remarkably, the use of
iodine as an oxidant in the dimerization reaction of 291 causes a significant increase in
the yield of dinitroalkane 292 (from 17% to 50%) as compared to a previously described
procedure involving Pb(OAc)4 [173]. The reduction of vicinal dinitrocompound 292 by
the well-known Zn/NH4Cl system and subsequent condensation of bis(hydroxylamine)
sulphate 293 with heteroaromatic aldehydes, followed by the oxidation of crude N,N′-
dihydroxyimidazolidine 294 with manganese dioxide or sodium periodate, afford di-
SNNRs 295a–d. Based on the pyrazolyl-substituted SNR 295d, its N-ethyl derivative 296d
is obtained. The resultant radicals 295a–c and 296d have been employed for the synthesis
of various heterospin complexes with unusual spin transitions that are observed when
temperature or pressure changes [174–176].
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One of the rare examples of the synthesis of an iminonitroxyl radical with a spiro
junction at the β-carbon atom is demonstrated in reference [177]. Namely, condensation
of 3-hydroxyamino-3-methylbutan-2-one with benzaldehyde in the presence of ammonia
produces 1-hydroxy-2,5-dihydroimidazole 297, followed by metalation and subsequent
interaction with ethyl benzoate, leading to enaminoketone 298. Brief oxidation of the latter
with manganese dioxide (otherwise, further oxidation of the methylene moiety occurs,
with the formation of dimer 300) results in 4H-imidazole 3-oxide 299 in a quantitative yield.
Oximation of the latter and a reaction of the intermediate with MnO2 respectively cause
the closure of the isoxazole ring and the oxidation of cyclic hydroxylamine to SNR 301
(Scheme 53).
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8. Imidazolidine-Type SNRs

To obtain promising pH-sensitive spin labels, Keana et al. developed a simple method
for the synthesis of SNRs of the imidazolidine series having structural formulas 302 and
303 (Figure 10) [25–27].
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Figure 10. Structures of dimethyl and tetramethyl SNRs of the imidazolidine type.

Condensation of 1,2-diamino-2-methylpropane with cyclohexanone or N-protected
piperidones 58a,d,g in the presence of PTSA generates corresponding imidazolidines
304a,d,g in a high yield. Their immediate protection by formylation with a mixed anhy-
dride on the less sterically hindered nitrogen and the oxidation of intermediate formyl
derivatives 305a,d,g with m-CPBA lead to SNRs 306a,d,g containing a formamide group.
Their subsequent deprotection by hydrolysis in an aqeous–methanolic solution of KOH
generates desired nitroxides 302a,b quantitatively (Scheme 54) [26,27].
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Scheme 54. Synthesis of 5,5-dimethyl–substituted SNRs of imidazolidine.

For the synthesis of SNRs of type 303, ketones 58a,d are condensed with 2,3-diamino-
2,3-dimethylbutane, and the resulting imidazolidines 307a,d are oxidized with m-CPBA
to corresponding nitroxides 303a,d without the use of any protective groups. Alkaline hy-
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drolysis of the acetyl residue in SNR 303d produces diamino radical 303b (Scheme 55) [27].
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Scheme 55. Multistep synthesis of amino-functionalized SNR 303b and the first SNDR, 308.

Using nitroxide 303a, Keana et al. carried out a further sequence of transformations,
which make it possible to obtain unique diradical 308 [25], whose structure has been
confirmed by X-ray diffraction analysis (Figure 11). To this end, nitroxide 303a is reduced
in the H2/Pd/C system to the corresponding hydroxylamine derivative, the treatment of
which with AcCl/Et3N without isolation from the reaction mixture provides acyl derivative
309. Radical 310 is obtained in a high yield by the oxidation of amine 309. Careful treatment
of 310 with a methanolic alkali gives N-hydroxyradical 311 in a 56% yield. Final oxidation
of intermediate 311 is conducted by the bubbling of oxygen gas for 3 min through a solution
of the radical in the tBuOH–tBuOK system, making it possible to obtain diradical 308 in a
high yield. A specific feature of this diradical is the presence of two unpaired electrons on
geminal nitroxyl groups entailing a strong exchange interaction.
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Figure 11. X-Ray structure of SNDR 308, possessing two paramagnetic centers on one carbon atom.

A similar approach was employed to synthesize a related SNDR based on a cyclic
ketone, 5α-cholestan-3-one [25].

Another technique for the synthesis of imidazolidine SNRs, proposed by Reznikov, in-
volves the addition of organolithium compounds to cyclic nitrones of the 2,5-dihydroimida-
zole series and allows for the introduction of substituents other than the methyl group at the
C-4 atom of the imidazolidine ring. Thus, by alkylation of 5,5-dimethyl-2-spirocyclohexyl-
4-phenyl- 3-imidazoline-3-oxide 283 [167] with a mixture of formic acid and formaldehyde,
N-methyl derivative 312 is obtained, whose subsequent reaction with PhLi and oxidation of
intermediate hydroxylamine 313 (without isolation) by MnO2 lead to nitroxide 314 with a
quantitative yield (Scheme 56) [178]. On the other hand, to synthesize spirocyclic diradical
315, which cannot be obtained by direct oxidation of mono-SNR 314, a different starting sub-
strate 280 is utilized. Treatment with phenyllithium results in a crystalline N,N′-dihydroxy
derivative 316, which is oxidized by the original technique of slurrying in pentane and
aging over manganese dioxide for a short period to prevent overoxidation. In contrast to
tetramethyl analogs [178], evaporation or several-minute ambient-temperature incubation
of a solution of diradical 315 causes its complete decomposition, which is accompanied
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by a release of nitrogen oxides and benzophenon formation. Apparently, the presence of
two phenyl substituents and a spirocycle, which are larger than the methyl groups, creates
serious steric hindrances that significantly reduce the stability of diradical 315.
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Peculiar SNRs of the imidazolidine series were obtained from 1,2,2,4,5,5-hexamethyl-
3-imidazoline 3-oxide 317 in a study on the possibility of CH3 group functionalization at
the C-4 position of the heterocycle. Metallation of methylnitrone 317 with PhLi, followed
by treatment with an arylcarboxylic acid ester, produced β-oxonitrone 318. A reaction of
the latter with hydroxylamine yields oxime 319, which exists in solution in equilibrium
with a spirocyclic tautomeric form, compound 320. It is not surprising that the oxidation of
compound 320 by manganese dioxide gives rise to stable SNR 321 (Scheme 57). To establish
the limits of applicability of the observed oxidative cyclization, reactions of nitrone 318
with other nitrogenous nucleophiles (hydrazine, semicarbazide, and thiosemicarbazide)
have been investigated. It was revealed that only in the case of semicarbazide can the
resulting intermediate 322 be oxidized to a stable SNR, whereas the other derivatives
undergo imidazolidine ring opening under oxidation conditions. The structure of the
obtained nitroxide 323 has been proved by an analysis of its EPR spectrum, which is
complicated due to splitting at three nonequivalent nitrogen atoms (Figure 12), which
constitutes evidence for the formation of a spiro node with the nitrogen atom attached to
the α-carbon atom of the nitroxyl group [179].
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Sequential alkylation of nitroxides of the 3-imidazoline series 324a–d at the sp2-
nitrogen atom and subsequent reduction of intermediate imidazolinium salts are another
way to synthesize SNRs of the imidazolidine series. For instance, methylation of 324a–d
with dimethyl sulfate and treatment of the resulting iminium salts 325a–d with sodium
borohydride lead to SNRs 326a–d in 30–90% yields [155,180]. On the other hand, if the
obtained iminium salt 325d–f is treated with a base, then the corresponding enamine forms,
which can condense with salicylic aldehyde or 2-hydroxynaphthaldehyde, lead—due to
intramolecular nucleophilic cyclization—to paramagnetic spiropyrans 327d–f (Scheme 58),
which are representatives of β-SNRs and promising spin probes for biophysical stud-
ies [181].
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Scheme 58. Modification of 3-imidazoline SNRs to imidazolidine-type α- and β-SNRs.

One of the common methods for the synthesis of functionalized imidazolidine radicals
containing a keto group near the amine nitrogen atom is the cyclization reaction of α-
aminonitriles 111, 328 with carbonyl compounds under basic catalysis conditions, followed
by oxidation of the resulting amines 329 to SNR. Thus, in particular, a large series of
SNRs of the imidazolidinone series was obtained—330a–t (Scheme 59, Table 2) [182].
The resultant radicals are very stable, and no change occurred after storage at ambient
temperature for several years. In the case of cyclic amines 329b,e,f,j–l,n–p,r, which contain
an α-hydrogen adjacent to the secondary amino group, oxidation products are nonradicals.
Alkyl derivatives of SNRs 331a,b have also been synthesized to be applied as mediators in
styrene radical polymerization [183].
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Table 2. The set of spirocyclic amines 329a–t and SNRs of the imidazolidinone type 330a–t obtained in reference [182].

329, 330 R1 R2 R3 R4 Yield of Amine 329, % Yield of SNR 330, %

a (CH2)5 (CH2)5 86 78
b (CH2)5 H n-C3H7 76 nonradical
c CH3 CH3 (CH2)5 90 89
d (CH2)5 (CH2)4 70 ND
e (CH2)5 H n–C11H23 24 nonradical
f (CH2)5 H Ph 86 nonradical
g (CH2)5 CH3 3-Pyridyl 67 ND
h (CH2)5 4,4-TMP 40 ND
i (CH2)5 4,4-TEMPO 34 16
j 4,4-TMP H CCl3 88 nonradical
k 4,4-TMP H p-Cl-C6H4 69 nonradical
l 4,4-TEMPO H n–C3H7 61 nonradical

m 4,4-TEMPO (CH2)5 45 81
n 4,4-TEMPO H Ph 64 nonradical
o 4,4-TEMPO H o-CH3-C6H4 88 nonradical
p 4,4-TEMPO H p–CH3O-C6H4 81 nonradical
q 4,4-TEMPO 4,4-TEMPO 24 ND
r H Ph (CH2)5 40 nonradical
s CH3 Ph (CH2)5 40 ND
t 2–CH3-Cyclohexyl 2–CH3-Cyclohexyl 36 67

ND: yield not determined.

According to the proposed mechanism behind the cyclization reaction of α-aminonitriles
with carbonyl compounds, the amino group of substrate 111 initially attacks the car-
bonyl carbon atom of the ketone, with the subsequent addition of a hydroxy anion to
the cyano group, thus triggering cyclization with the formation of imidazolidinone 329a
(Scheme 60) [184].
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Scheme 60. A plausible mechanism of imidazolidinone formation.

A slightly different approach to the synthesis of SNDR 332 of the imidazolidinone
series was used in reference [77] (Scheme 61). Aminonitrile 328 (R1 + 2 = 4,4-TMP) was
hydrolyzed in the presence of sulfuric acid to aminoamide 333, and subsequent acid-
catalyzed cyclization of the latter in a mixture of acetone and its dimethyl ketal [185] led
quantitatively to bicycle 334. Double oxidation of diamine 334 with peracetic acid resulted
in diradical 332, which was employed as a monomer for constructing an electroactive
paramagnetic polymer to create a rechargeable organic radical battery [77].
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Finally, an original approach to paramagnetic N-methylimidazolidinones was devised
by French researchers on the basis of an ether of the simplest amino acid, glycine. Its
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application to a three-step process consisting of amidation, condensation, and oxidation of
cyclic amine 335 resulted in aldonitrone 336 [186]. Pd-catalyzed addition of arylbromide to
cyclic nitrone 336 in the presence of pivalic acid provided ketonitrone 337, and subsequent
Grignard treatment and oxidation of the intermediate hydroxylamine afforded SNR 338
(Scheme 62) [187].
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aldonitrone.

9. Oxazolidine (DOXYL) SNRs

The main technique for the synthesis of oxazolidine nitroxyl radicals 339 (DOXYLs) is
the approach developed by Keana et al. [30], which involves the condensation of a read-
ily available 1,2-amino alcohol (2-amino-2-methylpropan-1-ol 340) with dialkyl ketones,
followed by oxidation of the secondary amino group in cyclic adduct 341 with organic or
inorganic peroxides (Scheme 63).
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Scheme 63. The general method for the synthesis of oxazolidine nitroxyl radicals (DOXYLs) 339.

The proposed method has been utilized to obtain spirocyclic nitroxides 342, 345 [30];
343, 344 [188], 346 [31], and 347 [189], derivatives of cyclohexanone and 3-keto steroids
(Figure 13).
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Figure 13. Examples of DOXYL-type SNRs synthesized by the method of Keana et al. The colored numbers indicate the
yields—blue for the cyclic amine, and green for the radical.

Spiro-fused heterodiradical 348 is obtained by the condensation of 2,2,6,6-tetramethyl-
4-piperidone 6 with amino alcohol 340 followed by simultaneous oxidation of amino
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groups in five- and six-membered heterocycles of 349 with the formation of α,γ-SNDR
(Scheme 64, Figure 14) [190].
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Figure 14. The spatial arrangement of paramagnetic moieties in a diradical molecule 348 of the
DOXYL-TEMPO type according to X-ray data [43].

Although the synthesis of symmetric SNDRs with a rigid cyclic linker of the piperidine,
morpholine, pyrrolidine, and imidazoline series requires the use of an iterative, often a
multistep pathway (see Schemes 13, 29, 38 and 45), the preparation of a DOXYL-type SNDR
is a simple procedure, consisting of the condensation of 2 moles of an amino alcohol with
1,4-diketone with subsequent oxidation of the intermediate diamine. For example, refluxing
2-amino-2-methylpropan-1-ol 340 with 1,4-cyclohexanedione 157a in the presence of PTSA
readily leads to cyclic trans-bisamine 350, the treatment of which with m-CPBA generates
the trans-isomer of SNDR 351 in a 50% yield [191]. When the methyltrioxorhenium/H2O2
system is employed at the second step as an oxidizer, the diradical yield can be increased to
80%, [106], and in an Oxone/acetone mixture, this yield can reach 90% [105] (Scheme 65).
An X-ray study of SNDR 351 revealed that both N-oxyl groups in the molecule are trans-
diequatorial, with an intramolecular distance for the N atoms of 5.75 Å and the oxygens of
7.00 Å [192].
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Scheme 65. Two-stage synthesis of an SNDR of the DOXYL type with a cyclohexane linker.

A number of di-SNR DOXYLs 361–369 have been obtained in a similar manner
when the above synthetic scheme has been applied to isomeric decalinediones 352–354,
bis(4-cyclohexanone) 355, spiro[5.5]undecane-3,9-dione 356, and steroid diketones 357–360
(Table 3).

For trispirocyclic bisnitroxide 365, which is obtained as a polarization agent for
DNP [43], the relative mutual arrangement of NO groups in the biradical has been con-
firmed by X-ray diffraction (Figure 15) [193]. Due to the spiro junctions joining the rings,
compound 365 has a rigid structure, and the odd number of spiro centers forces the ni-
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troxide moieties to be almost orthogonal (θ, the angle between the mean planes of DOXYL
moieties, is 88◦).

Table 3. Structures of available homo-SNBRs of the DOXYL type.

Parent Diketone Biradical Yield Ref.
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To determine whether the major contribution to the exchange in rigid diradicals is
mediated by space (via a direct orbital overlap) or through the multi-sigma-bond pathway
between the paramagnetic subunits, SNR DOXYL-steroid nitroxide biradical 370 has been
synthesized based on a steroid molecule of isoandrololactam acetate 371 (Scheme 66).
Accordingly, treatment of the latter with dimethyl sulfate gave O-methyl ether 372 and the
subsequent Grignard addition to allyl magnesium bromide afforded cyclic amino alcohol
373 with a low yield [196]. Using a modified Sarret procedure (a complex of CrO3 prepared
in situ with pyridine in DCM), a secondary hydroxy group was converted into a keto group
and then ketoamine 374 was transformed into biradical 370 via a standard sequence, i.e.,
condensation with 340, followed by simultaneous oxidation of both amino groups in 375
to nitroxide moieties [197].
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Scheme 66. Introduction of two different nitroxyl groups into the steroid molecule.

Highly hydrophilic di-SNR heterodiradical Isodoxa 376 (constructed from different
types of nitroxides, an Isoindoline and DOXYL nucleus, linked to each other via a rigid
spirocyclic linker) was synthesized as a useful paramagnetic unit to study the forma-
tion of supramolecular polyradical structures based on triangular assemblies involving
cucurbit[8]uril.

This diradical was obtained by convergent synthesis involving the reaction of a
suitable functionalized SNR of the DOXYL type 377 [27] with protected isoindolinoxyl 378
before the cleavage of the protective acetyl group (Scheme 67). Isodoxa 376 is characterized
by an EPR spectrum with 15 lines, and its molecular structure has been resolved by X-ray
analysis (CCDC 1872438) [97].
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In addition to 2-amino-2-methylpropan-1-ol 340 being used for the synthesis of SNRs
of the DOXYL type, other different 1,2-aminoalcohols prepared from simple or complex
natural compounds can also participate in spirocyclization reactions. Below, we will
consider examples of such syntheses.

Amino alcohol 379 based on 2-adamantanone was synthesized in several steps through
intermediate 2-nitroderivative 194 [198]. Scheme 68 depicts one of the most optimal
versions of its synthesis [199].
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Scheme 68. Preparation of 2-amino-2-(hydroxymethyl)adamantane.

Amino alcohol 379 is condensed in an autoclave with different ketones to obtain
sterically hindered mono- and dispirooxazolidines, with subsequent oxidation with m-
CPBA to obtain target Ad-conjugated SNRs 381 and 384 with low to moderate yields
(Scheme 69) [200]. It should be noted that, in the case of oxazolidine 382, no corresponding
SNR was obtained, possibly due to steric hindrances in the diamagnetic precursor.
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Scheme 69. Synthesis of adamantane derived DOXYL type SNRs.

SNR 385 was synthesized for use as a catalyst in living polymerization processes.
Namely, 1-amino-1-cyclohexanecarboxylic acid 386 was reduced with an excess of LAH to
the corresponding amino alcohol 387, followed by a reaction with cyclohexanone in the
presence of TsOH, quantitatively affording amine 388 (Scheme 70). Oxidation of the latter
with m-CPBA led to nitroxide 385 in a low yield [66].
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Scheme 70. Synthesis of α,α′-di-SNR 385.

The amino acid 390 required for the synthesis of 1,2-aminoalcohol can also be obtained
from hydantoin, an adduct of the Bucherer–Bergs reaction [32]. In this way, on the basis
of 4-piperidone 6 through the formation of spirocyclic intermediate 389, an amino alco-
hol, (4-amino-2,2,6,6-tetramethylpiperidin-4-yl)methanol 391, was obtained (Scheme 71).
The condensation of the latter with cyclic ketones a–c and acetone d leads with high
yields to diamines 392a–d; their subsequent oxidation with two equivalent of m-CPBA
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produces mono-SNR diradical 393d [43] and di-SNR diradicals 393a [201,202], 393b [203],
and 393c [32].
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Scheme 71. Synthesis of DOXYL-TEMPO diradicals from a 4-piperidone derivative.

Via the above approach, steroid-type nitroxide 394 was obtained from 5α-cholestan-3-
one 395 as a mixture of stereoisomers in a ~7:1 ratio. Isomer 394a, in which the NO bond is
at the equatorial position of the cyclohexane ring, is predominant [33] (Scheme 72).
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Scheme 72. Synthesis of 5α-cholestan-3-spiro-DOXYL SNR.

Spirocyclic oxazolidinones can also serve as sources of 1,2-amino alcohols. For in-
stance, based on camphene, chiral SNRs camphoxyls, i.e., DOXYLs, spiro-conjugated with
a natural compound were obtained [204,205]. Scheme 73 presents four-step synthesis
of (1R,2S,4S)-3,3-dimethylspiro[bicyclo[2.2.1]heptane-2,4′-oxazolidin]-2′-one (+)-396 [206].
(−)-Camphene is converted via hydride reduction, phosgenation, azide formation, and
solvent thermolysis to an endo:exo mixture of oxazolidinones (+)-396 and (+)-397, from
which (+)-396 is isolated by fractional crystallization. Alkali-promoted hydrolysis of 396
quantitatively affords corresponding amino alcohol 398. Due to the reduced activity of
the amino group in 398, which is explained by the localization of the nitrogen atom at
the neopentyl position, acid-catalyzed acetalization for forming the oxazolidine 399 by
means of acetone fails but proceeds smoothly with 2,2-dimethoxypropane, thereby giving
cyclic amine 399 in a 70% yield. Its subsequent oxidation with m-CPBA leads to camphoxyl
radical (+)-400, which is isolated in a moderate yield as an orange crystalline compound,
stable for at least one year when stored in a freezer. Similarly, from commercially available
(−)-396, SNR (−)-400 was prepared [206]. Of note, in the case of benzophenone acetal, al-
though cyclic amine 401 is formed in a low yield; it fails to be oxidized to the corresponding
radical 402 either by m-CPBA or by dimethyldioxirane. To alleviate this problem, geminal
isobutyl camphoxyl derivative 403 was prepared (Scheme 73). In this case, oxidation of 404
with m-CPBA proceeded in a 65% yield to provide 403 as a stable crystalline solid [205].
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Another method for the synthesis of oxazolidine SNRs is the oxidation of cyclic hy-
droxylamines with manganese dioxide. These hydroxylamines are usually formed by the
condensation of 2-hydroxylamino alcohols with ketones in the presence of ammonium
acetate. The drawbacks of this method include lower availability of 2-hydroxylamino
alcohols compared to 2-aminoalcohols; however, the advantages of this approach are a
much shorter time of condensation with carbonyl compounds and the ease of oxidation
of hydroxylamine derivatives as compared to sterically hindered amines. For example,
the condensation of 2-(hydroxyamino)-2-methyl-1- phenylpropan-1-ol 405 with cyclohex-
anone is completed within 2 h, affording oxazolidine 406 in an 80% yield. Oxidation of
the latter with MnO2 or air oxygen produces target radical 407 in a quantitative yield
(Scheme 74) [166].
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It is noteworthy that the catalytic activity of ammonium acetate has also been demon-
strated for the condensation of 2-amino-2-methylpropanol 340 with cyclic ketones. It is
reported that refluxing of a solution of 5α-cholestan-3-one 395 with a three-fold excess
of amino alcohol 340 in the presence of one equivalent of NH4OAc for 2 h results in the
corresponding oxazolidine in a 70% yield [166].

10. SNRs of Other Types

In the literature, there are few reports of the synthesis of SNRs where the heterocyclic
paramagnetic frame belongs to classes not described above; however, these examples,
including both classic and nontraditional approaches to the synthesis of nitroxides, may
prove to be useful and interesting to the reader; therefore, they are considered in a sepa-
rate section.

Stable indolinone-type nitroxide radical 408 is obtained via oxidation of 1-hydroxy-
2′,6′-diphenylspiro[indoline-2,4′-pyran]-3-one 409 [207]. The latter is prepared as a product
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of intramolecular redox photocyclization of 2,6-diphenyl-4-(o-nitrobenzylidene)-4H-pyran
410. In turn, such a pyran is easily available from a reaction of 4-methoxy–substituted
pyrylium salt 411 with o-nitrophenylacetic acid 412 in the presence of a tertiary amine
(Scheme 75) [208].
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Scheme 75. Pyrylium salt-based synthesis of an indolinone-type SNR conjugated with a 4H-pyran
ring.

A similar SNR of the indolinone type with a quinone methide fragment, radical
413, is synthesized through oxidation of parent cyclic hydroxylamine 414, which in turn
is obtained via unusual reductive cyclization of a tetrasubstituted benzophenone 415,
containing an ortho-nitro group on one aromatic ring and two methoxy groups and a
phenolic moiety on the other [209]. The authors of that study suggested that the most
promising way to close the five-membered heterocycle is to first form intermediate nitroso
derivative 416, which is captured by nucleophilic addition of the electron-rich aryl ring to
the nitroso group before it can be reduced further to the corresponding hydroxylamine
(Scheme 76). This case represents a rare example of reductive phenolic coupling in contrast
to numerous examples of oxidative phenolic coupling. The correctness of the structural
assignment of cyclic hydroxylamine 414 has been confirmed by X-ray crystallographic
analysis. Moreover, the characteristics of an ESR spectrum of SNR 413 in some details
resemble those of radical 408. For instance, the experimental hyperfine coupling constants
that were determined for nitrogen and aromatic hydrogens in 413 and 408 are aN = 0.965
mT and 0.930 mT; aH4,7 = 0.316 mT and 0.310 mT; and aH5,6 = 0.104 mT and 0.100 mT,
respectively. Furthermore, an unusual feature of the 413 spectrum is a small long-range
splitting of 0.06 mT, which is due to the two dienone protons.
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Scheme 76. The route to an indolinone-type SNR with a quinone methide moiety.

Benzo[d][1,3]oxazine-type SNR 417 was obtained via three-stage synthesis from an-
thranilic acid [210] (Scheme 77). Nitroxide 417, although it was isolated as a crystalline red
compound with melting point 88 ◦C, proved to be unstable at room temperature and could
be preserved without decomposition only at a liquid-nitrogen temperature. A possible
reason for such liability is the presence of reactive hydrogen atoms at activated para- and
benzyl positions (6-H and 8-H).
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Scheme 77. First preparation of a benzo[d][1,3]oxazine-type SNR.

Triplet (S = 1) stable diradical 418 comes from the same benzoxazine family but
is devoid of the shortcomings of SNR 417; 417 was synthesized relatively recently [80].
Scheme 78 illustrates a multistep route of its synthesis. In this way, dimethyl 4,6-dibromois-
ophtalate 419, which is prepared from 4,6-dibromo-meta-xylene, is introduced into Pd-
catalyzed C–N cross-coupling with an excess of benzylamine.
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Scheme 78. Synthesis of a π-conjugated SNDR of the 1,9-diaza-3,7-dioxaanthracene type.

Subsequent reductive debenzylation of compound 420 to diamine 421 and a reaction of
the latter with a large excess of MeMgBr allow us to obtain diaminodiol 422 quantitatively.
Of note, double condensation of 422 with cyclohexanone in the presence of AcOH leads to
cyclic diamine 423 in a 34% yield, whereas the catalysis by silica gel in the absence of an
organic acid and without heating increases the yield of target product 423 at this stage to
78% [211]. By oxidation of 423 with m-CPBA, SNDR 418 is obtained with a yield of 30%.
1,9-Diaza-3,7-dioxaanthracene-1,9-dioxyl 418 and other diradicals of this series possess
robust triplet ground states with strong ferromagnetic coupling and good stability under
ambient conditions.

A curious SNR of the tetrahydropyrazine series, radical 424, was synthesized in a
study on the reactivity of sterically encumbered 2,2,3,5,5,6-hexamethyl-2,5-dihydropyrazine
N,N′-dioxide 249 (R1–3 = Me) [212]. Accordingly, when compound 249 is treated with PhLi,
preferential metalation of only one of the activated methyl groups takes place; a subsequent
reaction of the intermediate with ethyl benzoate causes the formation of a monoacylation
product, ketone 425, with a yield of 30%. The reaction of the latter with hydroxylamine
generates oxime 426, which, as in the case of pyrroline 1-oxide 244 (Scheme 42), exists in
solution mainly in the form of the spirocyclic tautomeric form 427. Oxidation of spirocyclic
hydroxylamine 427 with MnO2 quantitatively affords SNR 424 (Scheme 79).
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Scheme 79. Synthesis of a pyrazine-isoxazoline-type SNR.

The preparation of nitroxides capable of integration into special structures, such as
fullerenes, is of interest for the design of organic ferromagnetic materials. Chinese authors
found that cyclic ketones, like aldehydes, are capable of reacting with 2-aminoisobutyric
acid when boiled in chlorobenzene thereby forming reactive azomethine ylide, which
then reacts with the double bond of C60 (C70) in 1,3-dipolar cycloaddition to yield the
final [60]-fulleropyrrolidine 428 or [70]-fulleropyrrolidine 429 [213]. Corresponding stable
nitroxides annelated with fullerenes (C60, C70), 430 and 431, are obtained via the oxidation
of amine derivatives 428 and 429 by an excess of m-CPBA (Scheme 80) [214].
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Scheme 80. Formation of fulleropyrrolidine SNRs via dipolar cycloaddition of azomethine ylides to
fullerenes.

11. Conclusions

In this review, we tried to cover diverse approaches to the preparation of SNRs of
various five- and six-membered nitrogen heterocycles, ranging from the first historical
experiments up to the most recent advances involving complex transformations based on
organometallic species and stereoselective synthetic methods. The preparation of SNRs
containing at least one nitrogen atom and 0–2 oxygen atoms in the following heterocyclic
nuclei was reviewed here; piperidine, tetrahydroquinoline, spirobiacridine, piperazine,
morpholine, pyrroline, pyrrolidine, 2- and 3-imidazoline, imidazolidine, oxazolidine, and
sporadic examples of the synthesis of other SNR types.

As a rule, the synthesis of SNRs consists mainly of choosing the proper method
for obtaining a diamagnetic precursor because the final oxidative stage poses no special
difficulties. In the synthesis of spirocyclic amines (hydroxylamines), there are several main
approaches, such as (a) recyclizations of heterocycles; (b) condensations of bifunctional
nitrogen-containing nucleophiles with carbonyl compounds, whereas for the synthesis of
bis-nitroxides, a step-by-step strategy of molecule assembly is often chosen; and (c) the
formation of a spiro junction in a multistep procedure—aldonitrone→ ketonitrone with a
terminal alkene function→ 1,3-dipolar intramolecular cycloaddition→N-O bond breakage
in the resulting adduct. Other methods of designing the SNR spiro framework, such as
the Diels–Alder reaction of imines, acid-catalyzed reactions of aminonitriles, oxidative
alkoxylation of nitrones, and a shift of the tautomeric equilibrium of oxime-nitrone/N-
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hydroxy-isoxazoline toward the ring at the oxidation step, are quite rare in the practice of
SNR synthesis.

Most of the SNRs mentioned in the review were synthesized in original studies with
the aim of their subsequent application in various fields of natural sciences. An upcoming
review of uses of the most diverse SNRs, including functionalized ones, is expected to
clarify the current situation and the place of spirocyclic nitroxides in the chemistry of
materials and various biological and biochemical applications.
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AMUPol
(15-{[(7-Oxyl-3,11-dioxa-7-azadispiro[5.1.5.3]hexadec-15-yl)carbamoyl][2-
(2,5,8,11-tetraoxatridecan-13-ylamino)}-[3,11-dioxa-7-azadispiro[5.1.5.3]
hexadec-7-yl])oxidanyl;

BCEDIPPA Bis(2-cyanoethyl)-N,N-diisopropylphosphoramidite;
bcTol [Bis(spirocyclohexyl-TEMPO-alcohol)urea];
BINAP 2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl;
BMS Borane dimethylsulfide;
Boc2O Di-tert-butyl dicarbonate, (ButOCO)2O;
bTbK Bis-TEMPO-bis-ketal;
BTC Bis(trichloromethyl) carbonate (Triphosgene);
BTEAC Benzyltriethylammonium chloride;
BTT 5-(Benzylthio)-1H-tetrazole;
m-CPBA meta-Chloroperoxybenzoic acid;
CDI 1,1′-Carbonyldiimidazole;

CSA
Camphorsulfonic acid, (7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)
methanesulfonic acid;

cyolyl-TOTAPOL [Spirocyclohexanolyl-1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol];
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene;
DCC N,N′-Dicyclohexylcarbodiimide;
DCM Dichloromethane;
DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone;
DEER Double electron-electron resonance;
DIBAL-H Diisobutylaluminium hydride;
DIPEA N,N-Diisopropylethylamine (Hünig’s base);
DMAP 4-Dimethylaminopyridine;
DMDO Dimethyldioxirane;
DME Dimethoxyethane;
DMEDA N,N′-Dimethylethylenediamine;
2,6-DMP 2,6-Dimethoxypyridine;

DMP
Dess–Martin periodinane (3-Oxo-1,3-dihydro-1λ5,2-benziodoxole-1,1,
1-triyl triacetate);

DMT-MM 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride;
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DOXYL Oxazolidine-3-oxyl;
EDCI 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide;
EDTA-Na2 Ethylenediaminetetraacetic acid, disodium salt;
Fmoc-Cl 9-Fluorenylmethoxycarbonyl chloride;
Fmoc-OSu N-(9-Fluorenylmethoxycarbonyloxy)succinimide;
GSH Glutathione;
HAK 2-Hydroxylaminoketones, R1-CO-CR2R3-NHOH;
HFIP 1,1,1,3,3,3-Hexafluoro-2-propanol;
HOBt 1-Hydroxybenzotriazole;
KN Kynurenine, (S)-2-Amino-4-(2-aminophenyl)-4-oxo-butanoic acid;
LAH Lithium aluminium hydride, LiAlH4;
LVT-reagent Low valent titanium species;
MEM-Cl 2-Methoxyethoxymethyl chloride;
MTO Methyltrioxorhenium, CH3ReO3;
MS Molecular sieves;
NBS N-Bromosuccinimide;
NHS N-Hydroxysuccinimide;
NMM N-Methylmorpholine;
ORCA Organic radical contrast agent;
PCC Pyridinium chlorochromate;
PivOH Pivalic acid;
PROXYL Pyrrolidine-1-oxyl;
PTSA p-Toluenesulfonic acid, TsOH;

PyPol
(15-{[(7-Oxyl-3,11-dioxa-7-azadispiro[5.1.5.3]hexadec-15-yl)carbamoyl]
amino}-[3,11-dioxa-7-azadispiro[5.1.5.3]hexadec-7-yl])oxidanyl);

Ra-Ni Raney nickel;
SDSL Site-directed spin labeling;
TBAF Tetra-n-butylammonium fluoride;
TBAHS Tetrabutylammonium hydrogen sulfate;
TBDMS tert-Butyldimethylsilyl;
TBTA Tris((1-benzyl-4-triazolyl)methyl)amine;
TEA Triethylamine;
TEKPOL Bis-phenylcyclohexyl-TEMPO-bis-ketal;
TEMPO 2,2,6,6-Tetramethylpiperidine-1-oxyl;
TEMPOL 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl;
TEMPON 2,2,6,6-Tetramethyl-4-oxypiperidine-1-oxyl;
TMEDA N,N,N′,N′-Tetramethylethylenediamine;
TMG 1,1,3,3-Tetramethylguanidine;
TMP 2,2,6,6-Tetramethylpiperidine;
TMSCN Trimethylsilyl cyanide;
TMSOTf Trimethylsilyl trifluoromethanesulfonate, CF3SO3SiMe3;
TMSSPh Trimethyl(phenylthio)silane, PhS-SiMe3;
TOAC 2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid;
TosMIC Toluenesulfonylmethyl isocyanide;
UHP Urea hydrogen peroxide
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